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ABSTRACT.  Suppose a municipality optimally locates two recycling/sorting centers to
minimize the sum of the transportation costs from i) households to the recycling centers
and ii) recycling centers to the landfill.  Assume that all household waste is taken to a
recycling center, sorted, and the non-recyclables are subsequently transported to the
landfill.  The landfill location and the proportion of waste recycled are exogenous.  The
paper shows that the location of the recycling centers is chosen to equalize the marginal
costs of the two transportation stages, unless an endpoint condition obtains, in which case
one recycling center is located at the landfill.  (R1:  General Spatial Economics, H7:
Publicly Provided Goods)

This paper considers the locational aspects of the optimal design of a municipal waste

management program with two recycling centers and a single existing landfill.  As

transportation costs are a significant part of the overall waste management costs, the

paper will suppose that the locations of the recycling centers are chosen to minimize

transportation costs.  Specifically, it is assumed that all household waste is collected and

taken to a recycling center where the recyclables are separated from the non-recyclables.

The recyclables are sold off to private recyclers and the non-recyclables are taken to the

landfill (whose location is fixed).  Thus the problem for the municipality is to choose the

locations of the recycling centers to minimize the sum of the costs of the two stages of

transportation:  1) from households to recycling centers and 2) from recycling centers to

landfill, where the latter cost is appropriately weighted for the reduction in amount of

material to be transported.  The paper shows that the location of the recycling centers is

chosen to equalize the marginal costs of these two transportation stages, unless an

endpoint condition  obtains, in which case one recycling center is located at the landfill.2

I.  THE BACKGROUND OF THE PROBLEM
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 The history of location problems similar to the one of this paper is quite rich.

Hotelling's 1929 paper can be taken as the beginning of this literature; it analyzes a

special case of the problem of the present paper.  Suppose that all waste is recycled, so

that the transportation problem simplifies to a single stage problem since there is

nothing to transport from the recycling centers to the landfill.  As Hotelling notes, the

city should be  divided into two regions in such a way that the consumers at the dividing

point are indifferent between recycling centers, and within each region, the recycling

centers are optimally located at the median of the region.   The literature in addition to3

Hotelling that considers single stage transportation problems is quite large; among the

many papers which could be cited are Ye and Yezer (1992) and Drezner (1986).  In order

to insure that our two-stage problem does not collapse to a single stage problem, it will

be assumed throughout that not all waste is recycled.

 After Hotelling's seminal paper, it would be many years before two stage

transportation problems received adequate attention.  Although not phrased as such, a

general two-stage model has been constructed  by Weslowsky and Love (1971).  Their

problem is to find the optimal location of facilities that minimizes the weighted sum of

distances to (i) two-dimensional regions with uniform distributions (“area destinations”)

and (ii) a finite collection of sites with fixed locations (“point destinations”).  The area

destinations can be thought of as distribution regions, the fixed sites can be thought of as

shipping facilities; the objective is to locate transshipment points.  (In the language of our

model, the distribution region is the city and the fixed site is the landfill and a

transshipment point is our recycling center.)  The 1971 paper emphases the construction

of algorithmic solutions to the optimization problem in the context of several examples of

locating one or two facilities.  Although we consider only a one-dimensional region, the

present paper can be viewed in part as a generalization of Weslowsky and Love's work in

that the distribution on the region is allowed to be arbitrary.  In addition, endpoint

solutions (defined in note 2) are possible here but are not germane in Weslowsky and
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Love.  Finally, the other contribution here is to determine the region that is served by

each of the recycling centers and then to draw some economic conclusions.

 Another paper that contains a two-stage model is the recent paper of Braid (1996).  In

this paper, the objective is to find the optimal location of either two branch facilities or a

main facility and a branch so as to minimize distance traveled along a linear city.  The

two-stage feature results from the response of a decision maker to the state of the branch

facilities.  For example, the branch facility may represent a branch library.  The patron

finds the desired material with a given probability at the branch library.  If unsuccessful,

the second-stage of the trip takes the patron from the branch to the main facility.  In our

model, some of the municipal waste ends its trip at a recycling center (the branch) while

the rest goes to the landfill (the “main” facility).  Braid's work is a generalization of

Hotelling's work to two locations.  Our work generalizes Braid, in that the distribution of

the city is of allowed to be arbitrary rather than uniform.  Our techniques are general

enough to extend to more than two locations and we find general conditions that describe

the optimal solution.

