Research Statement: Tony Bedenikovic

The statement below is intended to be a non-technical description of my research and
my research goals. Intended for a general audience, it gives a general sense of the
mathematics that I do.

My area of specialty is low-dimensional topology. In the broadest sense, topologists
study collections of points and the effects of transformations on these collections. Often
the points in a collection are neatly organized in space, in which case the topologist’s
work becomes highly visual. For example, a circle drawn on this flat, 2-dimensional page,
viewed as the collection of points which lie on it, is a candidate for study. Likewise, a
spherical membrane living in 3-dimensional space, perhaps living in the space above this
page, is a candidate for study and, in fact, plays a central role in my research. The
transformations which are applied to such collections of points are operations which alter
the collections in reasonable ways. One transformation deemed to be reasonable is the
act of stretching or deforming an object without tearing it. The points of a circle, for
example, can flow naturally onto the points of a square without tearing the circle and thus
a circle and a square are considered to be topologically the same. Similarly, a spherical
membrane in 3-dimensional space is considered to be topologically the same as a cubical
membrane and the same as the thin surface of the earth, with its peaks and valleys.

Continuous, organic deformation is not the only transformation allowed on a collection
of points. Another transformation deemed to be reasonable is the act of reconfiguring
points in a collection such that neighboring points remain neighbors. This transformation
moves points to perhaps different points in space but preserves intrinsic properties of the
collection. For example, a knotted circuit in 3-dimensional space may be viewed as a
reconfiguration of the points on a circle. Imagine tying the laces on tennis shoes and then
joining the ends of the laces to form a knotted circuit. A one-to-one correspondence exists
between the points of a circle and the points of the knotted circuit and the reconfiguration
preserves the sense of relative position. It is said that “the knot is an embedding of the
circle in 3-dimensional space.” The study of knots (i.e., embedded circles in 3-dimensional
space) is a classic area of topology which leads, indirectly, to my own area of research.

In knot theory, one investigates the complements of knots in order to understand
better the knots themselves. That is, one studies the negative spaces created by knots,
as a photographer might study the negative spaces in photographs. With this focus,
topologists ask, for example: When are two apparently distinct negative spaces in fact
topologically the same? What types of distinct closed paths exist in one of these negative
spaces? Is every spherical membrane in one of these negative spaces homotopically trivial?
This last question asks whether every spherical membrane in a knot complement can
shrink to diameter zero by flowing naturally through the points of the space. These
questions, particularly the last, motivated the studies of many topologists in the past
century. Elegant and accessible, the mathematics developed to answer them is a great



source of pride for topologists.

I myself am not a knot theorist. However, my studies have the flavor of knot theory
and, in some sense, generalize it. Imagine again a circle drawn on this page and consider
the points which lie on the circle or inside it. This collection of points is known as a
2-dimensional disk. I study embeddings of the 2-dimensional disk in 4-dimensional space.
Notice that the dimensions of the objects have increased by one. The source of the em-
bedding is a 2-dimensional disk (rather than a 1-dimensional circle) and the home space
is 4-dimensional (rather than 3-dimensional). As with knots, one investigates the com-
plements of these embeddings, which is to say that one investigates the negative spaces
created by them. The negative spaces in this new setting, it turns out, are remarkably
similar to the negative spaces created by knots, even though their dimensions differ. The
similarities are so striking, in fact, that it is unavoidable to ask the same questions of
these new spaces. Adding a dimension adds subtlety to the problem, however, and the
3-dimensional techniques of knot theory do not apply directly to this higher-dimensional
problem. Consequently, many interesting and natural questions regarding disk comple-
ments in 4-dimensional space remain open.

Foremost in my own research is the reminiscent question: Is every spherical membrane
in a 4-dimensional disk complement homotopically trivial? Because such a space is difficult
to grasp, it is beneficial to be able to view it in different, but equivalent, ways. The idea
is that the points of an original collection may be made to flow organically into more
comprehensible states while preserving the interesting properties of the original state.
The main result in [Bl] provides an alternative, 3-dimensional description for a vast
collection of spaces. Knot complements in 3-dimensional space play a significant role in
this new description. Although 3-dimensional states are comfortable for topologists, their
applications to 4-dimensional problems have not been fully explored. One of my goals for
future research is to apply 3-dimensional techniques to 4-dimensional problems to obtain
positive results.

A success in this direction is achieved in [B3]. The 3-dimensional states of disk com-
plements are exploited to obtain a condition which implies the triviality of spherical
membranes. The interaction between topology and algebra is an appealing aspect of the
subject and in [B3] the topological issue of spherical membranes in a 4-dimensional neg-
ative space is translated into an entirely algebraic issue. Furthermore, examples indicate
that the algebraic translation is necessary and sufficient for a sizable subset of the prob-
lem. Another goal for future research is to understand better the size of this subset for
which the algebraic characterization is necessary and sufficient. Disk complements outside
this subset appear to be topologically the same as knot complements and therefore the
grand results of knot theory apply to them. If the preliminary evidence holds and these
complements are indeed knot complements, then the problem reduces to those disks which
are in the subset, meaning those disks which possess a special characterizing property. A
natural focus for future study, therefore, is this special property and its implications on
the triviality of spherical membranes.
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