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Abstract

Matrix differential equation descriptions of the cumulants of an integral quadratic cost
associated with a linear system with white-noise input were derived in the mid-70s using
generalized Karhunen-Loeve expansion techniques. Here, these same descriptions are
derived directly from the cumulant generating function of the cost. A generalization of
the k-cumulant control problem class introduced in 1998 is also presented. The solution
to this more general class of optimal cumulant control problems is given, and the risk
sensitive control problem of optimizing the cumulant generating function of the LQG
cost is shown to be included in this cumulant control class.

1 Introduction

In 1998 Pham, Liberty and Sain introduced a general class of Linear-Quadratic-Gaussian
(LQG) control problems in which the objective is minimization of a performance index
that is a finite, linear combination of cumulants of integral quadratic cost over linear,
memoryless, full-state-feedback control laws [9]. The formulation of this “k-cumulant”
optimization problem utilizes a coupled matrix differential equation description of the
cumulants of an integral quadratic form (IQF) in a Gaussian process. These equations
were first derived by Liberty and Hartwig [8] in 1976. In that work the Gaussian process
is the state of a linear system with white-noise input. The work reported in [8] evolved
from that of Liberty [7] in 1971 where it was observed that all cumulants of such IQFs
are quadratic-affine in the mean of the system initial state. Two examples of control
problems in the k-cumulant class for £ = 1 and k = 2 respectively are the classical
minimum mean LQG problem and the Minimum Cost Variance (MCV) problem [12, 13].

Since the early 1970s other researchers have developed the theory of risk-sensitive control;
see for example (2, 3, 4, 5, 6, 14]. Also see [16] where Won, Sain and Spencer presented a
brief history of risk-sensitive control and pointed out the close relationship between risk-
sensitive control and “the notion of optimal cost cumulants, in particular cost variance.”
In this paper we demonstrate an even deeper relationship between risk-sensitive and
cumulant control.
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In the next section we demonstrate that the coupled matrix differential equations pre-
sented in [8] and utilized in [9] can be generated directly from the well known quadratic-
affine form of the cumulant generating function of the (IQF) cost. In section 3 we consider
a further generalization of k-cumulant control, which we simply refer to as cumulant con-
trol. Observed formally by Won [15], the generalization consists of replacing the finite
linear combination of cost cumulants in the performance index with an infinite series of
cost cumulants. The solution to this “cumulant control” problem is introduced in sec-
tion 3. Finally, in section 4 we demonstrate the relationship between the solution to the
risk-sensitive control problem (for the linear, memoryless, full-state-feedback case) and
the solution to the cumulant control problem.

2 Cumulant Descriptions

Consider the linear system
dr = Fads + Gdw, x (ty) = (1)

where the matrix functions F' (s) € R™", G (s) € R™*P are continuous, w (s) € RP is the
standard Wiener process, and x is non-random. For every pair (to, x¢), associate with
(1) a cost
ty
J (to,z0) = 27 (t;) Qx (ty) —i—/ x' (s) N (s)z (s)ds (2)
to

where @y € R™™ is a constant matrix and > 0, N (t) € R™" is a continuous matrix
and > 0. Here J is considered to be a function of t3 and zy. In the following we will
replace (to, o) by (t,x) € [to,ts] x R", and J (to, xo) by J (¢, x), the “cost-to-go”, which
is (2) with ¢y replaced by ¢ and z (s) replaced by the solution of (1) with initial condition
x(t) = x.

It is well-known (see [1] for example) that the moment-generating and cumulant-generating
functions of the cost-to-go

¢ (0,t,7) = E{e" ")} and ¢ (0,t,2) =In¢ (0,t,7),

where F{-} is the expected value of the enclosed random variable, can be expressed in
terms of the solution of a particular Riccati equation as follows:

Theorem 1. For fized 0, let the functions p (0,t) and S (6,t) be solutions to the equations

{S’+FTS+SF+QSWS+0N:0 )

S (0, t) =00y,
and
p=—ptr(SW),
p (07 tf) - ]-;
where W = GGT and (') denotes the derivative. Then
(a) ¢(0,t.x) =p(0,t) exp (z7S (0,1) )
(b) ¢ (0.t,x)=d(0,t)+2"S(0,0)x



with d (0,t) = In p(0,t) satisfying
d =—tr(SW),
a0, ty) =0.
0]

Recall that for i = 1,2, -+ - the moments m; (¢, z) of J (¢, z) are defined as the coefficients
of §/i! in the McLaurin series expansion of the moment-generating function E{e%’},
while the cumulants &; (t,z) of J (¢, z) are the coefficients of 6”/i! in the McLaurin series
expansion of the cumulant-generating function

In E{e?7} = Z Z—:m (5)

We now present an alternative and more direct derivation of the cumulant expressions
contained in [8].