 The specific location model being generalized in this paper is drawn from

Highfill, McAsey, and Weinstein (1994).  In that model waste is transported from

households to a single recycling center, and then the unrecycled waste is transported to

the landfill.  The city in the 1994 model is a two-dimensional rectangle with the landfill

fixed at the origin.   The transportation costs corresponding to the two stages are first

from an area to a single point (the city to the recycling center) and second from point to

point (the recycling center to the landfill).  The former is a U-shaped function whose

minimum is at the median of the city, the later is the absolute value function whose

minimum is at the landfill.  The location of the landfill is the choice variable.

Households are distributed uniformly over the city.  In that paper an endpoint solution is

possible only in the uninteresting case when no recycling occurs.  Otherwise, the optimal

location for the landfill is the point that equates the marginal reduction in the cost of
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transporting waste between the households and the recycling center with the marginal

cost of  transporting non-recyclables between the recycling center and the landfill.  The

present paper generalizes location model of Highfill, McAsey, and Weinstein (1994) by

assuming that the city is finding the optimal location of two recycling centers, and the

density of households is not necessarily uniform.  Because of the complexities introduced

by these assumptions, the city is now assumed to exist along a line rather than in a plane.

 While the present paper is primarily a contribution to the location literature, its

original problem is motivated by a paper in the literature on municipal recycling, and

thus this paper can be seen as a contribution, however limited, to the recycling literature.

Such work is relatively new, and has usually focused on an empirical investigation of

recycling in specific communities (e.g., Hong, Adams, and Love (1993), Judge and

Becker (1993), Reschovsky and Stone (1994), Strathman, Rufolo, and Mildner (1995),

Fullerton  and Kinnaman (1996)) or a comparison of communities (e.g., Jenkins (1993),

Miranda, Everett, Blume, and Roy (1994)).  Much of the recent work has been concerned

with the pricing strategies for waste management options, e.g.,  per unit fees for special

bags or stickers for household waste.  For theoretical work, Morris and Holthausen

(1994) and Kinnaman and Fullerton (1995) investigate the effect of fee structures on

household recycling. Highfill and McAsey (1997) conduct a theoretical investigation of

the dynamics of landfill exhaustion and recycling.
 
II.  THE BASIC MODEL

Suppose a city (or municipality) wishes to establish two recycling centers at the

locations which minimize the total transportation cost to the city of hauling residential

waste.  Assume that the waste generated by the households is distributed spatially

according to a (non-negative, bounded, measurable) density function   on .4 3 ‘ÐBÑ

Without loss of generality, we assume that the total amount of waste is 1:
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and also assume that  only on some bounded subset of the line.3ÐBÑ  !

Let the location of the landfill  be fixed at 5 DP.  The city wishes to choose the

locations for the recycling centers  and a dividing point  to minimizeD ß D ß ÐD  D Ñ 7" # " #

transportation costs.  The dividing point  divides the city into two segments;7

households to the left of  will have their waste taken to the recycling center located at7

D 7", while those to the right of  will have their waste taken to the recycling center

located at .  At the recycling centers the waste is sorted into recyclables andD#

nonrecyclables.  Denote the exogenous proportion of waste recycled by .   (Once sorted,# 6

the recyclable waste is no longer of concern to the city because the city has contracted

with a commercial recycler for its removal.)  The remaining proportion of waste, ,"  #

is transported to the landfill.  The distance between any two arbitrary points  and  isB B" #

k kB  B" # . Thus, a weighted distance function can be defined:

