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Abstract

The main result of this paper proves the existence of multiple so-
lutions to a class of generalized constant mean curvature equations,
called H-systems. Also contained is a regularity for conformal n-
harmonic maps.

1 Introduction
In this paper, we consider some systems of the form
div(|Vu|"*Vu) = f(u, Vu), (1)

where u € W*(Q, R¥), n, k > 2; Q C R" is a bounded smooth domain, and
f: R¥ x R"™ — RFis a smooth function. We assume

[ (u, Vu)| < A[Vul™, (2)

for some constant A > 0 that may depend on w.

A well-known example of (1) is the n-harmonic map equation. Let (N, h) —
RF be a C* compact Riemannian submanifold. An n-harmonic map u : Q —
N is a critical point of the m-energy [, |Vu|"dx in the space of functions
u € WIn(Q, RF) with u(z) € N for a.e. x € Q. The equation for n-harmonic
maps is

div(|Vu|""2Vu) = |Vu|"?Q(u, Vu), (3)



where Q(u,-) is the trace of the second fundamental form of N at u(z) € N;
Q(u, Vu) is quadratic in Vu.
There is a vast literature on the regularity and partial regularity of solu-
tions to harmonic (or p-harmonic) map type equations; see [4][11][13][15][17][19]]20][24][26][30]
and other references therein.

Our interest in this paper is mainly on the H-systems in higher dimen-
sions. Suppose u € W (Q, R"™) w = (u', ..., .u"™). Then the cone gen-
erated by the image u(2), with vertex being the origin of R"*! has a well-

defined volume .

V(u):n+1

see [24]. Here uy A - -+ Aw, is the cross product of the partial derivatives
Ui, ..., Un, which can be described as follows. For any vector v € R"*!,

/u-ul/\---/\un;
Q

ot 0? L
vou A A, = b w? o upt!
ul w2 o ot
Consider the minimization problem
min/Q |Vu|", u=mnondQ, V (u) =c, (4)

for a given n € Whm(Q, R™™) and a constant c. A critical point of (4) is
called an n-harmonic map with prescribed volume; it satisfies

div <|Vu|"_2Vu> =Huy N\ -+ Ay, u=non 08, (5)

where H is the Lagrange multiplier.

When n = 2, (5) becomes
Au:Hul/\UQ. (6)

A conformal solution of (6) represents a surface of constant mean curvature;
see, e.g., [28] [31]. The existence of solutions and multiple solutions of (6)
were established in many works, including [6] [21] [27] [29] [31] [33]. In
Theorems 5 and 12 below, we prove for relatively small H and boundary
data, there is a solution of least energy-the small solution, and there is a
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large solution, with the same boundary data. This generalizes the early work
of Hildebrandt [21], Brezis and Coron [6] and Struwe [29] for n = 2.

For the regularity of (2-)harmonic maps u on a domain Q@ C R? (or
a smooth surface), Heléin [19] proved their C'* regularity. Assuming w is
conformal, or stationary or energy minimizing, Morrey[23], Griiter[16] and
Schoen|[25] established the regularity of u earlier. For the H-system (6) with
constant H, Wente [31] showed that any solution of (6) is analytic. Griiter
[16] proved the C1* regularity (0 < o < 1) of conformal solutions to (6),
where H may depend on u; same result was obtained later by Bethuel [5]
assuming that |DH (u)| is bounded. Wente’s result was generalized to (5)
in [10][24], which implies that all solutions of (5) are C'* regular. In this
paper, we prove the C'® regularity of conformal solutions to (1), which
generalizes the work of Griiter [16]. In particular, conformal n-harmonic
maps from 0 C R" (or an n-manifold) are C**, and conformal solutions of
(5) with bounded H = H(u) are also C*. Unlike in two dimension, one
cannot reparametrize a solution to obtain conformality; so the conformality
condition for solutions to (1) is fairly strong. It is conjectured that all n-
harmonic maps and solutions to (5) with bounded H = H(u) are C'°.
Generally speaking, C*® regularity is optimal for solutions of (1)as shown
by examples in [22].

2 Existence of Solutions to H-systems

For any u € Wh"(Q, R™™), the image u(f2) is a generalized “hypersurface”
with area

A(u):/ﬂJ(u)dx, T(w) = [ug A A ),

where J(u) is the Jacobian of u. Note that

v ug A Ay < |ollug] - ug
< o fur? + - )"
- n (7>
V|
[,

V"



and the equalities hold if and only if w is conformal. Here we say that a
function u € W1n(Q, R*) is conformal if for some function A(z) and all

,7=1,...,n
w; - uj; = Nx)d;; . (8)

It follows from (7)

[Vul"

R

and each of the equalities holds iff u is conformal.

We now discuss some properties of the volume functional V.