Theorem 2. The cumulants k; (t,x) of J (t,z) can be expressed as
ki (t, ) =d; (t) + 2" H; (t) @
where d; and H; satisfy the following Lyapunov-type differential equations:
H, + F'H, + Hi/F + N =0, H, (t;) = Qy,
. i—1 ;
/
H +F Hi+HiF+2;m

&= —tr(H, ()W), d;(t;) =0, > 1.

HJWHZ',J' = O, Hz (tf) = 0, 1 Z 2,

Proof. Utilizing the functions in Theorem 1 define

ok 0"
_89"S<O’t) and d; (t) = aéip(

H; (t) 0,t).
Then by expanding the cumulant generating function expression of Theorem 1.b in a
McLaurin series we get
T . T 0"
Y (0t,x)=p(0,t) + 2" (t)S(0.t)x =Y (d; (t) + 2" H; () x)

=1

il

Matching coefficients with the series in (5) we observe that the i cumulant of J (¢, z)

can be expressed as

The equation for H; follows by evaluating the % of (3) at # = 0 and using the fact

S(0,t) = 0. For i > 2, by evaluating the % of (3) at # = 0 and using S (0,t) = 0, we

derive the differential equations and boundary conditions satisfied by H; (t) = S@ (0,1).
Similarly from (4) we get the equations d; = —tr(H; (¢) W) and d; (t;) = 0. O



3 Cumulant Control Problems

We now consider a general cumulant control problem associated with the following linear
control system and integral quadratic cost function:

dr. = (Az. + Bu)ds + Gdw, s € [to, ts]; x. (to) = o, (6)

J = {L‘ (tf) Qfxc (tf) =+ / ! (JIZQJ]C + uTRu) dS (7)

to
where the matrix functions A (t) € R™*", B(t) € R™™, G (t) € R"*? are continuous.
Qr € R is constant matrix and > 0, @ (t) € R™™ and R (t) € R™ ™ are continuous
on [tg,ts], @(t) > 0 and R(¢) > 0. We will assume that u is a linear memoryless,
full-state-feedback control given by

with feedback gain K (s) € R™*". Then the system (6) and the cost (7) can be written
as

dz. = Fx.ds + Gdw, z. (ty) = o, (8)
Jo o, ) =t (1) Qg () + [l (5) N (5) e (5) s, )

where
F(s)=A(s)+B(s)K(s), N(s)=Q(s)+ K" (s) R(s) K (s). (10)

It is well-known that cumulants and moments are expressible in terms of each other,
however, cumulants are more useful quantities in stochastic optimal control because of
their common quadratic-affine form.

For a sequence of real numbers p = {1, po, ---}, we can use (10) and the cumulant
expressions in Theorem 2 to define a series of cumulants

K (to, zo) = T Z,uz (Lo SUo—i‘Z,uz i(to) (11)

Without loss of generality, we will assume that p; = 1.

Define H(s) = (H; (s), H2 (s),---) and D(s) = (d; (s),d2 (s), - - - ) and rewrite the equa-
tions in Theorem 2, for H; and d; as

Hi"i_fl(H’K):O’Hl(tf):Qfa
H{+Fi(H,K)=0, H;(t;) =0,i > 2, (12)
d;+Gi(H)=0,d;(tf) =0,7> 1.
where
Fi(H,K) = FTH, + HF + N,
Fi(H,K)=FTH, + HiF +2""!
G (H) =tr(H;(s)W).

A HWH,_ ;i > 2, (13)

Jljzj)'



Now let
O(to, H(to), D(to); xo; i) = K(to, xo).

The cumulant control problem that we wish to solve is

.
K e K, ®toT{t0), Dlto);zoip)

subject to (12) and (13). The class, K, of admissible feedback gains is the set of all m xn
matrix functions that are continuous on [ty,t;] with values in a compact subset of the

vector space of all m x n real matrices, and which yield existence of solutions on [to, ]
to (12) and in combination with the given pu;’s yield a convergent series in (11).

Remark: For a given stochastic linear system are there p-sequences that result in a rich
class K, of admissible function gains? The answer to this question is affirmative. Due
to space limitation here we present some results without proof. It can be shown that there
is a 0 > 0 such that if {pf}2, where p; = ily; satisfies

0<p; <opju;; (14)

fori=2,... andj=1,...,1—1, then K, contains many admissible feedback gains (for
example, it contains all K’s with small norm) with convergence of the series (11).

