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Locating a Recycling Center:  The General Density Case

Abstract:  The present paper considers a municipality that has a landfill (fixed in location) and
plans to optimally locate a “recycling center” in order to minimize transportation costs.  The
transportation problem consists of two stages:  the first stage is the transportation of waste from
the households to the recycling center.  Households are distributed (not necessarily uniformly)
over the two-dimensional city. The second stage is the transportation of the non-recyclables from
the recycling center to the landfill.  A precise description of the optimal location of the recycling
center is found which depends on the density function, the proportion of waste recycled, and the
location of the landfill.  JEL:  R1.

Recycling has become a part of the waste management plans of many municipalities in the
United States in the last ten years.  While the exact configuration of these plans vary,
transportation is always a major cost component, as indeed it is for waste management in
general.  The present paper considers a municipality which has a landfill (fixed in location) and
plans to optimally locate a “recycling center.”  It is supposed that all waste generated by
households is transported first to the recycling center, where the recyclables are sorted from the
non-recyclables.  The recyclables are taken away by a commercial recycler (and thus involve no
further transportation costs to the city).  The non-recyclables on the other hand, must be
transported by the city to the landfill.  The households themselves are distributed over the two-
dimensional area of the city.  The formulation of the problem is “general” in the sense that the
function describing the density of household waste is abstract no special form of the density
function has been assumed.  This kind of transportation problem has been considered in the
literature (see Highfill, McAsey, and Weinstein [1994]), but a uniform density is assumed in that
paper.  It will be shown that a precise description of the optimal location of the recycling center
can be given which depends on the density function, the proportion of waste recycled, and the
location of the landfill.

The transportation problem of this paper might usefully be characterized as a “two-stage”
problem (although without any connotation of the passage of time since the analysis is static).
The first stage is the transportation of waste from the households, distributed over the two-
dimensional city, to the recycling center.  The second stage is the transportation of the non-
recyclables from the recycling center to the landfill.  The basic strategy of the paper is to prove a
general result (given in the Appendix) and then apply the result to the problem at hand.
Specifically, the model is given in Section 1 and the optimal location of the recycling center
characterized in Section 2.

 The present paper extends the literature on optimal location which assumes “two-stage”
transportation problems.  One recent paper of this kind is Braid [1996].  We generalize one of his
cases both by using a general density function and extending the analysis to two dimensions.
Weslowsky and Love [1971] consider a transshipment problem in which the transportation
proceeds from fixed locations to a discrete number of destinations which are either areas or
points.  Within each area destination the distributions are uniform.  Transportation in our
problem runs from areas to the fixed location, and thus runs Westlowsky and Love's problem
“backwards,” except that again, we have a general density function.  Another difference is that
our model permits endpoint solutions while such solutions do not arise in their formulation.  The
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specific location model being generalized in this paper is drawn from Highfill, McAsey, and
Weinstein [1994].  The present paper takes its model directly from that paper except that the
distribution function is general rather than uniform, and there are no restrictions whatsoever on
the  (exogenous) landfill location.  Highfill, McAsey, and Mou [1997] also generalizes Highfill,
McAsey, and Weinstein [1994] by considering two recycling centers rather than one, but in order
to do so they reduce the city to a one-dimensional city.  Although not as directly relevant to the
present paper, there is a growing literature on municipal recycling.  While much of it is
empirical, there is some theoretical work.  For example, Morris and Holthausen [1994] and
Kinnaman and Fullerton [1995] investigate the effect of fee structures on household recycling
while Highfill and McAsey [1997] conduct a theoretical investigation of the dynamics of landfill
exhaustion and recycling.

1.   The Basic Model

Consider a city (or county, township, ) that wishes to establish a recycling center at aá
location which minimizes the total transportation cost to the city of hauling residential waste.
Assume that the waste generated by the households is distributed spatially according to a (non-
negative, bounded, measurable) density function  .  Without loss of generality,1 3 ‘ ‘ÐBß CÑ À Ä#

we assume that the total amount of waste is 1:

( (
‘#

3ÐBß CÑ .B .C œ "

and also assume that  only on some bounded subset of the plane.3ÐBß CÑ  !

