
Removability of Singular Sets of Harmonic Maps

Libin Mou

Abstract. We prove that a harmonic map with small energy and monotonicity property
is smooth if its singular set is rectifiable and has a finite uniform density; moreover, the
monotonicity property holds if the singular set has a lower dimension or its gradient
has higher integrability. This work generalizes the results in [CL][DF][LG12], which
were proved under the assumptions that the singular sets are isolated points or smooth
submanifolds.

§ 1. Introduction.

Suppose that m, n ≥ 2 are integers and 1 < p < ∞. Let Ω ⊂ Rm be a bounded
smooth domain and N ⊂ Rn be a smooth compact submanifold. Denote by W 1,p(Ω, N)
the set of all functions u ∈ Lp(Ω,Rn) with image in N and finite (p-)energy:

(1.1)
∫

Ω

|∇u|pdx <∞, where |∇u|2 =
∑

α,i

(
∂ui

∂xα

)2

.

A (weakly) (p-)harmonic map from Ω to N is a critical point of (1.1) in W 1,p(Ω, N). A
stationary (p-)harmonic map [SR2] is a harmonic map that is also a critical point with
respect to the deformations of the domain Ω. A map with least energy among those maps
in W 1,p(Ω, N) of same boundary data is called (p-)energy minimizer. (The prefix p- is
added for emphasis.)

It is well-known that a harmonic map, or even a minimizer, may have only partial
regularity, that is, being regular on the complement of a subset, called singular set. For
partially regular harmonic maps, it is desirable to know whether they are entirely regular;
that is, their singular sets are actually removable.

Sacks and Uhlenbeck [SaU] showed that a 2-harmonic map on B2 \ {0} is smooth on
B2; this holds for m-harmonic maps on Bm \ {0} for any m ≥ 2, as shown in [MY], where
Bm = {x ∈ Rm : |x| < 1}. For p-harmonic maps with small energy, 1 < p < m, isolated
singularities are also removable; this was proved by Liao [LG1] for p = 2 and by Duzaar
and Fuchs [DF] for p ≥ 2. For non-isolated case, Costa and Liao proved in [CL] [LG2] that
the m − 3 dimensional singular submanifold of a 2-harmonic map with small energy and
monotonicity property is removable.

Mathematics Subject Classification (1990): 35J60, 35J70, 58E20

1



Here will study the removability of singular sets with rectifiable structure. We
show that a p-harmonic map with small energy and monotonicity property is smooth
if its rectifiable apparent singular set has a bounded uniform density [Theorem 2.1]. In
particular, a singular set that is the union of finite smooth submanifolds of codimension
[p] + 1 and a lower dimensional rectifiable set is removable.

According to the work of Schoen and Uhlenbeck [SU], Hardt and Lin [HL1] and
Luckhaus [LS], the singular set of a p-minimizer has Hausdorff dimension m− [p]− 1. The
structure of singular sets could be wild unless m ≤ [p] + 1, in which case they are isolated.
Hardt and Lin [HL2] proved that the singular set of a 2-minimizer from B4 to S2 is the
union of finitely many C0,α curves together with a discrete set. Simon obtained the C1,α

regularity of those curves and established the rectifiability of singular sets of 2-minimizers
under more general setting; see [SL1,2]. These results partially motivate this paper.

The assumption that the map has monotonicity property is essential to Theorem 2.1.
Energy minimizers and stationary harmonic maps have monotonicity property. One the
other hand, a weakly harmonic map, for example the one from B3 to S2 with a line singular
set constructed by Riviere [RT1], has no monotonicity property, for otherwise Evans’ work
[EL] would implies that the singular set has H1 measure 0. Nonetheless, we prove that
a p-harmonic map has monotonicity property if its singular set has a lower dimension, or
its gradient has higher integrability [Theorem 2.2]. Costa and Liao [CL] showed the same
result for 2-harmonic maps with smooth singular manifolds. The proof of Theorem 2.2 (c)
also shows a monotonicity property of the normalized energy on the tubular neighborhoods
of the singular set; see (4.19).

Note that the removable singularity theorems of different forms were proved in
[SJ][HP][EP][M] and others. They assert that classical solutions of equations (or systems)
on the complement of a small set Z (in certain sense) can be extended across Z to get a
weak solution. For single equations (with proper growth conditions), those theorems are
complete, as any of their weak solutions are smooth; see [DG] [MC]. For systems, this is
not true. A simple example is the map x→ x

|x| from Bm to Sm−1, which is discontinuous
at 0 but it is a minimizer for integer p ∈ (1,m) and in particular it satisfies the system
∆u + |∇u|2u = 0; see [CG][LF][BCL]. The theorems in this paper fill this gap between
partial regularity and everywhere regularity.

Also note that Heléin [HF1,2] proved everywhere regularity of harmonic maps on a
2-surface. The singular sets of p-harmonic maps with monotonicity from Bm to spheres
have Hm−p measure 0; in particular, an m-harmonic map to a sphere is smooth; see [EL]
[ MY] and also [SR2].

Section 2 contains the precise statements of Theorems 2.1, 2.3, some necessary
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definitions and notations. Section 3 is devoted to the proof of Theorem 2.1. The key step
is to prove the strong convergence of the blow-up sequence by analyzing the asymptotic
behaviors near the singular sets. The proof of Theorem 2.2 is given in Section 4.

Also included in this paper (Section 5) is an example of system of equations whose
solution has prescribed singular submanifold. This system is uniformly elliptic, quasilinear
with quadratic growth and is homogeneous (in the sense that 0 is a solution). This gives
a positive partial answer to the questions posed in [G][SR1] on prescribing singular sets.

