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§ 0. Introduction
Here, for a smooth domain Ω in Rm and a compact smooth Riemannian manifold N we study a space

H consisting of all harmonic maps u : Ω → N that have a singular set being a fixed compact subset Z of
Ω having finite m− 3 dimensional Minkowski content. This holds if, for example, Z is m− 3 rectifiable [F,
3.2.14]. We define a suitable topology on H using Hölder norms on derivatives weighted by powers of the
distance to Z.

We study the structure of H and other properties, such as stability and minimality, under perturbations.
For example, near a homogeneous harmonic map that is singular only at the origin, H is, for suitable powers
of the weights, a smooth manifold [Theorem 4.7]. An application [Theorem 5.6] of the result to some
well-known harmonic maps, such as the homogeneous extension of the harmonic maps from S2 to S2, the
identity from Sm−1 to itself and the equator maps from Sm−1 to Sm, gives that their boundary data can be
perturbed in any directions of the eigenvectors corresponding to the positive eigenvalues (of the boundary
data) to obtain new harmonic maps. These new harmonic maps are also stable (energy minimizing, unique)
if the perturbed maps are strictly stable (strictly minimizing), which is implied by Theorems 3.5, 3.8 saying
that stability and minimality are preserved under small perturbations.

For smooth harmonic maps, we prove that H is a Banach manifold modelled on the space of boundary
data, and the projection map that sends u to u|∂Ω is Fredholm of index 0 [Theorem 6.4]. Locally, near
u ∈ H with K0 being the space of smooth Jacobi fields along u that vanish on ∂Ω, some neighborhood of
u in H is diffeomorphic to a submanifold (of codimension dim (K0)) of the product of K0 with the space
of the boundary data [Theorem 6.2]. Using the global structure theorem, we prove a generic uniqueness
property of smooth harmonic maps [Theorem 6.8], which establishes the first category nature of the set of
all boundary maps that occur as trace of two distinct harmonic maps having same energy.

We prove a Schauder-type estimate and a pointwise estimate in Section 2 [Theorems 2.1, 2.3]. This is
relevant for a study of the Fredholm property of the Jacobi operator, which is essential to apply the implicit
function theorem. For isolated singularities, a very detailed analysis of this property with perturbation
applications has recently been given by N. Smale [SN3].

If one allows the singularity to vary, there is the example of [HKL] where the boundary data corresponds
under the sterographic projection to the conformal map z2. Here there is a one parameter family of distinct
harmonic maps having this Dirichlet boundary data and the same energy (by energy minimality). The
singularity varies. This phenomenon holds for any n-axially symmetric boundary data of non-zero degree
when n ≥ 2. (See [HKL].)

For smooth case, we follow with some modifications some steps in Brian White’s study [WB] of the
corresponding theory for smooth immersed minimal submanifolds. The presence of singularities demands
various new estimates and leads to several interesting examples of singular Jacobi fields and families of
harmonic maps. The authors would like to thank Frank Pacard and Nat Smale for their interest and for
pointing out an error in an earlier version of this paper.

§ 1. Preliminaries

Appeared in Journal of Geometric Analysis. Vol. 2, 5 (1992) 445-488.
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1.1. Definitions. Here we assume that Ω ⊆ Rm (m ≥ 3) is a smooth bounded domain with standard
metric, and N ⊆ Rp (p ≥ 2) is a smooth compact submanifold (without boundary). All our discussions can
be modified to hold with Ω replaced by a compact Riemannian manifold with boundary. Let

H1(Ω, N) = {u ∈ H1(Ω,Rp) : u(x) ∈ N for a.e. x ∈ Ω}
where H1(Ω,Rp) is the set of u ∈ L2(Ω,Rp) whose distributional gradient is square integrable. The energy
of u ∈ H1(Ω,Rp) is denoted

E(u) =
∫

Ω

|∇u|2.

Now we introduce the spaces for maps that are possibly singular (i.e., discontinuous) on a fixed subset
of Ω. Let Z be a compact subset of Ω having finite m− q (q ≥ 0) dimensional Minkowski contentMm−q(Z)
[F, 3.2.37]. For x ∈ Ω, denote by ρ(x) = dist(x,Z), and for r > 0, denote

Zr = {z ∈ Rm : ρ(z) < r}; Zr,2r = Z2r \ Z̄r; Ω0 = Ω \ Z; Ωr = Ω \ Z̄r.
Take a number r0 > 0 so that Z3r0 ⊆ Ω. For an integer k ≥ 0, 0 ≤ α < 1 and ν ∈ R, we define a norm

‖u‖k,α;ν for u ∈ Ck,αloc (Ω0,Rp):

‖u‖k,α;ν = sup
0<r≤r0

∑

β∈{0,α}

k∑

j=0

rj+β−ν‖∇ju‖(β),Zr,2r + ‖u‖k,α;Ωr0
,

where ‖·‖k,α,Σ = ‖·‖Ck,α(Σ) is Hölder norm on Σ. In particular, ‖·‖(α),Σ = ‖·‖C0,α(Σ) and ‖·‖(0),Σ = ‖·‖C0(Σ).
Roughly speaking, ‖u‖k,α;ν <∞ if and only if u, ρ∇u, ..., ρk∇ku are bounded by ρν . This norm allows

u to be singular on Z, yet gives control of the asymptotic behavior of u near Z. It is used in [CHS] to
construct the first example of minimal surface with singularity that is not a cone. In [SN1] and [ML1],
it is used to prove some bridge principles, according to which a minimal surface or a harmonic map with
prescribed finite singular set can be constructed from those with single singularities.

Using this norm, we define the following spaces:

Ck,α;ν(Ω0,Rp) = {u ∈ Ck,αloc (Ω0,Rp) : ‖u‖k,α;ν <∞};
Ck,α;ν

0 (Ω0,Rp) = {u ∈ Ck,α;ν(Ω0,Rp) : u = 0 on ∂Ω};
Ck,α;ν(Ω0, N) = {u ∈ Ck,α;ν(Ω0,Rp) : u(x) ∈ N for x ∈ Ω0}.

For u ∈ Ck,α;ν(Ω0, N), we define sets of vector fields along u:

Ck,α;ν(Ω0, TuN) = {κ ∈ Ck,α;ν(Ω0,Rp) : κ ∈ TuN};
Ck,α;ν

0 (Ω0, TuN) = {κ ∈ Ck,α;ν
0 (Ω0,Rp) : κ ∈ TuN},

where κ ∈ TuN means that κ(x) ∈ Tu(x)N for x ∈ Ω0. Similarly κ⊥TuN means that κ(x)⊥Tu(x)N for
x ∈ Ω0.

We will also use the following spaces of boundary data:

Ck,α(∂Ω,Rp) = {ϕ : ϕ = u|∂Ω, u ∈ Ck,α(Ω,Rp)};
Ck,α(∂Ω, N) = {ϕ ∈ Ck,α(∂Ω,Rp) : ϕ(x) ∈ N for x ∈ ∂Ω};

Ck,α(∂Ω, TψN) = {κ ∈ Ck,α(∂Ω,Rp) : κ ∈ TψN},
where ψ ∈ Ck,α(∂Ω, N). Here the norm ‖ · ‖k,α,∂Ω on Ck,α(∂Ω,Rp) is defined by

‖ϕ‖ = inf{‖u‖k,α,Ω : u|∂Ω = ϕ, u ∈ Ck,α(Ω,Rp)}.
Note that Ck,α;0(Ω0, N) contains many interesting maps. For example, Ck,α;0(Bm \ {0}, N) contains

the homogeneous extensions of smooth maps from Sm−1 to N .

2



1.2.
(a). Note that Ck,α(Ω, N), Ck,α(∂Ω, N) and Ck,α;ν(Ω0, N) (ν ≥ 0) are Banach manifolds, modelled on their

tangent spaces:
TuC

k,α(Ω, N) = Ck,α(Ω, TuN) at u ∈ Ck,α(Ω, N);

TuC
k,α;ν(Ω0, N) = Ck,α;ν(Ω0, TuN) at u ∈ Ck,α;ν(Ω0, N);

TψC
k,α(∂Ω, N) = Ck,α(∂Ω, TψN) at ψ ∈ Ck,α(∂Ω, N),

which are Banach spaces. For example, one can check that a neighborhood of u in Ck,α;ν(Ω0, N) (ν ≥ 0)
is diffemorphic to a neighborhood of 0 in Ck,α;ν(Ω0, TuN) under the exponential map

expu : Ck,α;ν(Ω0, TuN)→ Ck,α;ν(Ω0, N),

defined by
(expu κ)(x) = expu(x)κ(x) for κ ∈ Ck,α;ν(Ω0, TuN).

(b). Ck,α(Ω,Rp) ⊆ Ck,α;0(Ω0,Rp) with equality valid only when Z = ∅. If k ≤ k′, α ≤ α′ and ν ≤ ν′, then
Ck
′,α′;ν′(Ω0,Rp) ⊆ Ck,α;ν(Ω0,Rp). The inclusion is compact if k + α < k′ + α′ and ν < ν′.

(c). If u ∈ Ck,α;ν(Ω0,Rp), then ∂β

∂xβ
u ∈ Ck−|β|,α;ν−|β|(Ω0,Rp) for |β| ≤ k.

If u ∈ Ck,α;ν(Ω0,Rp) and v ∈ Ck,α;µ(Ω0,Rp), then the product u · v ∈ Ck,α;ν+µ(Ω0,R).

As a counterpart of Ck,α;ν(Ω0, N), we define Hk;δ(Ω,Rp) with a norm ‖u‖k;δ for δ ∈ R and integer
k ≥ 0 as follows.

‖u‖k;δ =
k∑

j=1

‖ρj−δ−1∇ju‖L2(Ω).

Hk;δ(Ω,Rp) = {u ∈ L2(Ω,Rp) : ‖u‖k;δ <∞}
We have the following

1.3. Lemma. Suppose that Z ⊆ Ω has finite m − q dimensional Minkowski content Mm−q(Z), k ≥ 0,
ν ∈ R and 0 ≤ α < 1. Then

Ck,α;ν(Ω0,Rp) ⊆ Hk;δ(Ω,Rp)

for δ < ν + q−2
2 .

In particular, if q > 2 and ν ≥ 0, then Ck,α;ν(Ω0,Rp) ⊂ H1;0(Ω,Rp) ⊂ H1(Ω,Rp).

Proof : We claim that if ρ(x) = dist(x, Z) and ν + q > 0, then

(1.3.1) ρν ∈ L1(Ω).

To prove (1.3.1), it suffices to show that ρν ∈ L1(Zr0) for small r0. Indeed, that Mm−q(Z) is finite implies
that for some constant C1 and small r0, Lm(Zr) ≤ C1r

q when 0 < r < r0. Thus we have
∫

Zr0

ρνdx =
∞∑

i=0

∫

Z2−i−1r0,2−ir0

ρνdx

≤
∞∑

i=0

((r02−i−1)ν + (r02−i)ν)(r02−i)q

= (1 + 2−ν)rν+q
0

∞∑

i=0

(2ν+q)−i

=
(1 + 2−ν)rν+q

0

1− 2−ν−q
<∞.

Now that δ < ν + q−2
2 implies that if u ∈ Ck,α;ν(Ω0, TuN), then for j = 0, 1, ..., k, |ρj−δ−1∇ju|2 ≤

Cρ2(ν−δ−1) ∈ L1. By definition, then u ∈ Hk;δ(Ω,Rp).
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In the first and second variational formulae that follow, we assume that k ≥ 2, 0 ≤ α < 1 and ν ≥ 0.