Let the fixed coordinates of the landfill be ÐB ß C ÑP P .  The city wishes to choose coordinates
ÐB ß C ÑV V  for the recycling center to minimize transportation costs.  We use the “Manhattan
metric” so that the distance between any two arbitrary points  and  is assumed toÐB ß C Ñ ÐB ß C Ñ" " # #

be .  Assume that the waste is disposed of in two stages.  First, all waste isk k k kB  B  C  C" # " #

taken to the recycling center where the waste is sorted into recyclables and nonrecyclables.
Denote the proportion of waste recycled by .  (Once sorted, the recyclable waste is no longer of#
concern to the city because the city has contracted with a commercial recycler for its removal.)2

Second, the remaining proportion of waste, , is transported to the landfill."  #

The total transportation cost is

JÐB ß C Ñ œ B  B  C  C Ð Ñ

 B  B  C  C

V V V V

V P V P

( ( a b
a b‘#

3

#

ÐBß CÑ .B .C

Ð"  Ñ

k k k k
k k k k

1

The “stage 1” transportation cost, i.e., the cost of transporting the waste between the households
and the recycling center, is
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J ÐB ß C Ñ œ B  B  C  C" V V V V( ( a b
‘#

3ÐBß CÑ .B .Ck k k k .

The other term of (1) is the “stage 2” costs: the cost of transporting the non-recyclables between
the recycling center and the landfill 3

J ÐB ß C Ñ œ B  B  C  C# V V V P V PÐ"  Ñ Þ# a bk k k k

2.  The Optimal Location of the Recycling Center

The optimal location of the recycling center is the one that minimizes the sum of the stage 1
(households to recycling center) and stage 2 (recycling center to landfill) transportation costs.
Finding such a location is considerably simplified because the stage 1 costs depend on the waste
density and the recycling center location but are independent of the landfill location.  The stage 2
costs depend on the locations of the landfill and recycling center and the proportion of the waste
recycled, but not on the density of waste.  The theorem giving the optimal location is found in
the Appendix and described next.

The irregularly shaped region in Figure 1 represents a map of the (boundary of the) city.  Let
O be the rectangle in the figure (whose construction will be described shortly).  The basic
procedure to find the optimal location of the recycling center is:  i) if the landfill is located
outside of , then the optimal location of the recycling center is at the nearest point of ; ii) ifO O
the landfill is located inside , then it is optimal to locate the recycling center at the landfill.O

2.A.  Reduction to One Dimension

In this sub-section we show how to find the optimal coordinates of the recycling center.
Because of the structure of the transportation function, we can reduce the two-dimensional
problem to a one-dimensional problem and concentrate on the calculation of the optimal -B
coordinate of the recycling center.  To this end integrate the -coordinate out of the densityC
function and define .  Next, define analogs of the stage 1 and 2 costs:1ÐBÑ œ ÐBß CÑ .C'

_
_
3

K ÐB Ñ œ 1ÐBÑ B  B .B K ÐB Ñ œ Ð"  Ñ B  B" V V # V V P
_

_( k k k k   and   (2)#

Let KÐB Ñ œ K ÐB Ñ  K ÐB ÑÞV " V # V

 These cost functions are shown in Figure 2.  The horizontal axis shows the east-west
dimension of the city while the vertical axis shows the total stage 1 costs and the total stage 2
costs.  As drawn, the figure assumes that the -median is to the left of the location of the landfill.B
Consider the stage 1 costs, , first.  Since  is supported on a bounded set, it follows thatK ÐB Ñ 1" Vk k k kK ÐB Ñ Ä _ B Ä _ K" V V " as .  Thus, since  is continuous, it has a minimum.  It is not hard to
show that the minimum occurs at the -median, which we assume for the discussion in thisB
section to be uniquely determined.   As seen from Figure 2, locating the recycling center at the4
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B-median of the waste density would minimize the cost of transporting waste from the
households to the recycling center, i.e., .  This would not, of course, minimize the stage 2K ÐB Ñ" V

costs, as will be explained shortly.