We remark that the results in this paper hold for the critical points of more general
functionals, such as those considered in [GG1,2][FM].

The author would like to thank Bob Hardt, Leon Simon and Paul Yang for helpful
discussions.

§ 2. Statement of the Main Results

Definitions and Notations. From the definition, a (weakly) p-harmonic map is also a
weak solution in W 1,p(Ω, N) of the Euler-Lagrange equation of (1.1):

(2.1) div(|∇u|p−2∇u)− |∇u|p−2A(u)(∇u,∇u) = 0,

where A(u) is the second fundamental form of N evaluated at u [SU][HL1][DF]. A p-
minimizer is a stationary p-harmonic map, and hence is a p-harmonic map.

For a subset Z ⊂ Rm and x ∈ Rm, denote ρ(x) ≡ ρ(x,Z) the distance from x to Z,
and for r > 0, denote

Zr = {x ∈ Rm : ρ(x, Z) < r};
Zr = {x ∈ Z : ρ(x,Z) > r};
B(x, r) = {y ∈ Rm : |y − x| < r}.

We denote by Lm the Lebesgue measure in Rm and α(m) = Lm[{x ∈ Rm : |x| < 1}].
We usually omit the differential Lebesgue measure dx from our integrals. The

constants C0, C1, . . . depend only on m, n, p, Ω, N , and K in Theorem 2.1; those
depending only on m, n and p are called absolute constants.

A map u ∈ W 1,p(Ω, N) is said to have monotonicity property, if for each x ∈ Ω and
0 < r < ρ(x, ∂Ω), the normalized energy

(2.2) E(x, r) = rp−m
∫

B(x,r)

|∇u|p

is increasing in r, that is,

(2.3) E(x, r) ≤ E(x, s)

3



for all 0 < r < s < ρ(x, ∂Ω).
Let q ≥ 0 be an integer. The m − q dimensional Minkowski content and Hausdorff

measure [F1] of a subset Z ⊂ Rm are defined, respectively, by

(2.4) Mm−q(Z) = lim
r→0+

Lm[Zr]/[α(q)rq],

Hm−q(Z) = α(m− q) inf
ε→0+

{
∑
ri<ε

rm−qi : Z ⊂ ∪iB(xi, ri)},

whenever the limits exist.
A subset Z ⊂ Rm is m− q rectifiable (or, rectifiable of codimension q) [F1, 3.2.14] if

and only if it is a Lipschitzian image of a bounded subset of Rm−q onto Z. It follows that
Hm−q(Z) <∞ if Z is m− q rectifiable.

We will use the following relation between H and M.

Theorem 2.0 ([F1, 3.2.39]). If Z is closed and m − q rectifiable, then Mm−q(Z) =
Hm−q(Z).

We define the m− q uniform density Ψm−q(Z) of Z as follows

(2.5) Ψm−q(Z) = sup{ L
m[B̄(x, t) ∩ Zr]

α(m− q)α(q)tm−qrq
: x ∈ Rm, t, r > 0}.

It is direct to verify that at any x ∈ Rm,

Φ∗m−q(Hm−q, Z, x) ≤ Ψm−q(Z),

where Φ∗m−q(Hm−q, Z, x) is the upper density at x of Z with respect to the measure
Hm−q; see [SL1] [F1]. Let r, s, t be any numbers satisfying 0 < r < s < t. Then by
Theorem 2.0 and (2.5),

Hm−q[B̄(x, t− s) ∩ Z] =Mm−q[B̄(x, t− s) ∩ Z]

= lim
r→0

Lm[(B̄(x, t− s) ∩ Z)r]
α(q)rq

≤ lim
r→0

Lm[B̄(x, t) ∩ Zr]
α(q)rq

≤ Ψm−q(Z)α(m− q)tm−q.

Sending s → 0, we get Hm−q[B̄(x, t) ∩ Z] ≤ Ψm−q(Z)α(m − q)tm−q, and it follows that
Φ∗m−q(Hm−q, Z, x) ≤ Ψm−q(Z).

On the other hand, that Z is m − q rectifiable implies Φ∗m−q(Hm−q, Z, x) = 1 for
Hm−q-a.e. x ∈ Z; see [SL1, 3.6][F1, 3.2.19]. Ψ(Z) can be considered as an upper bound
of the density for all x ∈ Z, which is kept under rescaling; see (3.16) and Lemma 3.3.

Our main results are
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Theorem 2.1 (Removability of Singular Sets). Let m, n ≥ 2 be positive integers,
1 < p < m. Suppose that N ⊂ Rn is a smooth compact submanifold, Ω ⊂ Rm is a bounded
domain and K ⊂ Ω is a compact subset. Then there is a positive number ε depending only
on m, n, p, K and N such that if u ∈ W 1,p(Ω, N) is a p-harmonic map satisfying the
following conditions
(a). u has monotonicity property and

∫
Ω
|∇u|p ≤ ε;

(b). u ∈ C1(Ω \ Z,N), where Z ⊂ Ω is relatively closed with Ψm−[p]−1(Z) <∞.
Then u ∈ C1(K,N).

Theorem 2.2. A p-harmonic map u ∈ C1(Ω \ Z,N) ∩ W 1,p(Ω, N) has monotonicity
property, if one of the following holds:
(a). Z is closed and rectifiable of Hausdorff codimension ≥ [p] + 1 and

(2.6)
∫

Ω

|∇u|p+ p
[p] <∞.