1.4. First variation formula of energy.
Since N is smooth, we may take a δ = δ(N) > 0 such that for any

x ∈ Nδ ≡ {x ∈ Rp : dist(x,N) ≤ δ},

there exists a unique point π(x) ∈ N such that dist(x,N) = |x− π(x)|. Furthermore, for y ∈ N ,

(1.4.1) Dπ(y) = Py,

the projection map from Rp to TyN [HL1].
Suppose u ∈ Ck,α;0(Ω0, N), κ ∈ H1(Ω, TuN) ∩ L∞ and ut = π(u + tκ) : (−ε, ε) → H1(Ω, N) is a

differentiable curve in H1(Ω, N) with u = u0, d
dt

∣∣
t=0

ut = Dπ(u)κ = Puκ = κ ∈ TuN , then the first variation
formula is

d

dt

∣∣∣
t=0

E(ut) = 2
∫

Ω

−H(u) · κ+
∫

∂Ω

∂u

∂n
· κ,

where
H(u) = Pu∆u = ∆u−A(u) (∇u,∇u),

n is the outward normal unit direction of ∂Ω, A(u) is the second fundamental form of N , evaluated at u,
and ∇u = ( ∂u∂x1

, ..., ∂u
∂xm

). Note that ∂u
∂xi
∈ TuN for each i. Also H(u) ∈ Ck−2,α;−2(Ω0, TuN) and

H : Ck,α;0(Ω0, N)→ Ck−2,α;−2(Ω0,Rp)

is a smooth map (between the two Banach spaces).
A map u ∈ H1(Ω, N) is a harmonic map if it is a solution of Euler-Lagrange equation

(1.4.2) H(u) = 0.

In this paper we are interested in set of harmonic maps in Ck,α;0(Ω0, N), which we denote by

H = {u ∈ Ck,α;0(Ω0, N) : u is harmonic}.

1.5. Remarks .
(a). H(u) can be viewed as the derivative of E(u): For κ ∈ H1(Ω, TuN) ∩ L∞,

〈κ,DE(u)〉 =
∫

Ω

−H(u) · κ = 〈−H(u), κ〉L2 .

(b). Also H(u)=Trace (∇du), where∇du is the bilinear form defined by∇du(κ, η) = (∇κdu)(η). See [EL][J].
(c). H(u) can also be described in terms of local coordinates of N . See [J], for example.

1.6. Second variational formula of energy. Suppose that u ∈ Ck,α;0(Ω0, N), κ, η ∈ H1(Ω, TuN) ∩ L∞
and

ust : (−ε, ε)× (−ε, ε)→ H1(Ω, N)

(e.g., ust = π(u+ tκ+ sη)) is a differentiable 2-parameter variation with

(κ, η) = (
∂

∂t
ust,

∂

∂s
ust)

∣∣∣∣
s=t=0

.
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Then the second variation is

(1.6.1)
∂2

∂t∂s

∣∣∣∣
s=t=0

E(ust) = 2
∫

Ω

−Juκ · η + 2
∫

∂Ω

∂κ

∂n
· η,

where Ju = Pu ◦DH(u) is given by

(1.6.2) Juκ = ∆κ−DA(u)(κ,∇u,∇u)− 2A(u)(∇κ,∇u) +A(u)(H(u), κ).

1.7 . Ju is called the Jacobi operator with respect to u. Note that Ju maps Ck,α;ν(Ω0, TuN) to
Ck−2,α;ν−2(Ω0, TuN), and it is linear and uniformly elliptic. A solution κ ∈ Ck,α;ν(Ω0, TuN) of Juκ = 0 is
called a Jacobi field in Ck,α;ν(Ω0, TuN) with respect to u. Furthermore, the symmetry of κ and η in (1.6.1)
implies that Ju is self-adjoint; that is, for all κ, η ∈ H1

0 (Ω, TuN) ∩ L∞,

(1.7.1) 〈Juκ, η〉L2 = 〈κ, Juη〉L2 = −
∫

Ω

∇κ · ∇η +DA(κ,∇u,∇u) · η.

If u is harmonic, then

(1.7.2) Juκ = 〈κ,DH(u)〉 = ∆κ−DA(u)(κ, du, du)− 2A(u)(dκ, du).

If u is harmonic, then for κ ∈ H1(Ω, TuN) ∩ L∞,

Juκ = 〈κ,DH(u)〉 = lim
t→0

1
t
[H(π(u+ tκ))−H(u)].

This extends the definition of Ju to H1(Ω,Rp) so that Juκ = 0 for κ⊥TuN .
Ju may have different forms. See [J], for example.

§ 2. Some Estimates for Jacobi Fields

To use implicit function theorem to study the solutions of H(u) = 0, a key step is to show the Fredholm
property of the linearization of H, (i.e., the Jacobi operator Ju). For this purpose and other possible
applications, we prove an estimate of Schauder’s type and a pointwise bound estimate for solutions in
Ck,α;ν(Ω0,Rp) of elliptic systems whose coefficients may have singularities.

We will use the notations introduced in Section 1, with k ≥ 2, 0 < α < 1 and ν ∈ R.

2.1. Theorem. Suppose κ ∈ Ck,αloc (Ω0,Rp) and J is a linear elliptic operator in the following form:

Ju =
( p∑

j=1

Jij(·, D)uj
)

1≤i≤p
,

Jij(x,D) =
∑
st

astij(x)DsDt +
∑
s

bsij(x)Ds + cij(x),

where the coefficients satisfy the following:

a = (astij) ∈ Ck−2,α;0(Ω0,Rp2×m2
), b = (bsij) ∈ Ck−2,α;−1(Ω0,Rp2×m),

c = (cij) ∈ Ck−2,α;−2(Ω0,Rp2
), Jκ ∈ Ck−2,α;ν−2(Ω0,Rp),

J(x, ξ) = det
(∑
st

astijξsξt

)
p×p
≥ λ |ξ|2p,
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for all ξ ∈ Rm and some constant λ > 0.
Then there exists a constant C depending only ‖a‖k−2,α;0, ‖b‖k−2,α;−1, ‖c‖k−2,α;−2, ν, m, p, λ and Ω

such that

(2.1.1) ‖κ‖k,α;ν ≤ C
[
‖Jκ‖k−2,α;ν−2 + ‖κ‖k−2,0;ν + ‖κ‖k,α,∂Ω

]
.

Proof : For 0 < r < r0, and x0 ∈ Zr,2r, we apply the Schauder’s interior estimate on the ball BR = BR(x0)
with R = 2r/3. To be specific, let σ ∈ R and consider the following norms:

(2.1.2) ‖κ‖(σ)
k,α;BR

=
k∑

j=0

sup
x∈BR

dj+σx |∇jκ(x)|+
k∑

j=0

sup
x,y∈BR

dj+α+σ
xy

|∇jκ(x)−∇jκ(y)|
|x− y|α ,

(2.1.3) ∗‖κ‖(σ)
k,α;BR

=
∑

β∈{0,α}

k∑

j=0

Rj+β+σ‖∇jκ‖(β),BR ,

where dx = dist(x, ∂BR) and dxy = min{dx, dy}. Here ‖ · ‖(σ)
k,α;BR

is equivalent to the norm | · |(σ)
k,α;BR

defined
in [GT, § 6.1]. When σ ≥ 0, the following simple relation holds

(2.1.4) ∗‖κ‖(σ)
k,α;BR/2

≤ ‖κ‖(σ)
k,α;BR

≤∗ ‖κ‖(σ)
k,α;BR

≤ ‖κ‖k,α;−σ.

(where ‖κ‖k,α;−σ is the norm defined in 1.1) In particular, we have

‖a‖(0)
k−2,α;BR

≤ ‖a‖k−2,α;0,

‖b‖(1)
k−2,α;BR

≤ ‖b‖k−2,α;−1,

‖c‖(2)
k−2,α;BR

≤ ‖c‖k−2,α;−2.

Thus the Schauder’s interior estimates [GT , Theorem 6.2] ([DN, Theorem 1] for systems) imply

(2.1.5) ‖κ‖(0)
k,α;BR

≤ C1

[
‖Jκ‖(2)

k−2,α;BR
+ ‖κ‖0,BR

]
,

where C1, and C2, C3 ... in the sequel, are constants as stated in the theorem. Combined with (2.1.4),
(2.1.5) gives

(2.1.6)
∑

β∈{0,α}

k∑

j=0

rj+β‖∇jκ‖(β),Br/3
≤ C2

[ ∑

β∈{0,α}

k−2∑

j=0

rj+β+2‖∇jJκ‖(β),B2r/3
+ ‖κ‖0,B2r/3

]
.

Multiplying (2.1.6) by r−ν , we get

∑

β∈{0,α}

k∑

j=0

rj+β−ν‖∇jκ‖(β),Br/3
(2.1.7)

≤ C2

[ ∑

β∈{0,α}

k−2∑

j=0

rj+β−(ν−2)‖∇jJuκ‖(β),B2r/3
+ r−ν‖κ‖0,B2r/3

]
,

≤ C3

[
‖Jκ‖k−2,α;ν−2 + ‖κ‖k−2,0;ν

]
.
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Now we apply the fact that any function η ∈ Cα(Ω0) satisfies

‖η‖α,Zr,2r ≤ 2 · 3α sup
x∈Zr,2r

[
r−α‖η‖0,Br/3(x) + ‖η‖(α),Br/3(x)

]

to ∇jκ (j = 0, · · · , k), and use (2.1.7), to get

∑

β∈{0,α}

k∑

j=0

rj+β−ν‖∇jκ‖(β),Zr,2r(2.1.8)

≤ C4 sup
x∈Zr,2r

∑

β∈{0,α}

k∑

j=0

rj+β−ν‖∇jκ‖(β),Br/3(x)

≤ C5

[
‖Jκ‖k−2,α;ν−2 + ‖κ‖k−2,0;ν

]
.

To estimate ‖κ‖k,α,Ωr0 , we apply the Schauder estimates [ADN, Theorem 9.3], to Ωr0 ⊂ ⊂ Ωr0/2 (with
D = Ωr0/2, A = Ωr0 and Γ = ∂Ω) to get

‖κ‖k,α,Ωr0 ≤ C6

[
‖Jκ‖k−2,α,Ωr0/2 + ‖κ‖k,α,∂Ω + ‖κ‖0,Ωr0/2

]
(2.1.9)

≤ C7

[
‖Jκ‖k−2,α;ν−2 + ‖κ‖k,α,∂Ω + ‖κ‖k−2,0;ν

]
.

Summing up (2.1.8) and (2.1.9), we get the desired estimate.

Later we will use the following corollary to Theorem 2.1 with k = 2.

2.2. Corollary. If κ ∈ C2,α
loc (Ω0, TuN) ∩ C0,0;ν(Ω0, TuN) is solution of Juκ = f with κ|∂Ω ∈ C2,α(∂Ω, N)

and f ∈ C0,α,ν−2(Ω0, TuN), then κ is a Jacobi field in C2,α;ν(Ω0, TuN).

Proof : This is implied by the estimates (2.1.1) in Theorem 2.1:

‖κ‖2,α;ν ≤ C
[
‖κ‖0,0;ν + ‖κ‖2,α,∂Ω + ‖f‖0,α,ν−2

]
.

In order to apply Corollary 2.2, we need that κ ∈ C0,0;ν(Ω0, TuN), or, |κ(x)| ≤ Cρν(x) for some constant
C. This may not true for a solution κ ∈ C2,α

loc (Ω0, TuN) of Juκ = f . On the other hand we have the following
estimate.

2.3. Theorem. Let µ ∈ R, 0 < α < 1 and f ∈ C0,α,µ(Ω0, TuN). If κ ∈ C2,α
loc (Ω0, TuN)∩Lp(Ω, TuN), p > 1

and Juκ = f , then there is a constant C such that for x ∈ Ω0,

(2.3.1) |κ(x)| ≤ C
[
ρ(x)−m/p‖κ‖Lp(Bρ(x)/2(x)) + ρ(x)µ+2‖f‖0,α,µ

]
,

where ρ(x) = dist(x,Z).

Proof : For x ∈ Ω0, let R = ρ(x)/4 and v ∈ C1
0 (BR(x)), v ≥ 0. Then as shown in [ML1, Lemma], we have,

(2.3.2)
∫

BR(x)

∇|κ| · ∇v ≤
∫

BR(x)

∆κ · κ
|κ| v.

Now since Juκ = 0, by (1.6.2) and the fact that A(u)⊥TuN , we have

|∆κ · κ| ≤ |DA(u)(κ,∇u,∇u) · κ|+ |f ||κ|(2.3.3)

≤ C1

[|∇u|2|κ|2 + |f ||κ|]
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for some constant C depending only on N . Now (2.3.2) and (2.3.3) imply that |κ| is a subsolution of

(2.3.4) ∆w + C1|∇u|2w|+ C1|f | = 0,

in the sense that

(2.3.5)
∫

BR(x)

∇|κ|∇v − C1|∇u|2|κ|v − C1|f |v ≤ 0

for v ∈ C1
0 (BR(x)), v ≥ 0. By Theorem 8.17 in [GT], for p > 1 and q > m, there exists a constant C3

depending only on m, p and q such that

(2.3.6) sup
BR(x)

|κ| ≤ C
[
R−m/p‖κ‖Lp(B2R(x)) +R2(1−m/q)‖f‖Lq/2(B2R(x))

]
.