Now consider the stage 2 costs, .  Since  is an absolute value function, its slope isK ÐB Ñ K# V #

either  or The minimum of the function is at the -coordinate of the landfillÐ"  Ñ Ð  "ÑÞ B ß B Þ# # P

Although clear from the form of , this is also explained by noting that if the recycling centerK#

were located at the landfill then the cost of transporting the non-recycled waste between these
two locations would be zero.  But, not surprisingly, locating the recycling center to minimize the
stage 2 costs does not minimize the stage 1 costs.

Consider now the sum of the stage 1 costs and the stage 2 costs.  The preceding two
paragraphs show that the recycling center must be located between the -median and the landfill.B
An instructive method of optimally locating the recycling center is to consider graphically the
costs for all possible locations between the median and the landfill.  Begin by considering a
recycling center located to the right of the median, but near it in Figure 2.  In this case, stage 1
costs are low but stage 2 costs are high, and such a location is not likely to be optimal.  Shifting
the location to the right will increase the stage 1 costs, but decrease the stage 2 costs.  Although
the terminology is somewhat arbitrary, we will call the marginal reduction of stage 2 costs the
“marginal benefit” of such a right-ward shift and the increase in stage 1 costs the “marginal cost”
of such a shift.  Shifting nearly to the right end of the interval between the median and the
landfill will give low stage 2 costs but high stage 1 costs and again such a location is unlikely to
be optimal.

The optimal location of the recycling center is found from the graph by beginning a search
for such an optimal location at the median and then shifting it to the right until the marginal
benefit of such a right-ward shift is equal to the marginal cost of such a shift.  The marginal
benefit of such a right-ward shift is  (the absolute value of the slope of the stage 2"  #
function).  The marginal cost is the slope of the stage 1 cost function.  Taking the derivative of
K ß ß 1ÐBÑ .B œ "" _

_the first term of (2)  and using the fact that , this marginal cost is'
"  # 1ÐBÑ .BÞ 1ÐBÑ .B' '

B B
_ _

V V
Note that  gives the total amount of waste in the city to the right of

the point .  The final step of the calculation is to equate the marginal cost and benefit,BV

"  œ "  # 1ÐBÑ .Bß B B# '
B
_

V
V

and solve for  , the -coordinate of the optimal location of the
recycling center.   That is,  is chosen in such a way thatBV

(
B

_

V

1ÐBÑ.B œ Þ
#

#
(3)

In Figure 2, the point  is where the slope of the stage 1 cost function is the same (except forBV

sign) as the slope of the stage 2 cost function.   This point is, as shown, .5 B œ Bww

In sum, the -coordinate of the transportation cost  has a critical point, i.e.B KÐB ÑV

K ÐB Ñ œ !w
V , where the amount of waste to the right of the coordinate is equal to half of the

recycling proportion, .  For example, if 25% of waste is recycled then  is chosen so that# BV

12.5% of the total waste is contained in the area of the city to the right of  .  As Figure 2 isBV
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drawn, this critical point is between the landfill and the -median, and gives the optimal locationB
for the recycling center.

Figure 3 shows the case when the critical point  is not between the landfill and the -B Bww

median, while maintaining the assumption that the landfill is to the right of the median. Since the
critical value  does not lie between the landfill and the -median, and, as argued above, theB Bww

optimal location of the recycling center must be between them, it follows that the optimal
location must be an endpoint of the interval between the median and the landfill.  In this case the
optimum is always obtained by locating the recycling center at the landfill, where there are no
stage 2 costs.6

2.B.  The Two-Dimensional Results

The case analyzed in the previous section, where the landfill was to the right of the -B
median, was of course only one possibility.  We could have just as easily considered the case
where the landfill was to the left of the median, or either of the cases on the north-south
dimension of the city (i.e., where the landfill is above or below the -median).  The resultingC
analysis is summarized in a single map of the city, shown in Figure 1.  Recall that the axes are
the dimensions of the city, and its geographical boundaries are shown.  As drawn in Figure 1, we
are considering a city whose household waste density is skewed to the northwest giving a
median as indicated.   Consider now the critical point   found in Figures 2 and 3.  RecallB œ Bww

that  is the point such that the amount of waste to the right of it is equal to half of the recyclingBww

proportion, .  Rewriting condition (3) to reintroduce the original density function ,   is# 3 Bww

defined by ' '
B B #ww3ÐBß CÑ .B .C œ # .  The other critical points (i.e., when the landfill is to the

left of the median on the  axis, and both critical points on the  axis) are constructed similarly.B C
Formally define the critical points   by the following:B ß B ß C ß Cw ww w ww 7