To illustrate further that there are many p}’s satisfying (14), consider the following.
For a given o > 0, there are intervals {[a;, b;]};~, such that if {u};0, is a sequence
with 1} € [a;, b;], then it satisfies the condition (14). For example, let a; = af"™' and
bi = 0?02 for some numbers o, 0 > 0 such that oo > 0 and u} € [a;,b;]. Then for

i=23-andj=1,--,i—1,

pi b
Wik~ Qg

= 0.

A particular example satisfying (14) with o = 1 is y; = 6°/4!, which is the risk-sensitive
case; see (5).

We prove

Theorem 3. The admissible feedback gain K that minimizes ®(to, H(to), D(to); xo; 1t)
and the corresponding Hy, Hs, ... and dy, do, ... satisfy the following equations

(F = A+ BK,

K =—R'BTS° uH,

Hj —|—FTH1+H1F+Q+KTRK:0 H, (tf) = Qy,

H{ + FTH; + HiF + 2307 s HWH, =0, H, (1) =0, > 2,
\di = —tr(H; (s) W), d; (t;) =0, 1> 1.

Proof. The control problem is a standard Mayer type problem.

For t € [to, ty], consider (13) on the interval [to,¢] with terminal values H; () = y; and
d; (t) = z;. From the representation of k, we look for a value function of the following
form

) = g Zﬂz yi + hi (t $0+Zﬂz’(2i+€z’(t)>
i=1



where h; (t)’s and ¢; (t)’s are functions to be determined. By the Verification Theorem
[4, Thms 4.1, 4.4], V (¢,y) has to satisfy

Min 8V
% { -+ f + Z } (15)
Substituting (13) into (15) we obtain

M { <Zﬂzh/ +Zuz v, >$0+ZM +Gz())}=0(16)

Note that among all of the terms in {--- }, only > >°, 1;F; (y, K) depends on K. We have

i=1
00 i—1

KTRKHZMZ.,(%,

—H,WH,_;
i=2  j=1 J: 7)!

This matrix quadratic is minimal when K = —R™'B? >, j;h;. With this choice of K,
let H; (t) and d; (t) be the solutions to (13) with H; (t) = y; and d; (t) = z;. Take

hi(t) = H; (to) — H; (t), e (t) = d; (to) — di (1),

then the minimum in (16) will be zero. It turns out that the value function V' (t,y) is

V(t.y) —%Zm (to) xo+2uu

which is the optimal value of ®(ty, H(ty), D(to); zo; it)- O

4 Relationship Between Linear Cumulant Control
and Risk-Sensitive Control

The existence of optimal risk-sensitive control is well-known [5, 14]. Denote the optimal
value

Min

v, t,x)= Kek,

[ln E{eeJc(t,a:,K)}} 7

where 6 > 0 is assumed.

Theorem 4. The value function ¥ (0, t,x) can be expressed as

U, t,r)=a"S0, t)z+d0,t),



where S (0, t) and d(t,0) satisfy the Riccati system
K =—(9R)"' BTS,
S"+(A+BK)" S+ S(A+ BK)+2SWS+0(Q+ K"RK) =0,

S(0.t) = 0Q;,
d' = —tr(SW), d(0.t;) = 0.

(17)

O

We answer a long-standing question about the relationship between risk-sensitive and
cumulant control.

Theorem 5. Suppose A, B, Q, R, W are given matrices as in Theorem 4. Suppose the
K, Hy..., H,, ..., and the constant 0 satisfy the following system

’+(A+BK)TH1+H1(A+BK)+Q+KTRK—O H, (t) =
H'+(A+BK) H;+ H;(A+ BK)+ 2"} H,WH,_; =0,
Hi(t;)=0,i>2,

—(0R) 'BT "> 2,

i=1 ¢!

Jj=1 J'(l J)

(18)

Then the matrix

6
=Y —H
i!
i=1
satisfies the matriz equation (17)

H +(A+BK)"H+H(A+BK)+6(Q+ K"RK) +2HWH =0 (19)

and K is a solution to

Min 0.J(t2, K
v (6, t,iL‘) = K [ln Eye ¢ )] ’
where .
!
J(tx, K) = / (¢7Qx + uT Ru) ds + 27 (t7) Qs (1))
t
In other words, 'H is the solution to the risk-sensitive control problem. [

Proof. Multiply the i-th equation in (18) by 9.—i for © > 1 and add them up. We get

H + (A + BK) ie_' Z i (A+ BK)
=1 lel
1

+0(Q+ K"RK) Qi

)!Hlj 0.
=2 j=
Since
Y 0y OoejHW o W
XQZ Z—J> ”_;ﬁ | ;’f' e
J_
we obtain

H' + (A+ BK)"H+H(A+BK)+6(Q+ K"RK) + 2HWH = 0.

Note that this is precisely (19) with K = — (§R)~" BTH. Therefore H is a solution to the
risk-sensitive control problem. O
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