  . (1)9 #ÐBß D ß D Ñ œ B  D  Ð"  Ñ D  D 3 œ "ß #3 P 3 3 Pk k k k
For either recycling center, the first term of this function is the distance between the

households and the recycling center while the second term is the distance between the

recycling center and the landfill multiplied by the proportion of the waste which is taken

to the landfill, namely, .Ð"  Ñ#

In sum, the total transportation cost is

JÐD ß D ß7Ñ œ ÐBß D ß D Ñ  ÐBß D ß D Ñ" # P # P( (
_ 7

7 _

3 9 3 9ÐBÑ .B ÐBÑ .B1  (2)

The necessary conditions for the problem follow.  Let ( give the minimum ofD ß D ß7Ñ" #

the objective function.  The partial derivatives used in finding the first order conditions

are:
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œ ÐBÑ ÐD  BÑ  Ð"  Ñ ÐD  D Ñ .Bß

# 7

_

# # P( a b3 #sgn sgn

and

`J

`7
œ Ð7Ñ Ð7ß D ß D Ñ  Ð7Ñ Ð7ß D ß D Ñ3 39 91 P # P

where sgn .   The resulting first order conditions are summarized
if  
if  
if  

ÐCÑ œ
" C  !
! C œ !
" C  !

Ú
ÛÜ

in the following conditions.

Note that the absolute value function in  implies that there are five9ÐBß D ß D Ñi P

separate cases. In all cases recall that   The cases are numbered by where theD  D Þ" #

landfill is located relative to  and , starting from a landfill located to the right of theD D" #

city: .D  DP #

Case I:  D  DP #

7 œ Ð Ñ
# 

# #


# #
D D" # 3

( ( ( (
D _ D 7

7 7 _ _

" #

3 3 3 3
# #

ÐBÑ .B œ ÐBÑ .B ß ÐBÑ .B œ ÐBÑ .B
# #

Case II:  D œ DP #

7 œ Ð Ñ
# 

# #


# #
D D" # 4

( (
D _

7 7

"

3 3
#

ÐBÑ .B œ ÐBÑ .B
#

Case III:  D  D  D" P #

7 œ  Ð"  Ñ 
 

# #

D D D D
D

" # # "
P# Œ  Ð Ñ5
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D _ 7 7

7 7 D _
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#

3 3 3 3
# #

ÐBÑ .B œ ÐBÑ .B ß ÐBÑ .B œ ÐBÑ .B
# #

Case IV:  D œ DP "

7 œ Ð Ñ
# #

# #


# 
D D" # 6

( (
7 7

D _#

3 3
#

ÐBÑ .B œ ÐBÑ .B
#

Case V:  D  DP "

7 œ Ð Ñ
# #

# #


# 
D D" # 7

( ( ( (
-_ _ 7 7

D 7 D _" #

3 3 3 3
# #

ÐBÑ .B œ ÐBÑ .B ß ÐBÑ .B œ ÐBÑ .B
# #

III.  THE OPTIMAL LOCATIONS OF THE RECYCLING CENTERS

The preceding section provides an analytical description of the optimal location of the

recycling centers.  In each of the cases, the equations define a critical point, which then

must be checked to see if it gives a minimum total cost.  This section gives the intuition

of these locations.  First note that the city is divided at the point .  This point is chosen7

so that the households located at  are indifferent between having their waste taken to7

the left or right recycling center.  Although the location of the dividing point depends on

the location of the recycling centers, once it is known, the problem reduces to two

(symmetric) problems of choosing a single location in a fixed region.  Because of this

symmetry we will discuss only the right side of the city ( ).  As is made clear fromD  7

the first order conditions, several cases result, but from the reduction to considering only

the right side of the city, we need only consider cases I, II and III.