Note that

(2.3.7) ‖f‖Lq/2(B2R(x)) ≤ ρ(x)µ+2m/q‖f‖0,α,µ.

So (2.3.7) and (2.3.6) imply (2.3.1).

§ 3. Strict Minimality and Stability Under Perturbations

The main results of this section are that stability and minimality of harmonic maps are preserved under
small perturbations. Here the singular sets can be as general as in Section 1. For the stability of perturbed
harmonic maps with isolated singularities, a similar result was proved in [ML1]. For related results on
minimal surfaces, see [HS] and [SN1].

As in section 1, let Ω ⊂ Rm be bounded smooth (say C3) domain and N ⊂ Rp is a smooth compact
submanifold (say C4), m ≥ 3, p ≥ 3. Let Z be a fixed compact subset of Ω having finite m− 3 dimensional
Minkowski contentMm−3(Z) <∞ [F, 3.2.37] and Ω0 = Ω\Z. We consider the maps in the space C1;0(Ω0, N)
that is defined by

C1;0(Ω0, N) = {u ∈ C1
loc(Ω0, N) : ‖u‖1;0 <∞},

where ‖u‖1;0 = supx∈Ω0
[|u(x)|+ ρ(x)|∇u(x)|]. Note that C1;0(Ω0, N) = C1,0;0(Ω0, N), defined as in Section

1 with k = 1, α = 0 and ν = 0. Lemma 1.3 implies that

C1;0(Ω0, N) ⊆ H1;0(Ω, N) ⊆ H1(Ω, N).

Thus every map u ∈ C1;0(Ω0, N) has finite energy E(u) =
∫

Ω
|∇u|2.

3.1. Definitions. For u ∈ H1(Ω, N), let

H1
u(Ω, N) = {v ∈ H1(Ω, N) : v = u on ∂Ω},

H1
0 (Ω, TuN) = {ξ ∈ H1

0 (Ω,Rp) : ξ ∈ TuN}.
We say that u ∈ C1;0(Ω0, N) is strictly minimizing (with rate µ) if

(3.1.2) E(v)− E(u) ≥ µ
∫

Ω

|v − u|2
ρ2

, ρ(x) = dist(x,Z),

for and some µ > 0 and all v ∈ H1
u(Ω, N). If µ = 0, then u is minimizing.
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We say that u is strictly stable (with rate µ) if

(3.1.3)
d2

dt2
∣∣
t=0

E(ut) ≥ 2µ
∫

Ω

|ξ|2
ρ2

for some µ > 0 and all ξ ∈ H1
0 (Ω, TuN) ∩ L∞, where ut : (−ε, ε) → H1(Ω, N) is a curve satisfying u0 = u

and d
dt

∣∣
t=0

ut = ξ. We say u is stable if µ = 0.
Using Jacobi operator Ju (define in 1.9), we can rewrite (3.1.3) as

(3.1.4) −
∫

Ω

Juξ · ξ ≥ 2µ
∫

Ω

|ξ|2
ρ2

.

If (3.1.2) holds for v ∈ H1
u(Ω, N) satisfying sup |v − u| ≤ δ for some δ > 0, we say that u is strictly

nearby minimizing, or strictly δ-nearby minimizing with rate µ.

We now give a formula being used to compare the energies of two maps. It was first shown by Macintosh
and Simon [MS] for the case Ω0 = Bm \ {0}.
3.2. Theorem. Suppose that u ∈ C1;0(Ω0, N) is a harmonic map and v ∈ H1

u(Ω, N). Let ξ = v − u. Then

(3.2.1) E(v)− E(u) =
∫

Ω

|∇ξ|2 − Su(x, ξ),

where

(3.2.2) Su(x, q) = Qu(x, q, q) +Ru(x, q),

and Qu : Ω0 × Rp × Rp → R is a bilinear form for each x ∈ Ω0 and Ru : Ω0 × Rp → R is a map that
satisfies

(3.2.3) |Ru(x, q)|+ ρ(x)|DxRu(x, q)|+ |q||DqRu(x, q)| ≤ C0
|q|3
ρ2

for some constant C0(N, ‖u‖1,0, n, p), all q ∈ Rp and x ∈ Ω0 with u(x) + q ∈ N .

Proof : For v ∈ H1
u(Ω, N), let ξ = v − u. We have, by integration by parts and (1.4.2)∫

Ω

|∇v|2 − |∇u|2 =
∫

Ω

|∇ξ|2 + 2∇ξ · ∇u(3.2.4)

=
∫

Ω

|∇ξ|2 − 2ξ ·∆u =
∫

Ω

|∇ξ|2 − 2ξ ·A(u)(∇u,∇u).

For y ∈ N and ξ ∈ Rp, let ξ>y and ξ⊥y be the orthogonal projections of ξ into TyN and (TyN)⊥,
respectively. Define B : N ×Rp → Rp by

(3.2.5) B(y, ξ) = ξ⊥y −
1
2
A(y)(ξ>y , ξ

>
y ).

Then there is a constant C1(N) such that for y + ξ ∈ N ,

(3.2.6) |B(y, ξ)|+ |DyB(y, ξ)|+ |ξ||DξB(y, ξ)| ≤ C1|ξ|3.
This holds because, locally, N is the graph of second fundamental form A over TyN ; that is, for y + ξ ∈ N ,

(3.2.7) y + ξ = y + ξ>y +
1
2
A(y)(ξ>y , ξ

>
y ) +O(|ξ|3).

For ξ, η ∈ Rp and x ∈ Ω0, define

Qu(x, ξ, η) = A(u(x))(ξ>u(x), η
>
u(x)) ·A(u(x))(∇u(x),∇u(x)).(3.2.8)

Ru(x, ξ) = 2B(u(x), ξ) ·A(u(x))(∇u(x),∇u(x)).(3.2.9)

By the definition (3.2.2) of Su, (3.2.5), (3.2.8)-(3.2.9) and the fact that A(u)⊥TuN , we verify

Su(x, ξ) = Qu(x, ξ, ξ) +Ru(x, ξ) = 2ξ⊥ ·A(u)(∇u,∇u) = 2ξ ·A(u)(∇u,∇u).

This combined with (3.2.4) gives (3.2.1). The (3.2.3) follows from the definition (3.2.9) of Ru, (3.2.6) and
the fact |∇u| ≤ ‖u‖1;0/ρ.

9



3.3. Remark. For ξ = H1
0 (Ω, TuN), if we let v = ut : (ε, ε) → H1(Ω, N) be a curve with u0 = u and

d
dt

∣∣
t=0

ut = ξ in (3.2.1), then (3.2.3) implies that

(3.3.1)
d2

dt2
∣∣
t=0

E(ut) = 2
∫

Ω

|∇ξ|2 −Qu(x, ξ, ξ).

In particular, if N = Sp−1, we can take Ru(x, ξ) = 0 and Su(x, ξ) = Qu(x, ξ, ξ) = |ξ|2|∇u|2; therefore,
we have for ξ = v − u,

(3.3.2) E(v)− E(u) =
∫

Bn
|∇ξ|2 − |∇u|2|ξ|2.

Indeed, in this case, because 2ξ · u+ |ξ|2 = 0, A(u)(ξ, η) = −(ξ · η)u, we have, in (3.2.4)

2ξ ·A(u)(∇u,∇u) = −2ξ · u|∇u|2 = |ξ|2|∇u|2

(If we apply theorem 3.2, we will have B(u, ξ) = −(ξ · u)2u/2, Qu(x, ξ, ξ) = |∇u|2(|ξ|2 − (ξ · u)2) and
Ru(x, ξ) = |∇u|2(ξ · u)2.)

Thus in the case N = Sp−1, both (3.1.2) and (3.1.3) can be written as

(3.3.3)
∫

Bn
|∇ξ|2 − |∇u|2|ξ|2 ≥ µ

∫

Ω

|ξ|2
ρ2

for all ξ ∈ H1
0 (Ω,Rp) that satisfy |ξ + u| = 1 and ξ ∈ H1

0 (Ω, TuN), respectively.
Similarly, for N = Sma = {(u, z) ∈ Rm+1 : |u|2 + |z|

2

a2 = 1}, with a > 0, if (u, 0) ∈ H1(Ω, N) is an equator
map, then for (ξ, z) ∈ H1

0 (Ω,Rp) (p = m+ 1) satisfying (u+ ξ, z) ∈ H1(Ω, N), we have

(3.3.4) E((u+ ξ, z))− E((u, 0)) =
∫

Bn
|∇ξ|2 − |∇u|2|ξ|2 +

∫

Bn
|∇z|2 − |∇u

a
|2|z|2.

3.4. Theorem. A harmonic map u ∈ H1(Ω, N) is strictly stable if and only if u is strictly nearby
minimizing.

Proof : Suppose that u is strictly minimizing with rate µ > 0. If ξ ∈ H1
0 (Ω, TuN)∩L∞, then ut = π(u+ tξ)

satisfies d
dt

∣∣
t=0

ut = ξ and |ut − u| ≤ C|t||ξ|. So when t is sufficiently small, by strict nearby minimality of u,

E(ut)− E(u) ≥ µ
∫

Ω

|ut − u|2
ρ2

.

Thus
d2

dt2
∣∣
t=0

E(ut) = 2 lim
t→0

E(ut)− E(u)
t2

≥ 2µ
∫

Ω

|ξ|2
ρ2

.

This shows the necessity.
To show sufficiency, suppose that u ∈ C1;0(Ω0, N) is strictly stable with rate µ > 0. Let

(3.4.1) ξ ∈ H1
0 (Ω,Rp), ξ + u ∈ N, |ξ| ≤ δ,

with δ > 0 being chosen.
Define η = ξ>u and χ = ξ⊥u = ξ − η. Then η ∈ H1

0 (Ω, TuN) and by strict stability of u and formula
(3.3.1)

(3.4.2)
∫

Ω

|∇η|2 −Qu(x, η, η) ≥ µ
∫

Ω

|η|2
ρ2

.
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From the definition of C1;0(Ω0, N) and the fact N ∈ C4, we have

|∇u(x)| ≤ ‖u‖1;0

ρ(x)
, ‖A‖C2(N) ≤ C2.(3.4.3)

|ξ>u | ≤ |ξ|, |∇ξ>u | ≤ C3

[
|∇ξ|+ |ξ|

ρ

]
.(3.4.4)

Here and in the following, unless otherwise indicated, the constants Ci depend only on N , ‖u‖1;0, m and p.
Now from (3.2.5), we have

χ = ξ⊥u = B(x, ξ) +
1
2
A(u)(ξ>u , ξ

>
u ).

Using (3.2.6), (3.4.3) and (3.4.4), we get

(3.4.5) |χ| ≤ C4[|ξ|3 + |ξ>u |2] ≤ 2C4|ξ|2 ≤ 2C4δ|ξ|.

|∇χ| ≤ |DuB(u, ξ)||∇u|+ |DξB(u, ξ)||∇ξ|+(3.4.6)

+
1
2
|DuA(u)(∇u, ξ>u , ξ>u )|+ |A(u)(∇ξ>u , ξ>u )|

≤ C5

[ |ξ|3
ρ

+ |∇ξ||ξ|2 +
|ξ>u |2
ρ

+ |∇ξ‖ξ|+ |ξ|
2

ρ

]

≤ C6δ

[
|∇ξ|+ |ξ|

ρ

]
.

By Schwartz’s inequality, (3.4.5) and (3.4.6), we have the following

|∇χ|2 ≤ 2C2
6δ

2

[
|∇ξ|2 +

|ξ|2
ρ2

]
.(3.4.7)

(1− C7δ)|ξ|2 ≤ |η|2 ≤ (1 + C7δ)|ξ|2.(3.4.8)

|∇η|2 ≤ (1 + C8δ)|∇ξ|2 + C8δ
|ξ|2
ρ2

.(3.4.9)

Since Q is bilinear and η = ξ − χ,

(3.4.10) Qu(x, η, η) = Qu(x, ξ, ξ)− 2Qu(x, ξ, χ) +Qu(x, χ, χ).