(b). Z is closed and rectifiable of Hausdorff codimension ≥ [p]+2 and |∇u(x)| ≤ C1/ρ(x,Z)
for some C1 > 0 and for all x ∈ Ω \ Z.

(c). Z is a compact smooth submanifold (say C2) of codimension ≥ [p] + 2.

Remark 2.3.. If Ω = B(0, 1), Z = {0} and u ∈ C1(B(0, 1) \ {0}, N), then E(0, r) is
increasing in r ∈ (0, 1) (see [DF][LG1][SaU][MY]). This is sufficient to remove the possible
singularity 0, if the energy is small. So when Z is isolated, then the only condition needed
in Theorem 2.1 is

∫
Ω
|∇u|p ≤ ε. In particular, any isolated singularities of m-harmonic

maps are removable. See [SaU][DF][MY]. When Ω = B(0, 2), p = 2, K = B̄(0, 1) and Z

is a smooth submanifold of B(0, 2), Liao in [LG2] proved the same conclusion of Theorem
1.2.

Remark 2.4. When Z is a smooth submanifold, Costa and Liao [CL] showed Theorem
2.2 (a) (c) for 2-harmonic maps.

§ 3. Proof of the Theorems 2.1

Let δ = dist(K, ∂Ω), then K ⊂ Ωδ. By a standard iteration argument, the proof of
Theorem 2.1 is reduced to the following

Lemma 3.1. There exist numbers 0 < ε0, τ < 1, depending only on p, m, n, δ and N

such that for u satisfying the hypotheses of Theorem 2.1, x ∈ Ωδ and 0 < r ≤ δ,

E(x, r) ≤ ε0 implies E(x, τr) ≤ 1
2
E(x, r).
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Proof of Theorem 2.1 from Lemma 3.1. Let δ = dist(K, ∂Ω) and choose ε = δm−pε0.
Suppose that u is as in Theorem 2.1. Note that the monotonicity property and

∫
Ω
|∇u|p ≤ ε

imply

E(x, r) = rp−n
∫

B(x,r)

|∇u|p ≤ E(x, δ) ≤ δp−m
∫

Ω

|∇u|p ≤ ε0

for all x ∈ Ωδ and 0 < r ≤ δ. By Lemma 3.1, there is a τ ∈ (0, 1) such that

(3.1) E(x, τr) ≤ 1
2
E(x, r).

Let θ = logτ
1
2 and k ≥ 1 be the integer such that r ∈ [τkδ, τk−1δ), then by iterating (3.1),

we get
E(x, r) ≤ E(x, τk−1δ) ≤ 2−k+1E(x, δ) ≤ 2ε0(r/δ)θ.

By Morrey’s Lemma [MC, 3.5.2], u is Cθ/p on Ωδ. That u ∈ C1,θ/p(Ωδ, N) follows from
the standard argument, see for example [HL1, §3].

Proof of Lemma 3.1. We will use the blow-up argument, as employed in [HKL][HL1][EL].
If the conclusion was not true, then for any 0 < τ < 1, there would exist sequences xi ∈ Ω
and 0 < ri ≤ δ ≤ ρ(xi, ∂Ω) such that

(3.2) λpi ≡ E(xi, ri) ↓ 0, but E(xi, τri) ≥ 1
2
λpi , i = 1, 2, 3....

Denote ai = −∫
B(xi,ri)

u(x)dx. Define vi by

(3.3) vi(z) = λ−1
i [u(xi + riz)− ai], z ∈ B(0, 1).

By the change of variables z → xi+riz and Poincare inequality, (3.2) and (3.3) imply that

(3.4)
∫

B(0,1)

|∇vi|pdz = 1,
∫

B(0,1)

|vi|pdz ≤ C2

∫

B(0,1)

|∇vi|pdz ≤ C2,

for an absolute constant C2, but

(3.5) τp−m
∫

B(0,τ)

|∇vi|pdz ≥ 1
2
.

As a p-harmonic map, u satisfies (2.1) in the sense

(3.6)
∫

Ω

|∇u|p−2∇u · ∇ϕ+ |∇u|p−2A(u)(∇u,∇u) · ϕdx = 0

for each ϕ ∈ C1
0 (Ω,Rn). By the change of variables z → xi + riz, vi satisfies the rescaled

form of (3.6)

(3.7)i
∫

B(0,1)

|∇vi|p−2∇vi · ∇ϕdz = −λi
∫

B(0,1)

|∇vi|p−2A(ai + λivi)(∇vi,∇vi) · ϕdz

for all ϕ ∈ C1
0 (B(0, 1),Rn). In fact, (3.7)i holds for all ϕ ∈W 1,p

0 (B(0, 1),Rn) ∩L∞, since
such functions ϕ can be approximated by C1

0 functions (in W 1,p norm).
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Claim 3.2. There is a subsequence {vk} ⊆ {vi} and a function v0 ∈ W 1,p(B(0, 1),Rn)
such that

(3.8) vk → v0 in W 1,p(B(0, 1/2),Rn) (strongly).

Completion of Proof from Claim 3.2. Now a contradiction follows from Claim 3.2.
Note that (3.8) and (3.4) imply the following

(3.9)
∫

B(0,1/2)

|∇v0|pdz ≤ 1,
∫

B(0,1/2)

|v0|pdz ≤ C2,

|∇vk|p−2∇vk → |∇v0|p−2∇v0 in Lp/p−1(B(0, 1/2),Rn),

while (3.8) and (3.5) imply

(3.10) τp−m
∫

B(0,τ)

|∇v0|pdz ≥ 1
2
.