( ( ( (
BŸB B Bw ww

3 3
# #

ÐBß CÑ .B .C œ ß ÐBß CÑ .B .C œ
# #

and

( ( ( (
CŸC C Cw ww

3 3
# #

ÐBß CÑ .B .C œ ß ÐBß CÑ .B .C œ
# #

  .

In general, there are four possible combinations of critical points:  andÐB ß C Ñß ÐB ß C Ñß ÐB ß C Ñw w w ww ww w

ÐB ß C Ñ Oww ww .  Denote the rectangle which connects these four points by .  As shown in the
Appendix, this rectangle can be used to find the optimal location of the recycling center.  The
basic procedure to find the optimal location of the recycling center is as follows.  A fixed level
of recycling  will determine the critical points  described above and hence the# B ß B ß C ß Cw ww w ww

associated rectangle .  If the landfill is located outside of , the optimal location of theO O
recycling center is at the nearest point of .  If the landfill is located inside , then it is optimalO O
to locate the recycling center at the landfill.  To expand on this procedure, it will be useful to
distinguish three cases:



7

Case 1.  .  If the coordinate of the landfill does not lieCritical point solutions on both axes
between the coordinate of the median and the critical point on either axis, (as with the -B
coordinate on Figure 2) then the optimal location of the recycling center will be at one of the
four possible combinations of critical points, that is, on a corner of the rectangle .  ForO
example, suppose the landfill is located at point T (above and to the right of the rectangle) in
Figure 1.  Then the landfill is both to the right of the -axis critical point and above the -axisB C
critical point.  So the optimal location for the recycling center is at the corner ( ).B ß Cww ww

Case 2.  .  Suppose now thatRecycling Center Coordinate = Landfill Coordinate on both axes
the landfill coordinate is indeed between median and the critical point on both axes (as illustrated
in Figure 3 for the -coordinate).  In this case it is optimal to locate the recycling center at theB
landfill.  This case is illustrated in Figure 1 by the landfill  R.

Case 3.  .  Suppose next that the landfill is located at the point S in Figure 1.Mixed Solution
Then on the -axis, the critical point ( ) is optimal (as in Case 1) while on the -axis, theB B Cww

optimal -coordinate of the recycling center is the same as the -coordinate of the landfill (as inC C
Case 2).  So in this case, the recycling center will be located on the boundary of the rectangle ,O
but not at a corner.

3.  Conclusion

In the context of this model, different cities are characterized by different landfill locations
and different levels of recycling.  The effect of the landfill location on the optimal location of the
recycling center has been explained via Figure 1.  The comparative statics of , the proportion of#
waste recycled, can also be explained using the same figure.  The effect in Figure 1 of an
increase in  (i.e., more recycling is accomplished) is that the rectangle  shrinks around the# O
density center of the city.   In the extreme case where all waste is recycled ( ), the rectangle# œ "
O degenerates to a single point at the center of mass of the city, the location of the landfill is
irrelevant, and the optimal strategy is simply to minimize stage 1 costs and locate the recycling
center at the density center.  If, on the other hand, the proportion of waste recycled decreases, the
rectangle  of Figure 1 becomes larger; at the limit it would be the largest possible rectangleO
whose sides are tangent to the city.  In that case, when , the recycling center (now only a# œ !
“pass through” facility) would either be located at the landfill, if the landfill is in the city, or it
would be located on this “largest” rectangle nearest the landfill.

For many cities the problem of finding the optimal location of a recycling center is more
complicated than the decision analyzed in this paper.  At a minimum other factors such as cite
acquisition costs, externalities, and the NIBY phenomenon would have to be considered.  On the
other hand, the advantage of a simple model is that it can be applied to other transportation
problems.  Thus the present model could be adapted for such problems as finding the optimal
location of a branch library (e.g. Braid [1996]) or of a “break bulk” facility.
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NOTES

1.  The density function is often proportional to the population density.  Additionally, the
function  need only represent the waste that must be picked up by the city.  For example, if the3
city requires business to contract separately for their own waste disposal, then  is zero at3ÐBß CÑ
such locations.