By definition of Q, (3.4.3) and (3.4.5),

|Qu(x, ξ, χ)| = |A(u)(ξ>u , χ
>
u ) ·A(u)(∇u,∇u)|

≤ C9|ξ||χ||∇u|2 ≤ C10δ
|ξ|2
ρ2

.(3.4.11)

|Qu(x, χ, χ)| = |A(u)(χ>u , χ
>
u ) ·A(u)(∇u,∇u)|(3.4.12)

≤ C11|χ|2|∇u|2 ≤ C12δ
2 |ξ|2
ρ2

.

|Qu(x, ξ, ξ)| ≤ |A(u)(ξ>u , ξ
>
u ) ·A(u)(∇u,∇u)| ≤ C13

|ξ|2
ρ2

.(3.4.13)

Thus (3.4.10)-(3.4.12) imply

(3.4.14) Q(x, η, η) ≤ Q(x, ξ, ξ) + C14δ
|ξ|2
ρ2

,
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and (3.4.13), (3.4.14) imply

(3.4.15) Q(x, η, η) ≤ (1 + C8δ)Q(x, ξ, ξ) + C15δ
|ξ|2
ρ2

.

From (3.2.3),

(3.4.16) |Ru(x, ξ)| ≤ C0δ
|ξ|2
ρ2

.

Putting (3.4.9), (3.4.15) and (3.4.8) into (3.4.2), we get

∫

Ω

(1 + C8δ)|∇ξ|2 + C8δ
|ξ|2
ρ2
− (1 + C8δ)Q(x, ξ, ξ) + C15δ

|ξ|2
ρ2
≥
∫

Ω

µ(1− C7δ)
|ξ|2
ρ2

.

Combining this with the definition of Su(x, ξ) and (3.4.16), we get

(1 + C8δ)
[∫

Ω

|∇ξ|2 − Su(x, ξ)
]
≥ (µ− C16δ)

∫

Ω

|ξ|2
ρ2

.

Choose δ small so that µ1 = (µ− C16δ)/(1 + C8δ) > 0, then

∫

Ω

|∇ξ|2 − Su(x, ξ) ≥ µ1

∫

Ω

|ξ|2
ρ2

,

for all ξ satisfying (3.4.1). That is u is strictly δ-nearby minimizing with rate µ1.

3.5. Theorem. Suppose that u ∈ C1;0(Ω0, N) is a strictly minimizing harmonic map. Then there is an
ε > 0 depending only on ‖u‖1;0, m and p, such that any harmonic map v ∈ C1;0(Ω0, N) with ‖v − u‖1;0 ≤ ε
is also strictly minimizing.

Proof : Take δ = δ(N) > 0 such that for any

x ∈ N4δ ≡ {x ∈ Rp : dist(x,N) ≤ 4δ},

there exists unique π(x) ∈ N such that dist(x,N) = |x− π(x)|. Note that π ∈ C3, since N ∈ C4.
Suppose that u ∈ C1;0(Ω0, N) is harmonic and strictly minimizing with rate µ > 0 and v ∈ C1;0(Ω0, N)

is harmonic satisfying

(3.5.1) ‖v − u‖1;0 ≤ ε

with ε ∈ (0, δ). We show that v also strictly minimizing if ε is small enough.
Suppose that η ∈ H1

0 (Ω,Rp) and η + v ∈ N . Define ξ = π(u + η) − u, then ξ is well defined because
dist(u+ η,N) ≤ ‖v − u‖1;0 ≤ ε ≤ δ. Noticing that ξ ∈ H1

0 (Ω,Rp) and ξ + u ∈ N , by strict minimality of u,
we have

(3.5.2)
∫

Ω

|∇ξ|2 − Su(x, ξ) ≥ µ
∫

Ω

|ξ|2
ρ2

.

Let χ = ξ − η = π(u+ η)− (u+ η). To estimate χ we consider the map

F : Q2δ ≡ {(y, z) ∈ N2δ ×Rp, y + z ∈ N2δ} → Rp(3.5.3)

F (y, z) = π(y + z)− (y + z).
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Since dist(∂Q2δ, Qδ) ≥ δ and π ∈ C3, we can extend F to Rp ×Rp → Rp so that for some constant
C(δ,N),

|Dα
yD

β
zF | ≤ C, |α|+ |β| ≤ 3.

Now since F (v, η) = 0, we have

F (u, η) =
∫ 1

0

DyF (v + t(u− v), η)(u− v) dt.

Using the fact that F (u, 0) = 0 in this equality, we get

F (u, η) =
∫ 1

0

[DyF (v + t(u− v), η)−DyF (v + t(u− v), 0)](u− v) dt(3.5.4)

=
∫ 1

0

∫ 1

0

DyDzF (v + t(u− v), sη)[(u− v)⊗ η] dtds.

From (3.5.4), (3.5.1) and by using Schwartz’s inequality,

|χ| = |F (u, η)| ≤ |DyDzF | |u− v||η| ≤ C2ε|η|.(3.5.5)

(1− C3δ)|η|2 ≤ |ξ|2 ≤ (1 + C3δ)|η|2.(3.5.6)

|∇χ| ≤ C4

[|∇v|+ |∇u|+ |η|]|u− v||η|+(3.5.7)

+ C4

[|∇u−∇v||η|+ |u− v‖∇η|]

≤ C5ε

[
|∇η|+ |η|

ρ

]
.

|∇χ|2 ≤ 2C2
5ε

2

[ |η|2
ρ2

+ |∇η|2
]
.(3.5.8)

|∇ξ|2 ≤ (1 + C6ε)|∇η|2 + C6ε
|η|2
ρ2

.(3.5.9)

Next we need to consider the maps ut = π(u+ t(v − u)), t ∈ [0, 1]. As in (3.4.3) and (3.4.4) we have

|∇ut(x)| ≤ C7
‖u‖1;0 + δ

ρ(x)
, ‖A‖C2(N) ≤ C7, ‖π‖C3(N2δ) ≤ C7,(3.5.10)

|η>ut | ≤ |η|, |∇η>ut | ≤ C8

[
|∇η|+ |η|

ρ

]
.(3.5.11)

By definition (3.2.2) of Su and the relation ξ = η + χ,

Su(x, ξ) = Qu(x, ξ, ξ) +Ru(x, ξ)(3.5.12)

= Qu(x, η, η) + 2Qu(x, η, χ) +Qu(x, χ, χ) +Ru(x, ξ)

= Sv(x, η) + [Qu(x, η, η)−Qv(x, η, η)]+

[Ru(x, ξ)−Rv(x, η)] + 2Qu(x, η, χ) +Qu(x, χ, χ).

By definition (3.2.8) of Q, (3.5.10) and (3.5.11), we get

|Qu(x, η, η)−Qv(x, η, η)| = |A(ut)(η>ut , η
>
ut) ·A(ut)(∇ut,∇ut)|t=1

t=0|(3.5.13)

=
∣∣∣∣
∫ 1

0

d

dt
[A(ut)(η>ut , η

>
ut) ·A(ut)(∇ut,∇ut)]dt

∣∣∣∣

≤ C9ε
|η|2
ρ2

.
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Similarly, by definition (3.2,9) of R, (3.5.10)-(3.5.11) and (3.5.5)-(3.5.6),

|Ru(x, ξ)−Rv(x, η)| ≤ |Ru(x, ξ)−Rv(x, ξ)|+ |Rv(x, ξ)−Rv(x, η)|(3.5.14)

≤ C10|v − u| |η|
2

ρ2
+ C10|η − ξ| |η|

2 + |ξ|2
ρ2

≤ C11ε
|η|2
ρ2

.

By definition (3.2.8) of Q and (3.5.5) (similar to (3.4.11)-(3.4.12)),

|Qu(x, η, χ)| ≤ C12|η||χ||∇u|2 ≤ C13ε
|η|2
ρ2

.(3.5.15)

|Qu(x,χ, χ)| ≤14 Cε
2 |η|2
ρ2

.(3.5.16)

Putting (3.5.13)-(3.5.16) into (3.5.12), we get

(3.5.17) −Su(x, ξ) ≤ −Sv(x, η) + C15ε
|η|2
ρ2

.

To write (3.5.17) into the needed form, we note that

(3.5.18) |Sv(x, η)| ≤ |Qv(x, η, η)|+ |Rv(x, η)| ≤ C16
|η|2
ρ2

,

thus (3.5.17) together with (3.5.18) gives

(3.5.19) −Su(x, ξ) ≤ −(1 + C6ε)Sv(x, η) + C17ε
|η|2
ρ2

Substituting (3.5.9), (3.5.19) and (3.5.6) into (3.5.2), we get

(1 + C6ε)
∫

Ω

|∇η|2 − Sv(x, η) ≥ µ(1− C18ε)
∫

Ω

|η|2
ρ2

.

Choose ε small so that µ1 = (µ− C18ε))/(1 + C6ε) > 0, then

∫

Ω

|∇η|2 − Sv(x, η) ≥ µ1

∫

Ω

|η|2
ρ2

,

for all η ∈ H1
0 (Ω,Rp) satisfying η + v ∈ N . This shows that v is strictly minimizing with rate µ1, if

‖v − u‖1;0 ≤ ε.

Remark 3.6. From the proof of Theorem 3.5, we see that ε and µ1 depend only on ‖u‖1;0, µ, m and p;
furthermore we have µ1 → µ when ε→ 0+. Thus we have the following

Corollary 3.7. If ui ∈ C1;0(Ω0, N) is a sequence of strictly minimizing harmonic maps with rates µi ≥ µ > 0
and ui → u in C1;0(Ω0, N), then u is also a strictly minimizing harmonic map with rate µ.

Proof : Since ui → u in C1;0(Ω0, N), we have ui → u in H1(Ω, N) and ‖ui‖1;0 ≤ K for some K ∈ (0,∞).
So u is harmonic. By Remark 3.6, there are an ε = ε(K,µ,m, p) > 0 and µ1 = µ1(K,µ,m, p) > 0 such that
if v ∈ C1;0(Ω0, N) is harmonic and ‖ui − v‖1;0 ≤ ε for some i, then v is strictly minimizing with rate µ1. In
particular, when i large, we have ‖ui − u‖1;0 ≤ ε; so u is strictly minimizing with rate µ1. Note that µ1 can
be arbitrarily close to µ if ε is close to 0. Therefore u is actually strictly minimizing with rate µ.
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By the same technique in Theorem 3.5, we can show that strict stability and strict nearby minimality
are also preserved under small perturbation. We have the following theorem, whose proof is omitted.

3.8. Theorem. If u ∈ C1;0(Ω0, N) is strictly minimizing (strictly stable, or strictly nearby minimizing)
harmonic map with rate µ > 0, then there are positive constants ε and µ1 depending on ‖u‖1;0, µ, N , m, p
such that any harmonic map v ∈ C1;0(Ω0, N) with ‖v − u‖1;0 ≤ ε is strictly minimizing (strictly stable, or
strictly nearby minimizing) with rate µ1.

If ui ∈ C1;0(Ω0, N) is a sequence of strictly minimizing (strictly stable, or strictly nearby minimizing)
harmonic maps with rates µi ≥ µ > 0 and ui → u in C1;0(Ω0, N), then u is a also strictly minimizing
(strictly stable, or strictly nearby minimizing) harmonic map with rate µ.

§ 4. Structure of the Space of Harmonic Maps

4.1. Here we study the structure of the space of harmonic maps in Ck,α;0(Bm
1 \{0}, N) near a homogeneous

harmonic map that is singular only at the origin. We mainly prove that this space is Banach manifold
(Theorem 4.8) and give precise estimates on the Fredholm indices of the Jacobi operator (Theorem 4.4). N.
Smale has recently proved the Fredholm property of “conic” operators that include the Jacobi operator of a
harmonic map with isolated singularities and unique tangent maps [SN3].