To investigate case I, assume D 7  D  D 7P # P is so large that .  Assuming  has been

chosen, we need consider only the second integral in (2).  Substitute the definition of 9
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from (1) into this part of (2) gives

( k k k k
7

_

# # P3 #ÐBÑÐ B  D  Ð"  Ñ D  D Ñ .BÞ

This expression can be split into the sum of two functions .  The firstJ ÐD Ñ  J ÐD Ñ" # # #

function, , represents the stage 1 cost of transportation fromJ ÐD Ñ œ ÐBÑ B  D .B" # #7
_' k k3

households to a recycling center while the second function, J ÐD Ñ œ# #

ˆ ‰' k kÐ"  Ñ ÐBÑ .B D  D# 37
_

# P , represents the stage 2 cost of transportation from

recycling center to landfill The first function  has a general U-shape (although notÞ J ÐD Ñ" #

necessarily convex) as a function of .  The minimum of  is at the median, , of theD J 7# " #

density  when restricted to the interval . The second function, , is a multiple3 Ò7ß_Ñ J7
#

of an absolute value function and is zero at .  These cost functions are shown inD œ D# P

Figure 1.  The horizontal axis shows the (one-dimensional) city while the vertical axis

shows simultaneously the stage 1 cost and the stage 2 cost associated with the right

recycling center.  Clearly the optimal location for  must be between the median and theD#

landfill location since each of these locations minimizes part of the total cost.  So the

interval  between the landfill and the median forms a natural interval for theÒ7 ß D Ó# P

optimal location.  Using the graph to search for the optimal location, begin at the median

and move right.  Shifting the location of  to the right from the median will increase theD#

cost of the stage 1 transportation; the marginal cost of such a shift is the slope of the

function .  The same shift rightward from the median decreases the stage 2J"

transportation costs; the marginal benefit of the shift is the slope of the absolute value

function .   The critical point, given algebraically by the first order condition ,J œ !#
`J
`D

8
#

is the point at which the marginal benefit equals the marginal cost.  This is the location of

D 7 D J ÐD Ñ œ J ÐD Ñ# # P # #" #
w w between  and  so that where the two slopes are equal, as

shown on Figure 1.  We will call this optimal point the cost/benefit point associated with

the right recycling region and denote it by .  Thus  for case I.  It is-Î, D œ -Î,# # #

interesting that if the landfill lies far enough to the right so that  and hence case-Î,  D# P



9

I obtains, then the location of the landfill does not enter explicitly into the optimal

location of .  That is, any landfill located further to the right would give the sameD#

optimal .D#

For a second illustration of the intuition behind the optimal location, consider the case

that the landfill is left of the interval between the cost/benefit point  and the median-Î,#

7 D  -Î,  7# P # #:  .  (This is one of the cases III, IV or V.)  Once again the optimal

location of the right recycling center is located at the cost/benefit point.  Note that the

first order conditions again give an analytical description but graphically, the point -Î,#

is found where the tangent to the left of the median  is parallel to the downward7#

sloping part of J Þ#

For a final illustration, consider Figure 2 in which the cost/benefit point lies outside

of the required interval  between the median and the landfill.  (This is case II.)Ò7 ß D Ó# P

Although the first order conditions produce a candidate at , this candidate is not-Î,#

viable since .  The explanation here is that choosing the critical point -Î, Â Ò7 ß D Ó -Î,# # P #

would require transporting the majority of the waste in the right region past the landfill to

-Î,# and then back to the landfill.  The optimal solution in this case is, in optimization

language, an end point solution:  locate the right recycling center at the landfill so that

D œ D# P.

IV.  A CITY WITH A UNIFORM DISTRIBUTION

This section will examine a city whose waste is uniformly distributed in order to

provide an example of the general results.  While somewhat outside the spirit of a

“general density function,” this example shows that even with the simplest of density

functions, the problem of optimally locating two recycling centers has a complex answer.

The specific goal is to do a “comparative statics” of landfill location, that is, to establish

the relation between landfill location, level of recycling and the case that obtains.

Suppose  on .  The first order conditions can be calculated from (3)-(7) and3ÐBÑ œ " Ò!ß "Ó
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the following results (derived in the appendix) show the dependence of the location data

7ß D ß D" #and  on the exogenous values of the level of recycling  and location of the#

landfill DP.