Since N is smooth and λk → 0, there is a constant C3 depending only N such that

|λk
∫

B(0,1)

|∇vk|p−2A(ak + λkvk)(∇vk,∇vk) · ϕdz|(3.11)

≤ C3λk sup |ϕ|
∫

B(0,1/2)

|∇vk|pdz ≤ C3λk sup |ϕ| → 0.

Using (3.11) and (3.9), we take limit in (3.7)k to get
∫

B(0,1/2)

|∇v0|p−2∇v0 · ∇ϕdz = 0

for all ϕ ∈ C1
0 (B(0, 1/2),Rn). So v0 is a p-harmonic function W 1,p(B(0, 1/2),Rn).

By Theorem 3.2 in [UK] and Theorem 5.1 in [TP], there is an absolute constant C4

such that
sup

B(0,1/4)

|∇v0| ≤ C4

∫

B(0,1/2)

|∇v0|pdz ≤ C4,

where (3.9) is used. For 0 < τ < 1/4, it follows from this estimate that

(3.12) τp−m
∫

B(0,τ)

|∇v0|pdz ≤ Cp4α(m)τp.

Let us start with a τ less than min{1
4 ,

1
(2α(m))1/pC4

}, then (3.12) is a contradiction to (3.10).
So Claim (3.2) implies Lemma 3.1.
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Now we prepare the proof of Claim 3.2. First we take a subsequence {j} ⊆ {i} such
that for some v0 ∈W 1,p(B(0, 1),Rn) it holds that

(3.13) vj → v0 in Lp(B(0, 1),Rn); ∇vj ⇀ ∇v0 weakly in Lp(B(0, 1),Rn).

We may assume xj → x0 for some x0 ∈ Ωδ.
Consider the subsets

(3.14) Zj ≡ r−1
j [B̄(xj , rj) ∩ Z − xj ] = {z ∈ B̄(0, 1) : xj + rjz ∈ Z}.

Zj 6= ∅ may be assumed by adding {0} to it if necessary. We show thatMm−q(Zj) ≤
C0, where C0 = Ψm−q(Z)α(m− q). Note that ρ(xj + rjz, Z) = rjρ(z, Zj) for z ∈ B(0, 1)
and

(3.15) Zjr ≡ {x ∈ Rm : ρ(x,Zj) ≤ r} = r−1
j [B̄(xj , rj) ∩ Zrrj − xj ].

By (3.15) and (2.5),

(3.16) Lm[Zjr ] = r−mj Lm[B̄(xj , rj) ∩ Zrrj ] ≤ C0α(q)r−mj rm−qj (rrj)q ≤ C0α(q)rq.

This implies, by definition (2.4), Mm−q(Zj) ≤ C0.
We now have three lemmas.

Lemma 3.3. There is a subsequence {Zk} ⊆ {Zj} and a compact subset Z0 ⊂ B̄(0, 1)
such that dH(Zk, Z0)→ 0 and Mm−q(Z0) ≤ C0, where dH is the Hausdorff distance.

Proof : By the compactness in dH of a family of compact subsets in the unit ball
B̄(0, 1) [F1, 2.10.21], there is a subsequence {Zk} and a compact subset Z0 such that
dH(Zk, Z0)→ 0 as k →∞.

To show that Mm−q(Z0) ≤ C0, let s > 0 be any number and k be so large such that
Z0 ⊆ Zks . Then Z0

r ⊆ Zkr+s for any r > 0, and from (3.16), we have

(3.17) Lm[Z0
r ] ≤ Lm[Zkr+s] ≤ C0α(q)(r + s)q.

Since s is arbitrary, Lm[Z0
r ] ≤ C0α(q)rq. By definition (2.4), Mm−q(Z0) ≤ C0.

Lemma 3.4. There are constants ε0, C5 and C6 depending only on m, p, δ and N such
that if u is as in Theorem 2.1 with

∫
Ω
|∇u|p ≤ ε0, then

(3.18) |∇u(x)| ≤ C5r
−1E(x, r)1/p;

(3.19) |∇u(x)| ≤ C6/ρ(x),

for any x ∈ Ωδ \ Z and 0 < r ≤ min{ρ(x), δ}, where ρ(x) = ρ(x, Z).
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Proof : From the Theorem 2.1 in [DF], there are numbers ε1 and C5, depending only on
m and N , such that (3.18) holds as long as E(x, r) ≤ ε1. The condition E(x, r) ≤ ε1 is
now verified by choosing ε0 properly. Take ε0 = δm−qε1. Then from

∫
Ω
|∇u|p ≤ ε0 and

monotonicity property, we have

(3.20) E(x, r) ≤ E(x, δ) ≤ δp−m
∫

Ω

|∇u|p ≤ ε1.

(3.19) is obtained by taking r = min{ρ(x), δ} in (3.18) and (3.20). When ρ(x) > δ,
we need to use the monotonicity property and replace C5 by a larger number C6.

Lemma 3.5. There exists a constant C7 > 0 depending on m, n, p, δ, N but independent
of k such that if k is large enough, then for all z ∈ B(0, 3/4) \ Zk,

(3.21) |∇vk(z)| ≤ C7/ρ(z, Zk).

Furthermore if z ∈ B(0, 3/4) \ Z0, then

(3.22) |∇v0(x)| ≤ C7/ρ(z, Z0).

Proof : From the definition (3.3) of vk, we have that for z ∈ B(0, 3/4) \ Zk

∇vk(z) = ∇u(xk + rkz)rkλ−1
k .