2.  Assume the city contracts with a private firm to take away the recyclables for a flat fee, so
there are no further variable costs for the recyclables.  In all of the analysis of this paper we
assume that the transportation costs can be considered independently of any other costs.  For this
section, we also assume that the per unit transportation costs between the households and the
recycling center and between the recycling center and the landfill are the same.

3.  Note that the transportation cost in both stages is (proportional to) the product of an amount
of waste and a distance (e.g. tons miles).  This is clear in stage 1 where  is, say, tons of waste† 3
per square mile.  In stage 2, there is a “hidden” total amount of waste since we have assumed that
the total waste is 1.  So too in this case, the units of  are, for example, tons miles.J †#

4.  The -median is the number  so that .  This number mayB B 1ÐBÑ .B œ œ 1ÐBÑ .B7 _ B
B _"

#
' '7

7

not be uniquely defined if  on a suitable interval.  Thus if the cumulative distribution1ÐBÑ œ !
KÐBÑ œ 1 B'

_
B "

# assumes the constant value  on some interval the -median is not uniquely
defined.

5.  The intersection of  and  has no significance in this analysis.K K" #

6.  The theorem of the Appendix shows that in a choice between locating the recycling center at
the -median or the landfill (with the critical point as in Figure 3), transportation costs areB
minimized by locating the recycling center at the landfill (where stage 2 costs are eliminated)
rather than at the -median where stage 1 costs are minimized.B

7.  The quantities  might not be uniquely defined by these conditions in caseB ß B ß C ß Cw ww w ww

3ÐBß CÑ œ ! on some strip. This will be discussed further in the proof of the theorem.



9

REFERENCES

Braid, Ralph M.  “The Optimal Locations of Branch Facilities and Main Facilities with
Consumer Search,” , 36, 1996, pp. 217-234.Journal of Regional Science

Highfill, Jannett; McAsey, Michael.  “Municipal Waste Management: Recycling and
Landfill Space Constraints,”  , 41, 1997, pp. 118-136.Journal of Urban Economics

Highfill, Jannett; McAsey, Michael; Mou, Libin. “The Optimal Location of Two Recycling
Centers,” working paper (1997).

Highfill, Jannett; McAsey, Michael; Weinstein, Robert.  “Optimality of Recycling and the
Location of a Recycling Center,”  , 34, 1994, pp. 583-597.Journal of Regional Science

Kinnaman, Thomas C.; Fullerton, Don.  “How a Fee Per-Unit Garbage Affects Aggregate
Recycling in a Model with Heterogeneous Households,” in L. Bovenberg and Sijbren
Cnossen, eds., , BostonPublic Economics and the Environment in an Imperfect World
MA:  Kluwer, 1995, pp. 135-159.

Morris, Glenn E.; Holthausen Jr., Duncan M.  “The Economics of Household Solid Waste
Generation and Disposal,” , 26,Journal of Environmental Economics and Management
1994, pp. 215-234.

Weslowsky, G.O.; Love, R.F.  “Location of Facilities with Rectangular Distances Among
Point and Area Destinations,” , 18, 1971, pp. 83-90.Naval Research Logistics Quarterly



10

APPENDIX

The theorem describing the minimum of the function JÐB ß C ÑV V  from equation (1) is stated
in a slightly more general context after first proving the following Lemma.  The lemma shows
how to solve a one-dimensional version of the original minimization problem.  For this, assume
that  and  are positive constants and  is fixed.  Assume that  is a bounded, measurable,+ , D 1ÐDÑP

non-negative function on  with support contained in an interval of finite length and satisfying‘'
_
_

1ÐDÑ .D œ "Þ

Lemma.  There exists numbers  and  with so that the minimum of the functionD D D  Dw ww w ww