Case I:  D  DP #

7 œ ß D œ ß D œ Ð Ñ
#  % 

% %

1
#

" #
w# #

3

Case II:  D œ DP #

7 œ ß D œ D ß D œ D Ð Ñ
# 

% 

#

%  #
DP " P # P

w#

#
4

Case III:  D  D  D" P #

7 œ
 # Ð# 

#Ð  %  #Ñ

# #

# #

#

#

D "Ñ  %DP P
Ð Ñ5w

D œ
Ð#  ÑÐ  # Ð# 

%Ð  %  #Ñ
"

#

#

# # #

# #

D "Ñ  %D ÑP P

D œ 
Ð#   %D

#Ð  %  #Ñ %
# #

P# #

# #

D "ÑP

Case IV:  D œ DP "

7 œ Ð Ñ
#D  #  #  Ð#  ÑD

%  % 
ß œ D ß D œ

P P
P #

# #

# #
D" 6w

Case V:  D  DP "

7 œ Ð Ñ
" # 

# %
, D œ ß D œ

%
" #

# #
7w

Some numerical examples may be useful.  Recall that the waste is distributed

uniformly on the interval [0,1].  Suppose the landfill is located at .9 and 50% of waste is

recycled.  In this case, the city is divided into two equal-size recycling regions, i.e.,  =7

.5, and the recycling centers are located at .375 and .875 .  This is an example of a Case I

solution which implies that the locations of recycling centers would be the same if the
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landfill were anywhere to the right of .9 as well.  For a second example, suppose the

recycling center is at .75 and 50% of waste is recycled.  In this case the city is divided at

.429.  The left recycling center is at .321 and the right recycling center is located at the

landfill, making this an example of a Case II solution.  Finally, suppose the landfill is

located at .55 and 75% of waste is recycled.  Then the city divides at .443 into the two

recycling regions, and the recycling centers are at .277 and .652.  This is an example of a

Case III solution.

In order to distinguish between the various cases as in the preceding examples it is

helpful to construct a “parameters diagram” (Figure 3).  This diagram shows the case that

is associated with each ordered pair .  The boundaries between the cases are foundÐD ß ÑP #

by using the information about “adjacent” cases.  For example, Case I requires D  DP #

while Case II requires .  So the boundary between these cases is found by settingD œ DP #

the expression for  in Case I equal to the value for  in Case II:   orD D œ D# # P
%
%
#

# œ %Ð"  D ÑP .  (This is the slanted straight line with negative slope on Figure 3.)

Similarly the boundary between Cases IV and V is given by .  The curve from# œ %DP

the origin to the point (0.75,1) is given by  while the remaining curve fromD œP
Ð% Ñ
%

# #

(1,0) to (.25,1) is given by .D œP
Ð #Ñ

%
# #

The locations of the recycling centers  and the dividing point  can now beD 73

obtained from a given landfill location  and level of recycling :  locate the pointBP #

ÐB ß ÑP #  on the parameters diagram to determine the appropriate case; then use the

associated first order condition given by one of (3 ) (7 ).  For example, notice that Casew w

III will obtain only for situations where  is relatively high (greater than  # #  #È
¸ &)'. ) and the landfill is located at or near the middle of the city.  Case I will occur if

the landfill is near the right boundary of the city, while Case V will occur if the landfill is

near the left boundary of the city.  Cases II and IV are the “most likely” cases to occur in

the sense that more area in the parameters diagram is made up of these cases than the

other cases.
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V.  CONCLUSION

 The model of this paper can be used to optimally locate two recycling centers for

any city with a fixed location landfill and an exogenous recycling proportion.  Although

Figure 3 considers the specific case of a uniform distribution, it can also be used to

indicate the kinds of general results available from the model of this paper.  Supposing

that the most important parameters of a city are its landfill location ( ) and theDP

proportion of waste which is recycled ( ), Figure 3 indicates which of the Cases of the#

paper obtains for the various possible combinations of landfill location and recycling

proportion.  That is, it can be used to determine the basic characteristics of an optimal

solution for cities of various types.  The figure indicates that if the proportion of waste

recycled is quite low, i.e.,  is close to zero, then Case IV and Case II are very often the#

cases that pertain.  In both of these cases one of the recycling centers is located at the

landfill while the other is closer to the center of the city.  If, on the other hand, the

proportion of waste recycled is quite high then Cases I, III, and V usually pertain.  These

are Cases in which neither recycling center is located at the landfill.  Where the recycling

centers are in relation to the landfill depends, of course, on the location of the landfill

itself.  For example, if the landfill is near the center of the city (and most waste is

recycled) then Case III obtains and the recycling centers are optimally located so that one

is to the left of the landfill and the other is to the right.  If the landfill is near the edge of

the city, then the recycling centers are both to the left or both to the right of the landfill.