Applying Lemma 3.4 and the monotonicity with r = ρ(xk + rkz, Z)/3 = rkρ(z, Zk)/3 ≤
rk/4 and using (3.2), we obtain

|∇vk(z)| ≤ C5rkλ
−1
k ρ−1(xk + rkz, Z)E(xk + rkz, ρ(xk + rkz, Z)/3)1/p(3.23)

≤ C5ρ
−1(z, Zk)λ−1

k E(xk + rkz, rk/4)1/p

≤ C5ρ
−1(z, Zk)λ−1

k [4m−pE(xk, rk)]1/p

= C54m/p−1ρ−1(z, Zk) = C7/ρ(z, Zk).

To show (3.22), let s > r > 0 be any numbers and let k be so large that Zk ⊆ Z0
r ,

then for z ∈ B(0, 3/4) \ Z0
s ,

(3.24) ρ(z, Zk) ≥ ρ(z, Z0
r ) ≥ ρ(z, Z0)− r ≥ s− r.

By (3.23), for z ∈ B(0, 3/4) \ Z0
s ,

(3.25) |∇vk(z)| ≤ C7/ρ(z, Zk) ≤ C7/[ρ(z, Z0)− r] ≤ C7/[s− r].
This implies that vk(z) → v0(z) uniformly in B(0, 3/4) \ Z0

s (at least for a subsequence).
Thus (3.25) in turns implies for z ∈ B(0, 3/4) \ Z0

s ,

|∇v0(z)| ≤ C7/[ρ(z, Z0)− r].
Since s > r > 0 are arbitrary, (3.22) follows.
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Lemma 3.6 [HM, 2.1]. If Σ ⊂ Rm with Mm−q(Σ) <∞, q > ν, then

(3.26)
∫

Σr

ρ(z,Σ)−νdz ≤ C8r
q−ν , C8 = α(q)Mm−q(Σ)2ν/(1− 2ν−q).

Proof : By the definition (2.4),

∫

Σr

ρ(z,Σ)−νdz ≤
∞∑

i=0

∫

Σ2−ir\Σ2−i−1r

ρ(z,Σ)−νdz

≤
∞∑

i=0

(2−i−1r)−νLm[Σ2−ir]

≤ α(q)Mm−q(Σ)
∞∑

i=0

(2−i−1r)−ν(2−ir)q

= α(q)Mm−q(Σ)2ν/(1− 2ν−q)rq−ν .

Proof of Claim (3.2). Now we show that ∇vk → ∇v0 strongly in W 1,p(B(0, 1/2),Rn).
For any r > 0, by lemma 3.3, there is a number K(r) such that Z0 ⊆ Zkr when

k ≥ K(r). It follows that Z0
r ⊆ Zk2r. By (3.16) and (3.21) and (3.26) with q = [p] + 1,

(3.27)
∫

Z0
r

|∇vk|p ≤
∫

Zk2r

|∇vk|p ≤ Cp7
∫

Zk2r

ρ(z, Zk)−p ≤ C8r
[p]+1−p.

Therefore for any given µ > 0, we can choose s > 0 so small that for all k ≥ K(s),

(3.28)
∫

Z0
s

|∇vk|p < µ.

Let η(z) = η1(ρ(z))η2(|z|), where ρ(z) = ρ(z, Z0), and η1(ρ) : [0,∞) → [0, 1] and
η2(r) : [0, 1]→ [0, 1] are cutoff functions satisfying

η1(ρ) = 0 for 0 ≤ ρ ≤ s/2; η1(ρ) = 1 for ρ ≥ s, and |∇η1| ≤ 3s−1,

η2(r) = 1 for 0 ≤ r ≤ 1/2; η2(r) = 0 for r ≥ 3/4, and |∇η2| ≤ 3.

Recall that for n ≥ 1 and 1 < p < ∞, there is a number c = c(n, p) > 0 such that if
a, b ∈ Rn, then

(3.29)
(|a|p−2a− |b|p−2b

) · (a− b) ≥ c|a− b|p, if p ≥ 2;
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(3.30)
(|a|p−2a− |b|p−2b

) · (a− b) ≥ c|a− b|2(|a|+ |b|)p−2, if 1 < p < 2.

For a proof, see for example [AF]. When p ≥ 2, by (3.29) and the equations (3.7)l and
(3.7)k, we have,

c

∫

B(0,1/2)\Z0
s

|∇vl −∇vk|p ≤
∫

B(0,1)

(|∇vl|p−2∇vl − |∇vk|p−2∇vk) · η∇(vl − vk)

≤
∫

B(0,1)

(|∇vl|p−2∇vl − |∇vk|p−2∇vk) · ∇[η(vl − vk)]

−
∫

B(0,1)

(|∇vl|p−2∇vl − |∇vk|p−2∇vk) · (vl − vk)∇η

≤
∫

B(0,1)

[λl|∇vl|p−2A(al + rlvl)(∇vl,∇vl)− λk|∇vk|p−2A(ak + rkvk)(∇vk,∇vk)]η(vl − vk)

+ max |∇η|
∫

B(0,1)

(|∇vl|p−1 + |∇vk|p−1
) |vl − vk|

≤ C9

∫

B(0,3/4)\Z0
s/2

(λl|∇vl|p + λk|∇vk|p) |vl − vk|+ C10s
−1

∫

B(0,1)

|vl − vk|p.

Now using (3.13), (3.25) and the uniform convergence vl − vk → 0 on B(0, 3/4) \Z0
s/2, we

have, when l and k are large,

∫

B(0,1/2)\Z0
s

|∇vl −∇vk|p ≤ µ.