Let B = Bm
1 (0) and Z = {0} and denote B0 = Bm

1 (0)\{0}. Suppose that u : B0 → N is a homogeneous
harmonic with ϕ = u|∂B ∈ C2,α(Sm−1, N). Then we have that u(x) = ϕ( x

|x| ) and ϕ is also harmonic. Let
Jϕ and Ju be the Jacobi operators with respect to ϕ and u repectively. Using the polar coordinates x = rθ

(r = |x|, θ ∈ Sm−1) on B, we can write, by (1.7.2),

(4.1.1) Jϕη = ∆Sη − 2A(ϕ)(∇Sϕ,∇Sη)−DA(ϕ)(η,∇Sϕ,∇Sϕ)

and

(4.1.2) Juκ =
∂2

∂r2
κ+

m− 1
r

∂

∂r
κ+

1
r2
Jϕκ(r·)

for η ∈ C2,α(Sm−1, TϕN) and κ ∈ C2,α;ν(B0, TuN), where ∇S is the covariant differentiation on Sm−1. Let
µ1 ≤ µ2 ≤ · · · be the eigenvalues of Jϕ and η1, η2, ..., be the corresponding orthonormal (with respect to
〈·, ·〉L2(Sm−1)) eigenmaps in C2,α(Sm−1, TϕN).

The following lemma gives a relation between the first eigenvalue µ1 of Jϕ and the first eigenvalue λ of
Ju.

4.2. Lemma.

λ ≥ (m− 2)2

4
+ µ1.

Proof : Argue as in the proof of [CHS].

4.3. Now for the Jacobi operator Ju : C2,α;ν(B0, TuN)→ C0,α;ν−2(B0, TuN), we want to solve Juκ = f for
κ ∈ C2,α;ν(B0, TuN) with f ∈ C0,α;ν−2(B0, TuN). Writing

(4.3.1) κ(rθ) =
∞∑

i=1

κi(r)ηi(θ), f(rθ) =
∞∑

i=1

fi(r)ηi(θ)
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with κi(r) = 〈κ(r·), ηi〉L2(Sm−1), fi(r) = 〈f(r·), ηi〉L2(Sm−1), then formally, Juκ = f is equivalent to

(4.3.2) κ′′i (r) +
m− 1
r

κ′i −
1
r2
µi = fi(r), i = 1, 2, 3, ...,

which are nonhomogeneous Euler equations. Let for i = 1, 2, 3, ...,

γi =
2−m

2
+

√
(m− 2)2

4
+ µi, γ−i =

2−m
2
−
√

(m− 2)2

4
+ µi.

Then a general solution gi of the homogeneous equation associated with (4.3.2) is

(4.3.3) gi(r) =





aiRer
γi + biImr

γi , i ∈ I1 ≡ {i : µi < − (m−2)2

4 };
air

2−m
2 + bir

2−m
2 log r, i ∈ I2 ≡ {i : µi = − (m−2)2

4 };
air

γi + bir
γ−
i , i ∈ I3 ≡ {i : µi > − (m−2)2

4 },

with arbitrary constants ai and bi. Note that γi = γ̄−i are complex for i ∈ I1, γi = γ−i = 2−m
2 for i ∈ I2 and

γ−i < 2−m
2 < γi for i ∈ I3. A particular solution Fi(r) of (4.3.2) is

(4.3.4) Fi(r) =
{
Re rγi

∫ r
0
τ−m+1−2γi

∫ τ
0
sm−1+γifi(s)dsdτ, γi < ν;

Re rγi
∫ r

1
τ−m+1−2γi

∫ τ
0
sm−1+γifi(s)dsdτ, γi ≥ ν.

Note that Fi(r) satisfies that |Fi(r)| ≤ Crν for i such that γi 6= ν. Thus (4.3.2) has a general solution
κi(r) = gi(r) + Fi(r).

Let

G(rθ) =
∞∑

i=1

giηi(θ), F(f)(rθ) =
∞∑

i=1

Fi(r)ηi(θ),

then the solution κ of Juκ = f can be written

κ(rθ) = G(rθ) + F(f)(rθ).

Denote by Kν0(Ju) and Kν(Ju) be the kernels of Ju in C2,α;ν
0 (B0, TuN) and C2,α;ν(B0, TuN),

respectively, and Rν(Ju) = Ju(C2,α;ν
0 (B0, TuN)).

4.4. Theorem.
(a). If ν 6= γj and ν > 2−m

2 , then

Kν(Ju) = {κ ∈ C2,α;ν(B0, TuN) : κ(rθ) =
∑
γi>ν

air
γiηi(θ)}.

(b). If ν 6= γj, then

dim(Kν0(Ju)) =





#{i : ν ≤ Re γ−i }, if ν < 2−m
2 ;

#{i : γi is complex}, if ν = 2−m
2 ;

0, if ν > 2−m
2 .

and
codim(Rν(Ju)) = #{i : γi < ν}.
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Proof : Suppose κ ∈ C2,α;ν(B0, TuN) satisfies Juκ = 0, then κ(rθ) = G(rθ) with

|κ(r·)|L2(Sm−1) =
∞∑

i=1

g2
i (r),

where gi are given in (4.3.3). Since ν > 2−m
2 ,

(4.4.1) κ(rθ) =
∑
γi>ν

air
γiηi(θ).

Conversely, any κ ∈ C2,α;ν(B0, TuN) of this form is in Kν(Ju). This shows (a).
To show (b) when ν < 2−m

2 , suppose that Juκ = 0 and κ ∈ C2,α;ν
0 (B0, TuN), then from (4.4.1), we

must have |gi(r)| = O(rν) and gi(1) = 0. Thus κ has the following expansion

κ(rθ) =
∑

i∈I1
biImr

γi +
∑

i∈I2
bir

2−m
2 log r +

∑

i∈I3∩{γ−i >ν}
ai(rγi − rγ

−
i ).

Thus dim(Kν(Ju)) = #{i : ν ≤ Re γ−i }. The other cases ν ≥ 2−m
2 are similar.

Now we estimate codim(Rν(Ju)). First we show that F(f) is a solution of Juκ = f in C2,α;ν(B0, TuN)
for f ∈ C0,α;ν−2(B0, TuN). Write

(4.4.2) F(f) =
∞∑

i=1

Fi(r)ηi(θ) =
∑
γi<ν

Fi(r)ηi(θ) +
∑
γi<ν

Fi(r)ηi(θ) ≡ F1(f) + F2(f).

Clearly, being a finite sum, F1(f) ∈ C2,α;ν(B0, TuN).
For F2(f) ∈ C2,α;ν(B0, TuN), it is shown in [SN2] that

|F2(f)(r·)|L2(Sm−1) ≤ C2r
ν |f |0,α;ν−2.

This implies that |F2(f)|L2(Br) ≤ C2r
ν+m/2. By 2.3, we have that |F2(f)| ≤ C3r

ν , or, F2(f) ∈
C0,0;ν(B0, TuN). Corollary 2.2 then implies that F2(f) ∈ C2,α;ν(B0, TuN).

So F(f) is a solution of Juκ = f in C2,α;ν(B0, TuN). Since F(f)|Sm−1 = F1(f)|Sm−1, u ∈
C2,α;ν

0 (B0, TuN) iff F1(f)|Sm−1 = 0, therefore,

(4.4.3) Rν(Ju) = kernel(F1|Sm−1).

(4.4.3) implies that codim(Rν(Ju)) = rank(F1|Sm−1) = #{j : γj < ν}.
In the rest of this section, we fix a ν ∈ (0, γL), where γL = min{γi > 0}. Denote I1 = {1, 2, . . . , L− 1}

and I2 = {L,L+ 1, . . . , }. Define for j = 1, 2,

C2,α;ν
j (B0, TuN) = {ξ ∈ C2,α;ν(B0, TuN) : ξ(rθ) =

∑

i∈Ij
ai(r)ηi(θ)}

C2,α
j (Sm−1, TuN) = {ψ ∈ C2,α(Sm−1, TuN) : ψ(θ) =

∑

i∈Ij
aiηi(θ)}

Denote
C2,α;ν
∗ (B0, TuN) = {κ ∈ C2,α;ν(B0, TuN) : κ|Sm−1 ∈ C2,α;ν

1 (B0, TuN)}.
Let Πj be the projection from C2,α;ν(B0, TuN) to C2,α;ν

j (B0, TuN) and denote ξj = Πjξ. We have the
following
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4.5. Corollary. For ν ∈ (0, γL), Ju is injective and codim(Rν(Ju)) = index(ϕ) + nullity(ϕ).

4.6. Theorem.
(a). For any ψ ∈ C2,α(Sm−1, TuN) and f ∈ C0,α;ν−2(B0, TuN), there is a unique κ ∈ C2,α;ν(B0, TuN) such

that

(4.6.1)
{
Juκ = f, on B;
Π2(κ− ψ) = 0, on Sm−1.

(b). Ju : C2,α;ν
∗ (B0, TuN)→ C0,α;ν−2(B0, TuN) is an isomorphism.

Proof : We want to solve Juκ = f on B and κ = τ on Sm−1 for some τ with Π2(ψ − τ) = 0.
Let τ̄ be any extension of τ to B and ξ = κ− τ̄ , then solving (4.6.1) is equivalent to solving the following

(4.6.2) Juξ = f − Juτ̄ , on B, ξ|Sm−1 = 0, on Sm−1.

By (4.4.3), (4.6.2) is solvable if and only if F1(f − Juτ̄)|Sm−1 = 0.
By (4.3.4) and (4.4.2), both F1(Juτ̄) = F1(JuΠ1τ̄) and Π1τ̄ are solutions of Juκ = JuΠ1τ̄ on B in

C2,α;ν
1 (B0, TuN), therefore F1(Juτ̄) − Π1τ̄ ∈ Kν(Ju) ⊂ C2,α;ν

2 (B0, TuN)). It follows that F1(Juτ̄) = Π1τ̄

and so F1(Juτ̄)|Sm−1 = Π1τ̄ |Sm−1 = Π1τ |Sm−1. Thus, if we take τ = Π2ψ + F1(f)|Sm−1, then
F1(f − Juτ̄)|Sm−1 = 0, so (4.6.2) has a unique solution ξ and κ = ξ + τ̄ is therefore the needed solution of
(4.6.1).

If κ ∈ C2,α;ν
∗ (B0, TuN) and Juκ = 0, then

κ(rθ) =
∑

i∈I2

air
γiηi(θ),

and Π2κ|Sm−1 =
∑
i∈I2

aiηi(θ) = 0, which implies that ai = 0 for all i ∈ I2. So Ju is injective.
If f ∈ C0,α;ν−2(B0, TuN), then by (a) for ψ = 0 there is a unique solution κ ∈ C2,α;ν(B0, TuN) of

Juκ = f with Π2(κ)|Sm−1 = 0. So κ is a solution in C2,α;ν
∗ (B0, TuN), that is, Ju is onto. This shows that

Ju is an isomorphism.

Now we describe the local structure of H near a homogeneous harmonic map.

4.7. Theorem. There exist a neighborhood U of 0 in C2,α
2 (Sm−1, TuN), a neighborhood V of u in

C2,α;0(B0, N) and a smooth map F : U → V such that
(a). For any ψ ∈ U , F (ψ) is a harmonic map. Furthermore, DF (0) is an immersion.
(b). There is an ε > 0 such that any harmonic map v ∈ Vε = {v ∈ C2,α;0(B0, N) : ‖v − u‖2,α;ν < ε} is

obtained in this way.
(c). U and ε can be chosen so that Vε ∩H is a smooth manifold C2 diffeomorphic to U .

The tangent space TuH = Kν(Ju). In particular, all Jacobi fields are integrable.

Proof : Any ψ ∈ C2,α
2 (Sm−1, TuN) can be extended to a Jacobi field ψ̄ ∈ Kν(Ju). That is, if

ψ(θ) =
∑
i∈I2

aiηi(θ), then

(4.7.1) ψ̄(rθ) =
∑

i∈I2

air
γiηi(θ).

(See Theorem 4.4). Consider the map

(4.7.2) Ψ : C2,α
2 (Sm−1, TuN)× C2,α;ν

∗ (B0, TuN)→ C0,α;ν−2(B0, TuN)
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defined by
Ψ(ψ, κ) = Pu ◦H(π(u+ ψ̄ + κ)).

We note the following fact: if ‖v − u‖2,α;ν is small, then

(4.7.3) H(v) = 0 ⇐⇒ Pu ◦H(v) = 0.