First note that if u = (u!,...,u"™) and ! = 0 on 99, then for all i =
1,...,n,

g A A | < and A(u /|Vuy 9)

1 %

O (u?, ..., u"th) 1 O(ul, ot u T
1 (A — (1) % yrery Loy ey 1
/Qu d(xt, ..., a") (=1) /Qu d(z,...,a™) (10)

and the volume V' can be written as

10 (W, um™)

Viw = [ u () (11)

u2 7777 un+1)

In fact, (10) follows by expanding the determinant in the i-th

column, using integration by parts together with the fact

N

"9 O ...l umt)

- =0.
am1 0% oz, ...,z ..., x")

Expanding V(u) in terms of u', ..., u™** we get (11) by using (10).
As a consequence of (10) and isoperimetric inequality, we have

Proposition 1 If u = (u!,..., ") € W(Q, R'™™) and u' = 0 on 09,
then for some constant C1,

T s

(12)

v

< aife]

Ln(Q) L(Q)



Proof: We may assume that none of ' is constant (otherwise, the inequality
is trivial), and that HVuiHLn(Q) = 1 for all ¢ (by the homogeneity of (12) in
u'). Then (9) implies

Alu) < \/;_H/Q|Vu|": (”Zl)m.

Denote v = (0,u?,...,u""). Then A(v) < A (u) and V(v) = 0. So

[0y - vi)

a(zt, .., a")

is the volume enclosed by the graphs of u and v, whose area is A(u) + A(v).
By isoperimetric inequality (see [2], for example),

V(w) - V)| < = [Aw) + A@)] "

Q

1
where C' = (n + 1)ws and w,, is the area of the unit n-sphere S™. Therefore,
for an absolute constant (7,

d(u?, ..., umth)
1 ) ) <
/g“ dGl . | SO

which shows (12). O

(12) implies the following corollaries.

Corollary 2 If u € Wh™(Q, R™™) and vw!|0Q = 0 for some i = 1,...,n +
1, then the functional V' is continuous at u in the norm of Wt™(Q, R*+1).

Corollary 3 Suppose u,v € W1(Q, R") and v =0 or u = 0 on 09, then
for some constant C,

Lo A A < V0] gy IVl ) (13)

Proof: Expand |[qv-uj A+ Awu,| in terms of v, ..., v""! and apply (12)
to each term. O



We now derive a useful property of
R(v,u) = / VU A e A Uy
Q

Suppose w,v,w € WH(Q, R"™), w =0 or v = 0 on 99N, and v, = u + tw
for 0 <t < 1. For a moment, suppose that u,v,w € C?. Then

R(v,u +w) — R(v, ) :/v-(ut)l/\.../\(ut)n !
:/Zv-(ut)l/\.../\ w; A A (wg),,
/01 zn:wi (ug)y A A VA A (u),,

hb 2%
/0 S we (w), A A vi A A (uy),

7

(14)
Here we used the skew-symmetry of the cross product, which implies the
term 3 i > i - - = 0. It follows

[R(v,u+w) = R(v,u)| < C|[wl|  [IVol| o [Vl + [Vell[7." (15)
or
[R(v,u+w) = R(v,u)| < C|[Voll |[wl| . [ Vul + [Velll7.h (16)

The estimates (15) and (16) show that, in addition to the condition that
u,v,w € WHP(, R"1) | it is enough to assume w € C° for (15) to hold,
and v € Wh*°(Q, R"™) for (16).

Applying (14) to u = 0 and v,w € W™ (Q, R"*) with v or w = 0 on 99,
we obtain

1 n
/v~w1/\~~~/\wn://t”’ldtZw-wl/\.../\vi/\.../\wn
Q QJ0o i—0 7 (17>

1
=" fwiw A AWA - Aw,.
n z:lg 7

6



The equation (5) can be derived by using (17) . We only need to calculate
d
—V (u+to) for any ¢ € W, (€, R*1). By (17)

dt
d
t

dtV(u—l—qb) O
= n+1/¢-mA-~Aun+E:/u-mA-~A@A-~AW
= n—l—l/(b up N - n+12/¢1 up N - - AUy,
= /gzﬁ-ul/\--'/\u

Q

The following is another property of R that we prove by (17).

Theorem 4 Suppose that, as m — oo, ™ — u in Wy (0, R™1), and either
V™ — v an WE(Q, R or o™ — || — 0 with v being continuous, then

R(v™ u™) = /vm~u71”/\ AU — R(v,u), as m — oo.

Proof: By (13) and the assumptions, we have
Vo™ = Vol g,

or o =l

R0 = R < 19wl 0
as m — 0o. This implies that we may assume v = v. Furthermore, we may
assume that v is C? by approximating v by smooth functions in the norm of

Whn and in the norm of CV in case v is continuous.
Now, because u™ — w in Wy (2, R"*1), we have u™ — w in L". By (17),

1
R(v,u™) :_5211/% /\u;”/\---/\(um)n
H—Ezlzl/ﬂ “up A - /\11L/\-~-/\un,asm—>oo

:/U-ul/\~--/\ui/\-~~/\un:R(v,u).
Q

O

We now prove the existence of the small solutions.
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Theorem 5 Suppose n € WH(Q, R™™) and 0 # H is a constant satisfying

[11l]oo [1H| < Va2 (18)

Then the problem (5) has a solution u that satisfies ||ul|so < |7]]co-

Remark 6 The case n = 2 of this theorem is due to Hildebrandt [21]; see
also [20][27][31][32][10]. In the next section, we will show that if n and H
are small enough, then the problem (5) has another “big” solution.