This, combined with (3.28), shows that
∫
B(0,1/2)

|∇vl −∇vk|p ≤ 2µ when k and l are
large. Thus ∇vk is a Cauchy sequence, and so ∇vk → ∇v0 in Lp(B(0, 1/2),Rn).

If 1 < p < 2, we use (3.30) to get

c
p
2

∫

B(0,1/2)\Z0
s

|∇vk −∇vl|p

≤ c p2
∫

B(0,1)

η
p
2 |∇vk −∇vl|p(|∇vk|+ |∇vl|)

(p−2)p
2 (|∇vk|+ |∇vl|)

(2−p)p
2

≤
(
c

∫

B(0,1)

η|∇vk −∇vl|2(|∇vk|+ |∇vl|)(p−2)

) p
2
(∫

B(0,1)

(|∇u|+ |∇v|)p
) 2−p

2

≤
(∫

B(0,1)

[|∇vk|p−2∇vk − |∇vl|p−2∇vl] · [∇(vk − vl)]η
) p

2
(∫

B(0,1)

(|∇u|+ |∇v|
) 2−p

2

.

The rest of the proof follows as above.
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§ 4. Proof of Theorem 2.2

It is well-known that a p-harmonic map C1(Ω, N) or a stationary p-harmonic map in
W 1,p(Ω, N) satisfies

(4.1)
∫

Ω

(|∇u|pdivX − p|∇u|p−2DαuDβuDαX
β
)

= 0

for all X ∈ C0,1
0 (Ω,Rm), the space of Lipschitzian functions with compact supports; see

[HS][DF][SR2].
From (4.1) one can easily derive monotonicity property, as follows. Suppose B(0, τ) ⊂

Ω. Let X(x) = η(r)x, where r = |x| and

η(r) =

{ 1, r ≤ τ ;
(h+ τ − r)/h, τ ≤ r ≤ τ + h;
0, r ≥ τ + h.

Putting X into (4.1) and taking the limit as h→ 0+, one gets

(p−m)
∫

B(0,τ)

|∇u|p + τ

∫

∂B(0,τ)

|∇u|p = τp

∫

∂B(0,τ)

|∇u|p−2|∂u
∂r
|2 ≥ 0,

which implies that
d

dτ

(
τp−m

∫

B(x,τ)

|∇u|p
)
≥ 0.

Lemma 4.1. For a p-harmonic map u ∈ C1(Ω \Z,N)∩W 1,p, the identity (4.1) will hold
if when σ → 0+,

(4.2)
∫

Zσ

|∇u|p = o(σ).

Proof. Suppose that X ∈ C0,1
0 (Ω,Rm). For 0 < σ < 1, let ξ : [0,∞) → [0, 1] be a cutoff

function defined by

ξ(ρ) =

{ 0, ρ ≤ σ;
(ρ− σ)/σ, σ ≤ ρ ≤ 2σ;
1, ρ ≥ 2σ.

Then ξ(ρ(x))X(x) ∈ C0,1
0 (Ω \ Zσ,Rm), where ρ(x) = ρ(x, Z). Since u ∈ C1(Ω \ Zσ, N),

(4.1) holds with X replaced by ξX and yields

(4.3)
∫

Ω

(|∇u|pdiv[ξX]− p|∇u|p−2DαuDβuDα[ξXβ ]
)

= 0.
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By the definition of ξ, (4.3) implies

∫

Ω

(
ξ|∇u|pdivX − pξ|∇u|p−2DαuDβuDαX

β
)

(4.4)

= −σ−1

∫

Z2σ\Zσ
|∇u|pX · ∇ρ+ pσ−1

∫

Z2σ\Zσ
|∇u|p−2DαuDβuραX

β ,

where ρα = Dαρ and ∇ρ = (ρ1, · · · , ρm). Taking the limit of the left hand side of (4.4) as
σ → 0, we get

(4.5) lim
σ→0

(LHS of (4.4)) =
∫

Ω

(|∇u|pdivX − p|∇u|p−2DαuDβuDαX
β
)
,

and by using that |∇ρ| ≤ 1 and |DαuDβuραX
β | ≤ |∇u|2|X|, we have

(4.6) |(RHS of (4.4))| ≤ (p+ 1) sup |X|σ−1

∫

Z2σ\Zσ
|∇u|p.

From (4.4)-(4.6), it is now clear that (4.2) implies (4.1).

Thus to prove Theorem 2.2, it suffices to show (4.2).

Proof of Theorem 2.2 (a). Suppose
∫

Ω
|∇u|p+ p

[p] < ∞. By Theorem 2.0, Hm−q(Z) =
Mm−q(Z) <∞ with q = [p]+1; so by (2.4), Lm[Zσ] = O(σ[p]+1). Now Hölder’s inequality
implies that

∫

Zσ

|∇u|p ≤
(∫

Zσ

|∇u|p+ p
[p]

) [p]
[p]+1

Lm[Zσ]
1

[p]+1 = o(σ)

as σ → 0. This shows (4.2).

Proof of Theorem 2.2 (b). Suppose that |∇u(x)| ≤ C1/ρ(x) for x ∈ Ω \ Z. Since
[p] + 2 > p+ 1, we can apply (3.26) with q = [p] + 2 to get

∫

Zσ

|∇u|p ≤ C1

∫

Zσ

ρ−p ≤ C2σ
[p]+2−p = o(σ).

