Existence of positive solutions of a class of semilinear elliptic systems

Libin Mou

Department of Mathematics Rice University

Appeared in Communications in Partial Differential Equations, Vol. 14, 11 (1989), 1509-1540.

Abstract

This paper gave a positive answer to a prescribing singularity problem: For any given finite points x_1, \ldots, x_m in \mathbb{R}^3 and integers d_1, \ldots, d_m , there is a harmonic map u from a domain $\Omega \subset \mathbb{R}^3$ to S^2 such that Ω contains $\{x_1, \ldots, x_m\}$, $u \in C^{\infty}(\Omega \setminus \bigcup_{i=1}^m \{x_i\})$ and $deg(u, x_i) = d_i$, $i = 1, \ldots, m$. In particular, if all $d_i \neq 0$, then the singular set of u is precisely $\{x_1, \ldots, x_m\}$. The proof follows from a bridge principle for harmonic maps, which were also proven in this paper.

Key Words: bridge principle, linearization, fixed point theorem, separation of variables.