Although not immediately apparent from Figure 3, the analysis of the paper indicates that

for any combination of landfill location and recycling proportion the recycling centers are

always within (or on) the boundaries of the city itself, even if the landfill is not.  In

another sense however, the location of the recycling center need not change with the

location of the landfill.  If the landfill is sufficiently far from the city (Cases I and V), the

location of the recycling centers will be the same as an identical city with a landfill even
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further from the city.  Finally, the analysis indicates that if any recycling takes place, it is

always the case that two recycling centers are better than one given a goal of minimizing

transportation costs.

 The task of this paper has been to generalize the problem of locating a single

landfill to the problem of locating two landfills.  The basic method obtained could also be

used in the problem of locating three or more landfills albeit that the number of cases

to be considered would be larger.  (If there are  recycling centers then there will be8

#8  " cases.)  Other strategies for generalizing the model might be to construct a more

comprehensive “waste management system” model.  The present paper considers only

the transportation aspects of the optimal locations of  recycling centers.  But in doing so,

of course, it has neglected many important aspects of a waste management.  A richer

model might incorporate other costs: site acquisition costs, externalities, administrative

costs, sorting costs (especially important if the proportion of waste recycled is high).  On

the other hand, the present model can easily be adapted to several other location

problems.  Such problems include location of shopping centers in a city, location of main

and branch libraries, and location of remote clinics with respect to a main hospital.  In

each of these problems, the density of the city and the possibility of two-stages of travel

will lead to models similar to the present model.
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FOOTNOTES

1.  Highfill is in the Department of Economics and McAsey and Mou are in the

Department of Mathematics of Bradley University, Peoria, Illinois  61625.

2 We will use the term “endpoint solution” to describe solutions for which the usual firstÞ

order conditions do not give sufficient information for a minimum.

3 While Hotelling only computed his results for a uniform distribution, his observationÞ

that the same general results hold for other distributions is certainly true.

4.  The density function  represents the waste that must be picked up by the city.  If the3

city, for example, requires business to contract separately for their own waste removal,

then  is zero at such locations.3ÐBÑ

5.  Although the term “landfill” is used, this facility could also be an incinerator or an

embarkation point for a community's waste.

6.  Municipalities in many states are required to recycle significant proportions (often

25%, occasionally as high as 50% or 75%) of their waste, thus the present paper takes the

proportion of waste recycled to be exogenous.  Assume the city contracts with a private

firm to take away the recyclables for a flat fee, so there are no further variable costs for

the recyclables.  In all of the analysis of this paper we assume that the transportation

costs can be considered independently of any other costs.  We also assume that the per

unit transportation costs between the households and the recycling center and between

the recycling center and the landfill are the same although minor modifications in the

model can account for different per unit costs of transportation.

7.  To see that  is minimized at the median of  on  note thatJ Ð7ß_Ñ" 3

J Ð7 Ñ œ ÐBÑ Ð7  BÑ .B œ ! ÐBÑ .B œ ÐBÑ .B"
w

# #7 7 7
_ 7 _' ' 'a b3 3 3sgn .  This  gives .  Thus#

#

7 Ò7ß_Ñ 7# # divides the density on  so that half of the density lies to the left of  and the

other to the right.  This is the median of the density  restricted to .3 Ò7ß_Ñ
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8 More particularly, it is the positive slope of the absolute value function since .Þ D  D# P
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APPENDIX

 The derivations of (3 )-(5 ) are as follows.  w w The other two cases (6 ) and (7 ) arew w

similar to  and are omitted.(3 )-(4 )w w

 The uniform density is identically one on .  The first order conditions areÒ!ß "Ó

`J

`D
œ ÐD  BÑ  Ð"  Ñ ÐD  D Ñ .B œ !ß

" !