To verify (4.2) in the case (c) of Theorem 2.2, we need the following lemma, which
will also be used in Section 5
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Lemma 4.2. Suppose that Z ⊂ Rm is a smooth (say C2) compact manifold of codimension
q > 0. There is a number δ > 0 depending only on Z such that for every x ∈ Zδ, there is
a unique point π(x) ∈ Z such that ρ(x,Z) = |x − π(x)|, and there is a coordinate system
e1, . . . , em at π(x) such that eq+1, . . . , em form an orthonormal base of Tπ(x)N , and

(4.7)
∣∣∣∣
(

1
2
ρ2(x)ij

)

m×m
−
(
Iq×q 0

0 0

)∣∣∣∣ ≤ O(ρ(x)).

Proof : As noted in [HL1], there are positive numbers δ and C3 depending only on Z

such that for every x ∈ Zδ, there is a unique π(x) ∈ Zδ such that ρ(x) = |x− π(x)| and

(4.8) ‖Dπ(x)− Pπ(x)‖ ≤ C3|ρ(x)|,

where Pπ(x) is the orthogonal projection from Rm to Tπ(x)Z. Note that π is at least C1.
Also, for x ∈ Zδ,

(4.9) ∇ρ(x) =
x− π(x)
ρ(x)

.

For a proof, see [F2, Thm 4.8].

For a fixed x0 ∈ Zδ, we may assume that π(x0) = 0. Choose a coordinate system
e1, . . . , em at 0 such that eq+1, . . . , em form an orthonormal base of T0Z, then (4.8) implies
for y ∈ Rm,

(4.10) |Dπ(x0)y − Pπ(x0)y| ≤ C3ρ(x0)|y|.

Note that Pπ(x0)y = (0, . . . , 0, yq+1, . . . , ym). By (4.9) and (4.10)

∇
(

1
2
ρ2(x0 + y)

)
= (x0 + y)− π(x0 + y) = x0 + y −Dπ(x0)y + o(|y|)(4.11)

= x0 + (y1, . . . , yq, 0, . . . , 0) +O(ρ(x0))|y|+ o(|y|).

Differentiating (4.11) to y and evaluating at y = 0, we obtain

∣∣∣∣
(

1
2
ρ2(x0)ij

)

m×m
−
(
Iq×q 0

0 0

)∣∣∣∣ ≤ O(ρ(x0)).
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Proof of Theorem 2.2 (c). For 0 < 2γ < σ < τ , let ηγ ≡ ηγ,σ,τ : [0,∞) → [0, 1] be a
cutoff-function defined by

ηγ(ρ) =





0, 0 ≤ ρ ≤ γ;
(ρ− γ)/γ, γ ≤ ρ ≤ 2γ;
1, 2γ ≤ ρ ≤ σ;
(τ − ρ)/(τ − σ), σ ≤ ρ ≤ τ ;
0, ρ ≥ τ .

Then (4.1) holds for X(x) = ηγ(ρ(x))∇( 1
2ρ

2(x)) ∈ C0,1
0 (Ω \Zγ ,Rm). Using that |∇ρ| = 1,

we compute

(4.12) divX = η′γρ+ ηγ∆
1
2
ρ2.

(4.13) DαX
β = η′γρραρβ + ηγ

(
1
2
ρ2

)

αβ

.

Now (4.1) with (4.12) and (4.13) yields
∫

Ω

(
|∇u|pη′γρ+ |∇u|pηγ∆

1
2
ρ2

)
(4.14)

− p
∫

Ω

[
|∇u|p−2η′γρ|∇ρ · ∇u|2 + |∇u|p−2DαuDβuηγ

(
1
2
ρ2

)

αβ

]
= 0.

Sending γ → 0 in (4.14), we get
∫

Ω

(
|∇u|pη′0ρ+ |∇u|pη0∆

1
2
ρ2

)
(4.15)

− p
∫

Ω

[
|∇u|p−2η′0ρ|∇ρ · ∇u|2 + |∇u|p−2DαuDβuη0

(
1
2
ρ2

)

αβ

]
= 0.

By (4.7), for any ε > 0, there is a δ(ε) > 0 such that for all x ∈ Zδ,

(4.16) |∆1
2
ρ2(x)− q| ≤ ε,

and

(4.17) DαuDβu

(
1
2
ρ2(x)

)

αβ

≤ (1 + ε)|∇u|2(x).

Dropping the third term in (4.15) which is nonnegative, and substituting (4.16)–(4.17)
into (4.15), we get for 0 < σ < τ ≤ δ(ε),

(4.18) −(τ − σ)−1

∫

Zτ\Zσ
|∇u|pρ+ [q − ε− p(1 + ε)]

∫

Zτ

η0|∇u|p ≤ 0.
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Since q = [p] + 2, we may write q − ε− p(1 + ε) ≡ 1 + pε, with

pε ≡ [p] + 1− p− (p+ 1)ε > 0

if ε is chosen so small. Sending τ → σ in (4.18), we get, for 0 < σ ≤ δ = δ(ε),

−σ d

dσ

∫

Zσ

|∇u|p + [1 + pε]
∫

Zσ

|∇u|p ≤ 0,

or, equivalently,

(4.19)
d

dσ

(
σ−1−pε

∫

Zσ

|∇u|p
)
≥ 0.

(4.19) implies, as σ → 0,

σ−1

∫

Zσ

|∇u|p ≤ σpεδ−1−pε
∫

Zδ

|∇u|p → 0.

So (4.2) holds.

§5. An Example of Elliptic System with Singular Solution

Finally we give an example of elliptic system whose solution is singular on a prescribed
submanifold. This shows that, in certain sense, the assumptions of Theorem 2.1 are
necessary. Also it gives a positive partial answer to the question posed by Giaquinta
[G, p118]: Choose Z ⊂ Ω with Hm−3(Z) < ∞, does an elliptic system exist with the
solution having exactly Z as singular set?