KÐ<Ñ œ + 1ÐDÑ D  < .D  , <  D( k k k k
_

_

P

occurs at the point of the interval  nearest to .ÒD ß D Ó Dw ww
P

Proof.  It is easy to check that  is continuous on  and continuously differentiable thereK ‘
except at , but that  is always a critical point of .  Observe that for any ,D œ D D œ D K DP P P

KÐ<Ñ Ä _ < Ä _ K < Á D as  so that  has a minimum and attains it at a critical point.  For  wek k P

can differentiate  to getK

K Ð<Ñ œ + 1ÐDÑ Ð<  DÑ .D  , Ð<  D Ñ

œ + 1ÐDÑ .D  + 1ÐDÑ .D  , Ð<  D Ñ

w

_

_

P

_ <

< _

P

(
( (

sgn sgn

sgn .

Since , we can rewrite  as'
_
_ w1ÐDÑ .D œ " K

K Ð<Ñ œ
#+ 1ÐDÑ .D  +  , D  <

+#+ 1ÐDÑ .D  , D  <
w _

<
P

<
_

P
œ ' ' if  

if 
.

Now assume temporarily that and that there are numbers  and  that are uniquely+  , D Dw ww

defined by the conditions

( (
D _

_ D

w

ww

1ÐDÑ .D œ 1ÐDÑ .D œ
+  , +  ,

#+ #+
    and     . (4)

The only two possible solutions for  are the two numbers  and   So there are atK Ð<Ñ œ ! D D Þw w ww

most three critical points for :  and .  The actual minimizer depends on the relativeK D ß D ß Dw ww
P

locations of these three numbers.  Since  there are three possible cases to consider.D  Dw ww

Case 1.  .  There exist critical points at  and  and .  We assert thatD  D D D K ÐD Ñ œ !P P
w w w w

K Ð<Ñ  ! D  <  D < 1ÐDÑ .D w w
P _

< +,
#+for .  To see this note that for such ,  so that'

K Ð<Ñ œ #+ 1ÐDÑ .D  +  ,  #+  +  , œ !
+  ,

#+
w

_

<( .
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So  is decreasing between  and  and thus in the choice between the two critical points, theK D DP
w

minimum occurs at .Dw

Case 2.  .  The argument is similar to the preceding case.D  DP
ww

Case 3.  .  We assert that the equation  has no solution.  In this caseD  D  D K Ð<Ñ œ !w ww w
P

we have  and .  So for  we have' '
< _
_ <+, +,

#+ #+ P
ww1ÐDÑ.D  1ÐDÑ .D  <  D Ð  D Ñ

K Ð<Ñ œ +  #+ 1ÐDÑ.D  ,  +  #+  , œ !
+  ,

#+
w

<

_(
and for  the derivative isD  D  <  Dw ww

P

K Ð<Ñ œ #+ 1ÐDÑ .D  +  ,  #+  +  , œ !
+  ,

#+
w

_

<( .

So the minimum occurs at the only critical point, namely .DP

This completes the proof in case  and  are uniquely determined (as usual) and .  InD D +  ,w ww

case , it is easy to show that  has a unique sign change at  so the minimum+  , K Ð<Ñ < œ Dw
P

always occurs at .  To finish the proof, we need to consider the case that one or both of  , D D DP
w ww

is not uniquely determined by (4).  This occurs in case the density function  is zero on an1ÐDÑ
interval of positive length so that, for example,

( (
_ _

D D w w

1ÐDÑ .D œ 1ÐDÑ .D
%

for some  and some .D  !w %

In case  is not unique, we define  (resp. ) to be the smallest (resp. largest) value of D D Dw w ‡ D

satisfying  so that the integral '
_
D +,

#+

w

1ÐDÑ .D œ '
_
<

1ÐDÑ .D is constant on the interval
D Ÿ < Ÿ D D D Dw ‡ ww ww.  Similarly if  is not uniquely defined by (4), define  (resp. ) to be the largest‡‡

(resp smallest) value of  satisfying  .    (Note that since the support of theD 1ÐDÑ .D œ'
D
_ +,

#+ww

density function is bounded, these quantities are finite.)