Indeed, if Pu ◦H(v) = 0, then

〈H(v),H(v)〉L2 = 〈H(v),H(v)− Pu ◦H(v)〉L2

= 〈H(v), [Dπ(v)−Dπ(u)] ◦H(v)〉L2

≤ ‖Dπ(v)−Dπ(u)‖ 〈H(v),H(v)〉L2 .

So 〈H(v),H(v)〉L2 = 0 when v is close to u so that ‖Dπ(v)−Dπ(u)‖ < 1.
Note that D2Ψ(0, 0)κ = Pu ◦DH(u)κ = Juκ. By Theorem 4.6, Ju is an isomorphism.
By the implicit function theorem, there are neighborhoods U of 0 in C2,α

2 (Sm−1, TuN) and W of 0 in
C2,α;ν
∗ (B0, TuN) and a smooth map Q : U →W such that for any ψ ∈ U , Q(ψ) is the unique solution of

(4.7.4) Ψ(ψ,Q(ψ)) = Pu ◦H(π(u+ ψ̄ +Q(ψ))) = 0.

Let F (ψ) = π(u + ψ̄ + Q(ψ)). Then F is a smooth map from U into some neighborhood V of u in
C2,α;0(B0, N). By (4.7.4) and (4.7.3), F (ψ) is harmonic.

To show that DF (0) is an immersion, first note that for ξ ∈ C2,α
2 (Sm−1, TuN),

ξ∗ ≡ DF (0)ξ ∈ C2,α;ν(B0, TuN),

and Π2(ξ∗ − ξ) = 0 on Sm−1. Indeed this follows from the fact that ξ∗ = DF (0)ξ = ξ̄ + DQ(0)ξ, where
DQ(0)ξ ∈ C2,α;ν

∗ (B0, TuN).
For ξ ∈ C2,α;ν(B0, TuN), define ξ∗ = (Π2ξ|Sm−1)∗ and Λ ξ = (Π2ξ|Sm−1, ξ− ξ∗). Then one readily sees

that
C2,α;ν(B0, TuN) Λ−→ C2,α

2 (Sm−1, TuN)× C2,α;ν
∗ (B0, TuN)

is an isomorphism. Consider the following sequence

C2,α
2 (Sm−1, TuN)

DF (0)−→ C2,α;ν(B0, TuN)
Λ−→ C2,α

2 (Sm−1, TuN)× C2,α;ν
∗ (B0, TuN) Pr1−→ C2,α

2 (Sm−1, TuN)

where Pr1 is the projection. It is easy to see that this gives an identity. So DF (0) is an immersion [L, II, 2].
Now we show that if ε is small and v ∈ Vε = {v : ‖v − u‖2,α;ν < ε} is a harmonic map, then v = F (ψ)

with ψ = Π2π
−1v|Sm−1. Since π is a locally a diffeomorphism between TuN and N (near u ∈ N), we have

that for each x ∈ B0, there exists a unique λ(x) ∈ Tu(x)N such that

v(x) = π(u(x) + λ(x)),

and λ, denoted by λ = π−1v, smoothly depends on v. Let ψ = Π2λ and κ = λ − ψ̄, where ψ̄ is defined by
(4.7.1). Then κ ∈ C2,α;ν

∗ (B0, TuN) and
v = π(u+ ψ̄ + κ).

That v is harmonic implies that

Ψ(ψ, κ) = Pu ◦H(π(u+ ψ̄ + κ)) = 0.
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By the uniqueness of Q for small ψ, we get κ = Q(ψ) and then v = F (ψ).
That Vε ∩H is a manifold follows since DF (0) is an immersion [L, II,2]. To prove that TuH = Kν(Ju)

we need only to show that if κ ∈ C2,α;ν(B0, TuN) is a Jacobi field, then there is a one parameter family
of harmonic maps ut ∈ H with u0 = u and d

dt

∣∣
t=0

ut = κ. Indeed since κ|Sm−1 ∈ C2,α
2 (Sm−1, TuN) (by

Theorem 4.4(a)), by (a), ut = F (tκ) is a family of harmonic maps (for all small t) and we have

d

dt

∣∣
t=0

ut =
d

dt

∣∣
t=0

F (tκ) = κ+DQ(0)κ

(note that κ̄ = κ). In fact DQ(0)κ = 0 because DQ(0)κ is a Jacobi field in C2,α;ν
∗ (B0, TuN) on which Ju is

one-to-one. So d
dt

∣∣
t=0

ut = κ.

§ 5. Applications to Some Examples of Homogeneous Harmonic Maps

In this section, we apply Theorem 4.7 and Theorem 3.8 to some well-known examples of harmonic
maps. We first examine the stability and minimality of those maps, some of which are well-known, while
some others are new.

5.1. Lemma. If u ∈ H1(B, N) and either u is a stationary harmonic map with
∂u

∂n
|Sm−1 ∈ L2(Sm−1),

(this holds, e.g., if u ∈ H2,2(B, N)), or u ∈ C1
loc(B0, N) is a harmonic map, then

(5.1.1)
∫

Sm−1
|∇tanu|2 =

∫

Sm−1
|∂u
∂n
|2 + (m− 2)

∫

B

|∇u|2.

Proof : When u is a stationary harmonic map in H2,2(B, N), this was shown, for example, in [H]. Also one
can show (5.1.1) by modifying the proof of the monotonicity identity in [HL] as follows. Starting with the
last identity on page 570 in [HL] (for p = 2, r = 1), first take R = 1 and s→ 1, then let r ↑ s = 1 (instead

of s ↓ r). In this process, only that
∂u

∂n
|Sm−1 ∈ L2(Sm−1) is needed.

5.2. Lemma. Suppose that u ∈ C1;0(B0, N) is a homogeneous harmonic map and v ∈ H1(B, N) belongs
to either of two classes in Lemma 5.1 which satisfies v = u on Sm−1 but v 6= v. Then

E(v) < E(u)

In particular, u is the unique energy minimizer (or unique harmonic map) as long as u has least energy
(among the harmonic maps).

Proof : By the assumption and Lemma 5.1 we have that (5.1.1) holds for v

(5.2.1)
∫

Sm−1
|∇tanv|2 =

∫

Sm−1
| ∂v
∂n
|2 + (m− 2)

∫

B

|∇v|2.

Now note that since v 6= u, we must have that
∂v

∂n
6= 0, for otherwise we would have v = u and

∂v

∂n
=
∂u

∂n
on Sm−1. By unique continuation theorem [ML2, Prop. 3.2], we have v ≡ u, a contradiction to that v 6= u.

Thus we have
∫
Sm−1 | ∂v

∂n
|2 > 0, which impies that

(5.2.2)
∫

B

|∇v|2 < 1
m− 2

∫

Sm−1
|∇tanv|2 =

1
m− 2

∫

Sm−1
|∇tanu|2 =

∫

B

|∇u|2.

This implies that if u and v both have least energy (or least energy among harmonic maps), then v ≡ u.
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5.3. Proposition. For any harmonic map ω : S2 → S2, let

u : B3 → S2, u(x) = ω

(
x

|x|
)
, x ∈ B3 \ {0},

be the corresponding homogeneous harmonic map. Then u ∈ C2,α;0(B3
0,S

2) for any 0 < α < 1. Furthermore,
we have
(a). ω is stable.

u is strictly stable with rate 1
4 .

(b). ω is energy minimizing among the maps having same degree as ω has.
u is the unique energy minimizing among the maps in C1;0(B3

0,S
2) having same boundary data.

Proof : It is a well-known result in [BCL] that ω has least energy among the maps from S2 to itself having
same degree. Consequently, ω is stable, since the continuity of degree implies that for any smooth variation
ωt of ω, deg(ωt) = deg(ω) when t is small, then E(ut) ≥ E(u) and so d

dt

∣∣
t=0

E(ut) ≥ 0.
It follows from Lemma 4.2, u is strictly stable with rate 1

4 . To show that u is strictly minimizing, let
v ∈ C1;0(B3

0,S
2) with v|S2 = ω. Again by continuity of degree, deg(v(r·)) = deg(ω) for each r > 0, thus by

minimality of ω, ∫

B3
|∇v|2 =

∫ 1

0

r

∫

S2
|∇S2v(r·)|2dS2dr +

∫

B3
|∂v
∂r
|2

≥
∫ 1

0

r

∫

S2
|∇S2ω|2dS2dr +

∫

B3
|∂(v − u)

∂r
|2

≥ 1
2

∫

S2
|∇S2ω|2dS2 +

1
4

∫

B3
|v − u

r
|2

=
∫

B3
|∇u|2 +

1
4

∫

B3
|v − u

r
|2.

5.4. Proposition. Let I : Sm−1 → Sm−1 (m ≥ 4) be the identity and u : Bm → Sm−1 be the homogeneous
extension, that is, u(x) = x

|x| . Then
(a). I is not stable for all m ≥ 4. In fact, index(I) = m.

u : Bm → Sm−1 is stable for all m = 3 and strictly stable for m = 3 and all m ≥ 5.
(b). u is the unique minimizer in H1(Bm,Sm−1) for all m ≥ 3 and strictly minimizing for m ≥ 7.

Proof : That index(I) = m is computed by R. T. Smith [SRT]. That u is the unique minimizer in
H1(Bm,Sm−1) was proved in [LF] and [JK] and [BCL]. The uniqueness can also be seen from Lemma 5.2
above. The stability and strict stability was shown in [BA].

Now we review the harmonic equator maps from the unit ball Bm to the spheroid Sma = {(u, z) ∈
Rm+1 : |u|2 + |z|2

a2 = 1}, with a > 0.

5.5. Proposition.Let u∗ : Bm → Sma , ∗u(x) = ( x
|x| , 0), be the equator map. Then

(a). u∗ is stable for a ≥ 2
√
m−1
m−2 and and m ≥ 3;

u is strictly stable for m = 3 or m ≥ 5 and a > 2
√
m−1
m−2 .

If a < 2
√
m−1
m−2 , then u∗ is unstable.

(b). If a > 2
√
m−1
m−2 and m ≥ 3, then u∗ is strictly minimizing in rotationally symmetric maps.

If m ≥ 7 and a > 2
√
m−1
m−2 , then u∗ is strictly minimizing in H1(B,Sma ).

Proof : These properties were proved in [BA] and [MS]. The strictly stability also follows from Remark
3.3 and the Lemma 4.2.
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Suppose u ∈ C1;0(B0, N) is a homogeneous harmonic map with ω = u|Sm−1. Let L = index(ω) +

nullity(ω) + 1, then µL is the first positive eigenvalue of Jω and γL = 2−m
2 +

√
(m−2)2

4 + µL > 0. Let

ν ∈ (0, γL) and 0 < α < 1. Recall that C2,α
2 (Sm−1, TuN) is the subspace of C2,α(Sm−1, TuN) spaned by the

eigenvectors of ω corresponding to positive eigenvalues. Combining the Theorem 4.7 and Theorem 3.8, we
have the following

5.6 Theorem. There is a neighborhood U of 0 in C2,α
2 (Sm−1, TuN) and a small number ε > 0 so that,

for each ϕ ∈ U , there exists a harmonic map v ∈ Vε = {v ∈ C2,α;0(B0, N) : ‖v − u‖2,α;ν < ε} so that
v|Sm−1 = π(ω + ϕ).

We can choose U and ε to be small, so that
If u is strictly stable, then v is also strictly stable. Thus the harmonic maps in Vε form a manifold.
If u strictly minimizing, then v is also strictly minimizing. Therefore, the harmonic maps in Vε also

form a manifold.

5.7. Remark. Note that strict minimality implies uniqueness, thus the strict minimality of ω implies the
uniqueness of those v with v|Sm−1 close to ω.

5.8. Remark. Proposition 5.6 applies especially to those maps in Propositions 5.3, 5.4 and 5.5.

§ 6. Global Structure of Smooth Harmonic Maps and Applications

In this section we consider only smooth harmonic maps and obtain various results by modifying
arguments of Brian White’s treatment [WB] of minimal immersions. Theorem 6.3 shows that any Jacobi
field in Ck,α(Ω, TuN) is integrable. Theorems 6.2 and 6.4 describe the local and global structures of the
space H of the smooth harmonic maps.