Example. If Z ⊂ Rm is an any smooth (say Ck, k ≥ 3) compact submanifold of
codimension q ≥ 3, then there is a quasilinear elliptic system of the form

(5.1) ∆ui =




m∑

j=1

aij(x)uj


 |∇u|2 + bi(x)divu, i = 1, 2, ...,m,

where aij ∈ Ck−2(Ω,Rm2
), bi ∈ Ck−3(Ω,Rm) and Ω = Zτ for some τ > 0, which

has a weak solution u ∈ Ck−1(Ω \ Z,Sm−1) ∩ H1(Ω,Sm−1) with singular set Z and∫
Ω
|∇u|2 ≤ Cτ q−2 for some C > 0.

In fact the gradient of the distance function ρ(x) = ρ(x,Z) solves such equation. As
noted in the proof of Lemma 4.2, there is a number τ > 0 so that for x ∈ Zτ , there is
a unique point π(x) ∈ Z satisfying ρ(x) ≡ ρ(x, Z) = |x − π(x)|. Also, since Z ∈ Ck,
ρ ∈ Ck(Zτ \ Z,R) ∩ C0,1(Zτ ,R) and π ∈ Ck−1(Zτ ,Rm).
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Let u(x) = ∇ρ(x), then u ∈ Ck−1(Zτ \ Z,Rm). Also, u has the following properties
[F2, Thm 4.8] : for x ∈ Zτ \ Z,

(5.2) |u(x)| = 1, u(x) = ∇ρ(x) =
x− π(x)
ρ(x)

.

We now show that u satisfies (5.1) with proper choice of aij and bi. For simplicity,
we again use sub-indices to stand for partial derivatives, and super-indices for vector
components; also we employ the summation: repeated indices are summed. Thus from
(5.2), for x ∈ Zτ \ Z, we have

(5.3) ui = ρi = (xi − πi(x))ρ−1, or πi(x) = xi − (
1
2
ρ(x)2)i,

and

uiα =
∂ui

∂xα
(x) =(δiα − πiα)ρ−1 − (xi − πi)(xα − πα)ρ−3(5.4)

= (δiα − πiα − uiuα)ρ−1,

where δ is the Kronecker index. From (5.4) we get

(5.5) div u =
∑

i

(δii − πii − uiui)ρ−1 = (m− 1− divπ)ρ−1.

and

|∇u|2 =
∑

iα

[(δiα − πiα)− uiuα]2ρ−2(5.6)

= [(δiα − πiα)2 + (ui)2(uα)2 − 2(δiα − πiα)uiuα]ρ−2

= [m− 2divπ + |∇π|2 + 1− 2]ρ−2

= [m− 1 + 2divπ + |∇π|2]ρ−2,

where we used the following equality from (5.3),

2(δiα − πiα)uiuα = 2(xi − πi)αuiuα

= 2(uiρ)αuiuα = 2(ui)2(uα)2 + ρuα[
∑

i

(ui)2]α = 2.

Using that ∆ρ−1 = (divπ −m+ 3)ρ−3, we obtain from (5.3)

∆ui = ∆(xi − πi)ρ−1 + 2∇(xi − πi) · ∇(ρ−1) + (xi − πi)∆(ρ−1)(5.7)

= −∆πiρ−1 − 2(ui − u · ∇πi)ρ−2 + ui(divπ −m+ 3)ρ−2

= −∆πiρ−1 + 2u · ∇πiρ−2 + ui(divπ −m+ 1)ρ−2.
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Now (5.5)-(5.7) imply that on Zτ \ Z,

(5.8) ∆ui =
∑

j

aij(x)uj |∇u|2 + bi(x)divu,

where

aij =
2πij + (divπ −m+ 1)δij

m− 1− 2divπ + |∇π|2 ,

bi = − ∆πi

m− 1− divπ
.

By Lemma 3.6 and (5.3),

divπ(x) = m− q +O(ρ(x)), |∇π(x)|2 = m− q +O(ρ(x)).

Therefore aij and bi are well-defined, since their denominators equal to q − 1 + O(ρ(x)),
which are nonzero for x ∈ Zτ with small τ > 0 and q ≥ 3. Thus that π ∈ Ck−1 implies
that aij ∈ Ck−2(Zτ ,Rm2

) and bi ∈ Ck−3(Zτ ,Rn).
Again from (5.3), we have for some constant C5 > 0, |∇u(x)| ≤ C5/ρ(x). By (3.26),

∫

Zτ

|∇u|2 ≤ C2
5

∫

Zτ

ρ(x)−2 ≤ C6τ
q−2.

So u ∈ H1(Zτ ,Rm).
By removable singularity theory ([M], for example), u is a weak solution on Zτ .
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[HF2] F. Hélein, Regularity of weakly harmonic maps from a surface in a manifold with
symmetries, Man. Math. 70 (1991) 203-218.

[HS] S. Hildebrant, Harmonic mappings of Riemannian manifolds, in “Harmonic Maps
and minimal immersions”, ed. E. Giusti, Springer-Verlag, LNM, 1161 (1984).

[LG1] G. Liao, Regularity theorem for harmonic maps with small energy, J. Diff. Geom., Vol
22 (1985) 233-241.

[LG2] G. Liao, A study of regularity problem of harmonic maps, Pacific J. Math. 130 (1987).

[LF] F. H. Lin, A remark on the map x/|x|, C. R. Acad. Sci. Paris 305 305, I (1987),
527-531.

19



[LS] S. Luckhaus, C1,ε-Regularity for energy minimizing Hölder continuous p-harmonic
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