7

" " P( a bsgn sgn#

`J

`D
œ ÐD  BÑ  Ð"  Ñ ÐD  D Ñ .B œ !ß

# 7

"

# # P( a bsgn sgn#

and

`J

`7
œ Ð7ß D ß D Ñ  Ð7ß D ß D Ñ œ !9 91 P # P

Case I.    In this case sgn  ( , so the first conditionD  D Þ ß ÐD  D Ñ œ " 3 œ "ß #ÑP # 3 P

becomes  .  This simplifies to   The' '
! D
D 7

"
"

"
.B  .B œ Ð"  Ñ7 #D 7 œ Ð"  Ñ7Þ# #

second condition becomes .  This is the same as' '
7 D
D "#

#
.B  .B œ Ð"  ÑÐ" 7Ñ#

#D 7 " œ Ð"  ÑÐ" 7Ñ# # .  The last condition is

7 D  Ð"  ÑÐD  D Ñ œ D 7 Ð"  ÑÐD  D ÑÞ" P " # P ## #   Thus the three first order

conditions can be rewritten as ;  ; andD œ Ð"  Ñ7 D œ "  Ð" 7Ñ
# #

" #
# #

7 œ D  D Þ D D
# 

# #

# #
" # " #  Substitute the values of  and  into the remaining equation:

7 œ Ð"  Ñ 7 Ð ÑÐ"  Ð" 7ÑÑÞ 7
# # #

# # ##   Isolating  on the left side of the equation

produces  .  This simplifies to .  SubstitutingÒ"  Ð"  Ñ  Ð Ñ Ó7 œ Ð"  Ñ 7 œ# # # #
# # # # #

# # "

back into the expressions for  and  gives  and D D D œ Ð"  Ñ D œ "  Þ" # " #
" "
# # %

# #

Case II. .  In this case we need only solve for  and .  The first orderD œ D D 7# P "

condition  is the same as before:  .  The first order condition`J
`D #"

"
œ ! D œ Ð"  Ñ7#

`J
`7 " P " Pœ ! 7 D  Ð"  ÑÐD  D Ñ œ D 7 gives .  Substituting the first equation into#

the second and simplifying yields  and so 7 œ D œ Þ# D
% %"

Ð# ÑDP P

# #
#
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Case III.  .  Once again the first order condition  is the same asD  D  D œ !" P #
`J
`D"

before:  .  Since  condition becomesD œ Ð"  Ñ7 D  D œ !" P ## `D
`J#

#' '
7 D
D "#

#
.B  .B œ  Ð"  ÑÐ" 7ÑÞ#   Expanding, this becomes

ÐD  7Ñ  Ð"  D Ñ œ  Ð"  ÑÐ" 7ÑÞ D D œ Ð"  Ñ7 Þ# # # # # ##   Solving for , we get # #

It is useful to note that  and hence   The condition D œ D  œ D  Þ œ !# " "# # % `7
D D `J# #" #

becomes     Solve for :7 D  Ð"  ÑÐD  D Ñ œ D 7 Ð"  ÑÐD  D ÑÞ 7" P " # # P# #

7 œ  Ð"  Ñ D D D D D D D
# # #P

" # " # " ## ˆ ‰.  Next substitute for  to get

7 œ D   Ð"  Ñ D  ÐD  Ñ œ Ð#  ÑÐD  Ñ  Ð"  ÑD Þ" P " " P% % %
# # ## # #ˆ ‰   Finally

substitute for  to get  .  Solving for  willD 7 œ Ð#  ÑÐÐ"  Ñ7 Ñ  Ð"  ÑD 7" P# %# ## #

produce 7 œ
# # #

# #

#

#

 #  %Ð"  Ñ

#Ð  %  #Ñ
Þ

DP
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FIGURE 1.  Decomposition of Transportation Costs:
                   Critical Point Case
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