6.1. Proposition. Suppose that Ju : Ck,α(Ω, TuN) → Ck−2,α(Ω, TuN) is the Jacobi operator with respect
to a harmonic map u ∈ Ck,α(Ω, N). Let K0 be the kernel of Ju in Ck,α0 (Ω, TuN) and [K0]⊥ is orthogonal
complement in L2(Ω, TuN). Then

dim (K0) <∞, Im Ju = [K0]⊥ ∩ Ck−2,α(Ω, TuN).

So Ju is Fredholm of index 0.

Proof. Being considered as an operator defined on H1
0 (Ω, TuN), Ju is self-adjoint (by (1.7.1)) and uniformly

elliptic. Furthermore by standard elliptic theory any solution κ of Juκ = f for f ∈ Ck−2,α(Ω, TuN) is in
Ck,α(Ω, TuN) and

‖κ‖k,α ≤ C
[
‖Iκ‖k−2,α + ‖Juκ‖k−2,α

]
,

where I : Ck,α0 (Ω, TuN)→ Ck−2,α(Ω, TuN) is the inclusion, which is compact. This inequality implies that Ju
has closed range, by [T, Proposition 3.1]. Thus K0 is equal to the kernel of Ju in H1

0 (Ω, TuN) which is finitely
dimensional. By Fredholm alternative, Juκ = f is solvable iff f ∈ K⊥0 . So Im Ju = [K0]⊥∩Ck−2,α(Ω, TuN).

6.2. Theorem (Local Structure). Suppose u ∈ H and K0 = K0(Ju). Then there exist smooth maps

F : Ck,α(∂Ω, N)×K0 → Ck,α(Ω, N),

g : Ck,α(∂Ω, N)×K0 → K0,
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defined on some neighborhood U = U1 × U2 of (ϕ, 0), ϕ = u|∂Ω, and satisfying the following:
(a). F (u|∂Ω, 0) = u.

F (ψ, κ)|∂Ω = ψ for all (ψ, κ) ∈ U .
F (ψ, κ) is harmonic if and only if g(ψ, κ) = 0.

(b). D2F (ϕ, 0)|K0 = id.
DF (ϕ, 0) : Ck,α(∂Ω, TϕN)×K0 → Ck,α(Ω, TuN) is an immersion.

(c). Dg(ϕ, 0) : Ck,α(∂Ω, TϕN)×K0 → K0 is a submersion.
(d). For every ε > 0, there is a neighborhood W of u in Ck,α(Ω, N) such that each harmonic map v in W

equals F (v|∂Ω, κ) for some κ ∈ K0 with ‖κ‖k,α < ε.
(e). U and W can be chosen so that U = U ∩ g−1(0) and W = W ∩ H are smooth submanifolds of

Ck,α(∂Ω, TϕN)×K0 and Ck,α(Ω, N) respectively.
F : U → W is an isomorphism and Π ◦ F (ψ, κ) = ψ.
U has codimension dim K0 and its tangent space at (ϕ, 0) is

T(ϕ,0) U = Ker D1g(ϕ, 0)⊕K0

(f). For 0 < α′ < α, U and W can be replaced by U ′ and W ′ that are open, with respect to the corresponding
Ck,α

′
norms, in Ck,α(∂Ω, N) and Ck,α(Ω, N), respectively.

Remark. It is perhaps useful to check the analogue of this theorem in the well-known elementary case of
geodesic arcs u : [0, 1] → N . Here the association of the initial position and initial velocity of a geodesic
gives a global diffeomorphism between H and the tangent bundle of N . As above, each geodesic u ∈ H
has a neighborhood diffeomorphic to a 2n-dimensional submanifold of a neighborhood of (0, u(0), u(1)) in
K0 ×N ×N .

Proof of Theorem 6.2.
Proof of (a): Construction of F and g. Denote K⊥0 = [K⊥0 ] ∩ Ck−2,α(Ω, TuN) and K ′0 = K⊥0 ∩

Ck,α0 (Ω, TuN) and PK⊥0 : L2(Ω, TuN) → K⊥0 the orthogonal projection. For ψ ∈ Ck,α(∂Ω, N), let ψ̄ be the
unique function satisfying

(6.2.1)
{

∆ψ̄ = 0, on Ω,
ψ̄ = ψ − ϕ, on ∂Ω.

Let Φ(ϕ) = Pu ◦ ψ̄, the projection to TuN . Clearly, Φ(ϕ) = 0, and Φ(ψ) ∈ Ck,α(Ω,Rp). By Schauder’s
estimates, if ψ is Ck,α(∂Ω, N) close to ϕ, then Φ(ψ) ∈ Ck,α(Ω,Rp) is close to 0.

Define

Θ : Ck,α(∂Ω, N)×K0 ×K ′0 → K⊥0 ,

Θ(ψ, κ, η) =PK⊥0 ◦ Pu ◦H[π(u+ Φ(ψ) + κ+ η)].(6.2.2)

Then from Proposition 6.1, we have D3Θ(ϕ, 0, 0) = PK⊥0 ◦ Pu ◦DH|K ′0 = Ju|K ′0, which is isomorphism. By
the impicit function theorem, there are neighborhoods U = U1 × U2 of (ϕ, 0) in Ck,α(∂Ω, N) ×K0, V of 0
in K ′0, and a smooth map

Q : U ⊆ Ck,α(∂Ω, N)×K0 → K ′0

such that for (ψ, κ) ∈ U , η = Q(ψ, κ) is the unique solution in V of Θ(ψ, κ, η) = 0. Let

F (ψ, κ) = π(u+ Φ(ψ) + κ+Q(ψ, κ)),(6.2.4)

g(ψ, κ) = PK0 ◦ Pu ◦H(F (ψ, κ)).
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Then

Θ(ψ, κ,Q(ψ, κ)) = PK⊥0 ◦ Pu ◦H[F (ψ, κ))] = 0.(6.2.5)

g(ψ, κ) = Pu ◦H(F (ψ, κ)), .

Now that F and g satisfy (a) follows from their definitions and (4.7.3).

Proof of (b). Let κ ∈ K0. By definition of F ,

(6.2.6) D2F (ϕ, 0)κ = κ+D2Q(ϕ, 0)κ.

Differentiating
PK⊥0 ◦ Pu ◦H[π(u+ tκ+Q(ϕ, tκ))] = 0

for t at t = 0, we get
0 = 〈κ+D2Q(ϕ, 0)κ, Ju〉

= 〈D2Q(ϕ, 0)κ, Ju〉.
So D2Q(ϕ, 0)κ ∈ K0. On the other hand, the image of Q is in K⊥0 , therefore

D2Q(ϕ, 0)κ ∈ K0 ∩K⊥0 = {0}.
Thus D2F (ϕ, 0)κ = κ.

To show that DF (ϕ, 0) is an immersion, let (ξ, κ) ∈ Ck,α(∂Ω, TϕN)×K0, then

(6.2.7) DF (ϕ, 0)(ξ, κ) = ξ∗ + κ, where ξ∗ = D1F (ϕ, 0)ξ.

Now look at the following sequence

Ck,α(∂Ω, TϕN)×K0
DF (ϕ,0)−→ Ck,α(Ω, TuN)

Λ−→ Ck,α(∂Ω, TϕN)× Ck,α0 (Ω, TuN) Pr1−→ Ck,α(∂Ω, TϕN)×K0,

where Λ ξ = (ξ|∂Ω, ξ−ξ∗) is an isomorphism, as one can check easily. The composition Pr1 ◦Λ◦DF (ϕ, 0) =
id, so DF (ϕ, 0) is an immersion [L, II,2].

Proof of (c). It suffices to show that Dg(ϕ, 0) : Ck,α(∂Ω, TϕN)×K0 → K0 is surjective. First note that
for (ξ, κ) ∈ Ck,α(∂Ω, TϕN)×K0, by definition of g and (6.2.7),

(6.2.8) Dg(ϕ, 0)(ξ, κ) = D1g(ϕ, 0)ξ = Juξ∗.

Secondly note that

(6.2.9) Vu|∂Ω = {∂κ
∂n

: κ ∈ K0}
is a subspace of Ck,α(∂Ω, TϕN) of dimension dim(K0). This is because if 0 6= κ ∈ K0, then k|∂Ω = 0 implies
∂κ

∂n
∈ Ck,α(∂Ω, TϕN), and Calderon’s uniqueness theorem implies that 0 6= ∂κ

∂n
([C1], [ML2, Prop.3.2].).

Thus to show Dg(ϕ, 0) is surjective, it is enough to show that

D1g(ϕ, 0) : Vu|∂Ω → K0

is one-to-one. Indeed, by (6.2.8),

D1g(ϕ, 0)
∂κ

∂n
= Juη, η =

(∂κ
∂n

)
∗
.

Thus, if D1g(ϕ, 0)
∂κ

∂n
= 0, then η is a Jacobi field with η =

∂κ

∂n
on ∂Ω. By (1.6.1) and symmetry in η and

κ, we will have

0 =
∫

Ω

−κ · Juη =
∫

Ω

−Juκ · η +
∫

∂Ω

∂κ

∂n
· η =

∫

∂Ω

|∂κ
∂n
|2,

and so
∂κ

∂n
≡ 0. So D1g(ϕ, 0) is one-to-one.
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Proof of (d). Suppose that v is a smooth harmonic map close to u.
Let λ(x) ∈ Tu(x)N be the unique vector such that π(u(x) + λ(x)) = v(x). Then λ ∈ Ck,α(Ω, TuN). Let

h = Φ(ψ)− λ. Then

(6.2.10) v = π(u+ Φ(ψ) + h)

Let κ = PK0h, η = h− κ ∈ K⊥0 . Then

(6.2.11) v = π(u+ Φ(ψ) + κ+ η).

From the fact that v is harmonic, we have

0 = PK⊥0 ◦ Pu ◦H[π(u+ Φ(ψ) + κ+ η)] = Θ(ψ, κ, η),

which has a unique solution η = Q(ψ, κ). Thus by (6.2.11) and the definition of F , v = (F (ψ, κ)).
Proof of (e). That Dg(ϕ, 0) is an immersion implies that g−1(0) is a smooth submanifold near (ϕ, 0) of

codimension dim(K0) [L, II,2]. By (b), (d) and again [L], we may choose U and W suitably small so that
U = U ∩ g−1(0), F (U) and W are all smooth manifolds, and F : U → W is an isomorphism. By (6.2.8), the
tangent space to U at (ϕ, 0) is

(6.2.12) T(ϕ,0) U = Ker D1g(ϕ, 0)⊕K0.

Proof of (f). Noting that u ∈ Ck,α(Ω, N) ⊆ Ck,α′(Ω, N), we may apply (a) and (b) of the Theorem to u
with Ck,α(Ω, N) replaced by Ck,α

′
(Ω, N). In this way, we get the corresponding neighborhoods U ′′ of u|∂Ω

in Ck,α
′
(∂Ω, N), W ′′ of u in Ck,α

′;0(Ω0, N) and a smooth map

F ′ : U ′′ ⊆ Ck,α′(∂Ω, N)→ Ck,α
′
(Ω, N).

We first show
F ′ : U ′′ ∩ Ck,α(∂Ω, N)→ Ck,α(Ω, N)

is smooth and F ′|U ′′ ∩ U = F |U ′′ ∩ U .
Indeed, if ψ ∈ U ′′ ∩ Ck,α(∂Ω, N), then F ′(ψ) ∈ Ck,α′(Ω, N) is harmonic, that is, it satisfies

{
H(F ′(ψ)) = ∆F ′(ψ)−A(F ′(ψ))(dF ′(ψ), dF ′(ψ)) = 0 on Ω,
F ′(ψ) = ψ on ∂Ω.

Since A(F ′(ψ))(dF ′(ψ), dF ′(ψ)) ∈ Ck−1,α′(Ω,Rp) ⊆ Ck−2,α(Ω,Rp) (see 1.2 (e)) and ψ ∈ Ck,α(∂Ω, N),
it follows from Theorem 1.10 that F ′(ψ) ∈ Ck,α(Ω, N).

Furthermore, it follows from definitions that Q′(ψ) = Q(ψ) on U ′′ ∩ U , and then, F = F ′ on U ′′ ∩ U .
This also implies the smoothness of F ′ with respect to Ck,α norms.