Consider again Case 1 , but with the alternative assumption ÐD  D Ñ D  DP P
w ‡.  The function

KÐ<Ñ ÒD ß D Ó 1ÐDÑ .D œ ! is constant on the interval .  To see this note that since  we havew ‡
D
D'
w

*

KÐ<Ñ œ + 1ÐDÑÐ<  DÑ .D  + 1ÐDÑÐD  <Ñ .D  ,Ð<  D Ñ( (
_ D

D _

P

w

‡

.

And so

K Ð<Ñ œ + 1ÐDÑ .D  + 1ÐDÑ .D  , œ +  + "   , œ !Þ
+  , +  ,

#+ #+
w

_ D

D _( ( Œ 
w

‡

Thus the essential ideas of the proof of Case 1 remain the same:   is decreasing for  andK <  Dw
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there are no critical points for  with .  Thus  is minimized at any  point of the intervalK <  D K‡

ÒD ß D Ów ‡ .

The argument in Case 2 is similar with  replaced by .  In Case 3, replace the intervalD Dww ‡‡

ÒD ß D Ó ÒD ß D Ó D  D  D KÐ<Ñw ww ‡ ‡‡ ‡ ‡‡
P with .  Then observe that for , the function  is decreasing for

<  D <  D < œ DP P P and increasing for  so, as before, there are no critical points other than  and
the minimum occurs there.

Finally, in the event that  falls in one of the intervals  or , it is easy to seeD ÒD ß D Ó ÒD ß D ÓP
w ‡ ww ‡‡

that  is the only critical point of  and that the sign of  changes at the critical point< œ D KÐ<Ñ KP
w

showing that the minimum occurs at .< œ DP

Assume now, as in the text, that  is a non-negative, bounded, measurable function3ÐBß CÑ
having support on a bounded subset of .  The goal is to find  function‘# B ß CV V  to minimize the

JÐB ß C Ñ œ + B  B  C  C

 B  B  C  C

V V V V

V P V P

( ( a b
a b‘#

3ÐBß CÑ .B .C

,

k k k k
k k k k .

Split the  into a sum of two functionsJ

JÐB ß C Ñ œ + B  B B  B

 + C  C C  C Þ

V V V V P

V V P

Œ ( k k k k
Œ ( k k k k

(
(

‘

‘

#

#

3

3

ÐBß CÑ .B .C  ,

ÐBß CÑ .B .C  ,

The first term is a function of  and the second a function of .  Now apply the lemma to eachB CV V

of these pieces using 1ÐBÑ œ ' '
_ _
_ _
3 3ÐBß CÑ .C 1ÐCÑ œ ÐBß CÑ .B for the first piece and  for the

second.  The result is four numbers and .  These can be used as  and  coordinatesB ß B ß C ß C B Cw ww w ww

to form the corners of a rectangle :    Using this notationO ÐB ß C Ñß ÐB ß C Ñß ÐB ß C Ñß ÐB ß C ÑÞw w w ww ww w ww ww

the following theorem can now be stated.  The proof is, as just described, two applications of the
Lemma.

Theorem.  For fixed , the function  is minimized by choosing  toÐ JÐ ÐB ß C Ñ B ß C Ñ B ß C ÑP P V V V V

be the nearest point in the rectangle  to  In particular, if  thenO Ð Ð − OßB ß C Ñ B ß C ÑP P P P.
Ð ÐB ß C Ñ B ß C ÑV V P P = .

The final point to notice about the theorem is that the rectangle , although well defined, isO
arbitrarily chosen in case the (analogs of) conditions (4) do not uniquely describe the points
B ß B ß C ß C ÐBß CÑw ww w ww.  This will occur in case the density function  is zero on some strip and so a3
component of the transportation function is constant in some region.  The result is that at least
one side of the rectangle  could just as easily have been defined differently.  (The best way toO
describe this is to imagine a rectangle whose boundary is drawn with "thick" lines.)  The
resulting location of ÐB ß C ÑV V  might change, but the total transportation cost would remain the
same.
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                            FIGURE 1
The City with Several Possible Landfill Locations
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                                FIGURE 2
Decomposition of Transportation Costs: Critical Point Case
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                      FIGURE 3 
Decomposition of Transportation Costs:
          Recycling Center at Landfill
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