Now we see that one may replace the F in (a) and (b) by F ′, whose domain U ′′ ∩ Ck,α(∂Ω, N) is open
in Ck,α(∂Ω, N) with respect to norm ‖ · ‖k,α′ . To end the proof of (c), set U ′ = U ′′ ∩ Ck,α(∂Ω, N) and
W ′ = W ′′ ∩ Ck,α(Ω, N).

Denote K = K(Ju) = {κ ∈ Ck,α(Ω, TuN) : Juκ = 0}, and K0 = K0(Ju) = {κ ∈ Ck,α0 (Ω, TuN) : Juκ =
0}. Again, a κ ∈ K is called a Jacobi field. We have

6.3. Theorem. ξ ∈ Ck,α(Ω, TuN) is a Jacobi field to u ∈ H if and only if ξ is the initial velocity vector
field of a one-parameter family of harmonic maps.
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Proof : Suppose ξ ∈ K(Ju). Let
ξ∗ =: D1F (u|∂Ω, 0)(ξ|∂Ω).

Then by Theorem 6.2 (a), ξ∗|∂Ω = ξ|∂Ω, and we now show ξ∗ ∈ K(Ju). Indeed, by differentiating the
identity 0 = PK⊥0 ◦ Pu ◦H[F (π(u|∂Ω + tξ|∂Ω), 0))], we get

0 = PK⊥0 〈ξ∗, Pu ◦DH(u)〉 = PK⊥0 (Juξ∗).

On the other hand Juξ∗ = Ju(ξ∗ − ξ) ∈ Im Ju = K⊥0 . So Juξ∗ = 0.
Now let κ = ξ − ξ∗, then κ ∈ K0 = K0(Ju). From (6.2.8), (6.2.12) we know that (ξ|∂Ω, κ) is in the

tangent space to g−1(0) at (u|∂Ω, 0). It follows from Theorem 6.2 (e) that there is a one-parameter family
(ψt, κt) in Ck,α(∂Ω, N)×K0 satisfying

(ψ0, κ0) = (u|∂Ω, 0),
d

dt

∣∣∣
t=0

(ψt, κt) = (ξ|∂Ω, κ)

such that g(ψt, κt) = 0. Thus Theorem 6.2 (a) implies that F (ψt, κt) is a one-parameter family of harmonic
maps, which has initial velocity vector field:

d

dt

∣∣∣
t=0

F (ψt, κt) = ξ∗ + κ = ξ.

Conversely, suppose ξ = d
dt

∣∣
t=0

ut with ut ∈ H and u0 = u. ThenH(ut) = 0 implies Juξ = d
dt

∣∣
t=0

H(ut) =
0. That is, ξ ∈ K(Ju).

6.4. Theorem (Global Structure).
(a). H is a smooth Banach manifold modelled on Ck,α(∂Ω, N), with a countable cover of coordinate charts

given in Theorem 6.2 (e) and (f).

(b). The tangent space to H at u ∈ H is TuH = K(Ju). Vu|∂Ω = {∂κ
∂n

: κ ∈ K0(Ju)} is a subspace of

Ck,α(∂Ω, Tu|∂ΩN) with dim (Vu|∂Ω) = dim (K0(Ju)) and perpendicular to DΠ(TuH), where Π : H →
Ck,α(∂Ω, N) in the projection.

(c). The map Π : H → Ck,α(∂Ω, N) is Fredholm of index 0 with Ker DΠ(u) = K0(Ju) . So DΠ(u) is onto
if and only if K0(Ju) = {0}.

Proof : The set A of all such pairs (W,Γ) (Γ = F−1) in Theorem 6.2 (e) (f) form an atlas for H. To verify
the smoothness of the transition maps, let (W1,Γ1), (W2,Γ2) be two charts corresponding to F1 and F2,
then

Γ1 ◦ Γ−1
2 |Γ2(W1∩W2) = Γ1 ◦ F2 ◦ (Γ2 ◦ F2)−1|Γ2(W1∩W2),

is smooth. By the separability of H with respect to ‖ · ‖k,α′,0 with 0 < α′ < α, A contains a countable
subcover. This shows (a).

The first part of (b) is just Theorem 6.3. To show the second part, let κ ∈ K0(Ju) and ξ ∈ TuH. Then
by symmetry of the second variational formula (1.6.1) for ξ, κ, and the facts Juξ = Juκ = 0, we get∫

∂Ω

∂κ

∂n
· ξ =

∫

∂Ω

∂ξ

∂n
· κ = 0.

That is, Vu|∂Ω⊥ Tu H. As shown in (6.2.9), dim(Vu|∂Ω)= dim(K0(Ju)).

Now we show (c). Note that for κ ∈ TuH,

〈κ,D(Π|H)(u)〉 = κ|∂Ω.

Thus Ker D(Π|H)(u) = K0(Ju), and Im D(Π|H)(u) = K(Ju)/K0(Ju). By definition, Π|H is Fredholm of
index 0.

If D(Π|H)(u) is onto, then by (b), Vu|∂Ω = {0}, so K0(Ju) = {0}. The converse is obvious.
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6.5. Definition. A boundary map ω ∈ Ck,α(∂Ω, N) is a regular value of Π if D(Π|H)(u) is surjective for
all u ∈ H∩Π−1{ω}. This means that each such u has no nonzero Jacobi fields that vanish on ∂Ω (Theorem
6.4 (c)). A nonregular value is also called singular.

6.6. Theorem. The set of singular values of Π is of first (Baire) category in Ck,α(∂Ω, N).

Proof : For an open subset W ⊆ H, we define S(W), where

S(W) = {ω ∈ Ck,α(∂Ω, N) : ω is a singular value of Π|W}.

Since H is separable with respect to Ck,α
′

norm (0 < α′ < α), to prove the theorem, it suffices to show
that, for each u ∈ H, there is a Ck,α

′
open neighborhood W of u in H, so that S(W) is closed and nowhere

dense.

For u ∈ H, let W be chosen as in Theorem 6.2 (e) such that W can be identified as a codimension
dim(K0) submanifold of U ×K0. (K0 = K0(Ju).)

Clearly S(W) is closed. Now we prove that it is also nowhere dense, that is, any ω ∈ S(W) can be
approximated by an ϕ /∈ S(W). Let

V =W ∩ (expωV ×K0),

where V = Vu|∂Ω = {∂κ
∂n

: κ ∈ K0(Ju)} and and expω is the exponential map (as in 1.2 (b)). Then V is

a submanifold of expωV × K0 of dimension and codimension dim(K0). (cf. Theorem 6.4 (b).) Note that
ϕ ∈ expωV is a regular value of Π|V if and only if it is a regular value of Π.

Consider the Π : V ⊆ expωV × K0 → expωV . By Sard’s Theorem, there is a regular value z ∈ V of
exp−1

ω Π that is arbitrarily close to 0. Thus ϕ = expωz is a regular value of Π|V, which can be arbitrarily
close to ω.

As an application of Theorem 6.2 and Theorem 6.4, here we prove some finiteness and uniqueness results
for harmonic maps analogous to [WB]. By Theorem 6.6, the following result can be considered as generic
local finiteness.

6.7. Theorem. Suppose that ω is a regular value of Π. For any M > 0, there exists a Ck,α neighborhood
U of ω so that each ϕ ∈ U serves as boundary data for only finitely many harmonic maps u ∈ Ck,α(Ω, N)
with ‖u‖k,α ≤M . The number of these harmonic maps is bounded independent of ϕ ∈ U .

Proof : Let α′ and X be in the proof of Corollary 6.7. By Theorem 6.1 (a) each harmonic map u ∈
Ck,α(Ω, N) has a Ck,α neighborhood W ′u so that Π maps the set of harmonic maps in W ′u diffeomorphically
onto a Ck,α

′
neighborhood U ′ of ω in Ck,α(∂Ω, N). Since X is Ck,α

′;0 compact, Xω =: X ∩Π−1{ω} is finite,
V = ∩u∈XωU ′u is Ck,α

′
open, and

δ = distCk,α′
(

Π−1{ω}, (X \Π−1(V )) ∩ ∪u∈XωW ′u
)

is positive. So we may choose a Ck,α
′

open neighborhood U about ω in

V \Π
(
X ∩ {u : distCk,α′ (u,Π

−1{ω}) ≥ δ}
)
.

Let ϕ ∈ U . As in the proof of 6.7, each harmonic v ∈ Ck,α(Ω, N) with v|∂Ω = ϕ and ‖v‖k,α ≤M must
belong to Xϕ = X ∩Π−1{ϕ}. Thus the number of such v’s is bounded by card(Xϕ) ≤ card(Xω).
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As in [WB] we say that a subset A of a Banach manifold X is of codimension c if A ⊆ ∪∞i=1Πi(Mi)
where Mi is a codimension c + ki submanifold of X ×Rki and Πi is the projection map of X ×Rki onto
X . On the space Ck,α(∂Ω, N), there are two other notions available: measure 0 (cf. [MF2][ML2]) and
first category, both are weaker than codimension 1 ([WB, 1.7]). In [ML2], a uniqueness result for energy
minimizers is proved in the sense of measure 0.

6.8. Theorem.. The set of all regular values of Π in Ck,α(∂Ω, N) that serves as boundary value of two or
more harmonic maps in Ck,α(Ω, N) having the same energy is a codimension 1 subset of Ck,α(∂Ω, N).

Proof : First note that the set of regular values of Π is an open and dense subset of Ck,α(∂Ω, N). Denote

C = {(u1,u2) : u1, u2 ∈ Ck,α(Ω, N) are harmonic maps with

u1|∂Ω = u2|∂Ω being regular, u1 6= u2 and E(u1) = E(u2)}.

Let (u1, u2) ∈ C with ui|∂Ω = ϕ. For i = 1, 2, let Fi be the maps in Theorem 6.1 corresponding to ui,
defined on neighborhood Ui of ϕ in Ck,α(∂Ω, N), which can be chosen to be open in the Ck,α

′
norm.

Let U = U1 ∩ U2 and consider the function

G : U ⊆ Ck,α(∂Ω, N)→ R

defined by

G(ψ) =
∫

Ω

|∇F1(ψ)|2 −
∫

Ω

|∇F2(ψ)|2.

For any ψ ∈ U , the map vi = Fi(ψ) is harmonic (i=1, 2), and for h ∈ TuU = Ck,α(∂Ω, TϕN), by first
variational formula 1.4.1,

(6.7.1) 〈h,DG(ϕ)〉 =
d

dt

∣∣∣
t=0

G(π(ψ + th)) =
∫

∂Ω

h ·
(
∂u1

∂n
− ∂u2

∂n

)
.

Since u1 6= u2, by a uniqueness continuation theorem in [ML2, Proposition 6.2], we have
∂u1

∂n
6= ∂u2

∂n
. This

implies that DG(ϕ) 6= 0.
By implicit function theorem, G−1(0) ∩ U is a submanifold of U of codimension 1.
By Theorem 6.1 (a) there is a small δ(u1, u2) > 0 such that if (v1, v2) ∈ B(u1, u2) =: {(v1, v2) ∈ C :

‖vi − ui‖k,α′;0 < δ(u1, u2), i = 1, 2}, then vi = Fi(ψ) and ψ = v1|∂Ω = v2|∂Ω ∈ U . Thus by the definitions
of G, ψ belongs to the family Σ(u1, u2) = G−1(0) ∩ U , which is of codimension 1 in Ck,α(∂Ω, N).

Then the separability of Ck,α(Ω, N) with respect to norm ‖ · ‖k,α′,0 implies that the open cover
{B(u1, u2) : (u1, u2) ∈ C} of C has a countable subcover {B(ui1, u

i
2) : (ui1, u

i
2) ∈ C, i = 1, 2, 3, . . .}. Thus

the relevant set of nonunique boundary data is contained in ∪∞i=1Σ(ui1, u
i
2), which is of codimension 1.

Because a subset of Ck,α(∂Ω, N) of codimension 1 is of first category, we may combine Theorems 6.6
and 6.8 to obtain the following:

6.9. Corollary. The set of all ϕ ∈ Ck,α(∂Ω, N) that serves as boundary value of two or more harmonic
maps in Ck,α(Ω, N) having the same energy is of first category in Ck,α(∂Ω, N).
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