Remark 7 In general, a bound condition for H like (18) is needed for the
existence of a solution. Consider the case when 2 is the unit ball and n(z) =
(x,0) for x € 0. If H satisfies (18), then a conformal representation of a
sphere cap of radius r = /n™/ |H| > 1 with u|0Y = n is a solution to (4).
If |[H| > v/n™, it can be shown that (4) has no solution.

Proof of Theoremb5: Note that the equation in (5) is the Euler-Lagrange
equation of the functional I, defined by

= /Q |Vu|™ +

without constraint. Since [ is neither bounded from above, nor from below,
it has no global maximum nor minimum. We will find a local minimum of
by minimizing I on the subset

H
1u-u1/\.../\un, (19)

2 1
M:{uewl»” (2 R™) = on 99, [Julluo |H| < Vi ot }

It is easy to see that M is weakly closed and convex subset of W™ (Q, R**1) .
For any u € M, it follows from (9) that

/W ‘n_ |f|1||lil/|:;"/’ (20)
/\Vu\ ,

>
- 2n+2 Q

So I is coercive. From [23] or [8], I is quasiconvex. By the Theorem II.4
in [1], I is weakly lower semicontinuous. It follows from the direct method
that / has a minimum u in M.



We now show that ||u||e < [7]]eo - Suppose k is any number satisfying

2n +1

Inllo | H] < k1| < Var =

(21)

Let ¢ = max {|u| — k,0}. Then ¢ € Wy (Q, R*) N L>®, and u — tpu € M

for sufficiently small ¢ > 0. It follows from the minimality of wu,

0 > —jt|t0](u—t¢u)=/g<q§u,Dl(u)>

_ n—2 |H| .
= n/Q]Vu| VuV((bu)—i-in 1(¢u) U A oo A Uy,

HI||ul|
> n/ <|vuy”—||““”|u1A...Aun\>¢+n/ Vu|" 2V - uVe
Q n+1 Q
n — 2 -1
2 Vul"¢ + / Vul""2 (Vu - .
T 2n+2 {|u\>k}| uffotn {\u\>k}| uf" (V) Jul

It follows that Vu = 0 a.e. on {|u| > k}, which implies that V¢ = 0 a.e. (.
So ¢ =0, or |u| <k. As k in (21) is arbitrary, ||u||e < ||7]|co, Which implies
that |[ulle |H| < [[ulles |H| < v/n"2EL So w is an interior minimum point
of M in the norm || ||; it is then has to be a critical point of I and satisfies
(5). O

3 The Existence of Large Solutions

In Section 2, we showed that if |||« | H| < v/n™, then the Dirichlet problem
(22) has a solution. In this section, we will prove that there is at least another
big solution if n is small enough. When n = 2, the existence of multiple
solutions of (22) was established in [6][29] under the optimal assumption 0 #
l1nl|leo |H| < 2. The optimal condition for our case is expected to be 0 #
[7]|so |[H| < v/n™, though our proof of Theorem (12) does not yield such an
estimate.

Denote by ug the solution we found in Theorem 5 of Section 3. We will
solve the problem

div (]Vu]”_ZVu) =Hui N+ ANy, u=mn ondf, (22)



for u = uy 4+ v with some v € W, (Q, R*™), v # 0. Note that (22) is the
Euler-Lagrange equation of the functional

nH
n+1

B(u) = [ [Vul" + Q). (23)

without constraint, where Q(u) = / u- up A Auy = (n+1)V(u). The
Q
method is to find a critical point of (23).. We need some preparations.

Proposition 8 For a, b € R*, (k > 2 an integer), there holds

a0l = lal" + 8" +nla" " a b+ Ma,b) (24)
where M (a, b) satisfies

|M(a,b)| < n(n—2) (|la| + [6))" " |a [b". (25)

Proof: By the fundamental theorem of calculus,

M(a,b) = la+b" = (Ja|" +[b]" +nla]"*a-b)
L d n n n—2
- /0%%]a+tb| dt — (Jo" +na"2a-b)
— n/ jat 68" (a- b+t o) dt — (b +nlal"*a-b)
01 t d n—>=2 Lot d n—2 2
= n/ / — |a + sb| a-bdsdt+n/ / t— |sa 4 tb|" " |b|” dsdt.
o Jo ds o Jo ds

(26)
(25) follows from the following estimate: For any p > 1,
d _
sup |— |a + tb|"| < p(|a| + b)) |b]. (27)
o<t<1|dt
O
Proposition 9
n—1
Q(uo +v) = Q(uo) + Qv) + > Qi(v) (28)
i=1

where Q;(v) is homogeneous in v of degree i and homogeneous in ugy of degree
n+1-—aq.
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Proof: Let g(t) = Q(uo + tv). Then (28) is the Taylor expansion of g at
t =1, where Q;(v) = g®(0)/il and Q(v) = Quy1(v). O

Proposition 10
[ 190" Vuov0 + () = 0 (29)
n U uyVu + ——Q1(v) = 0.
A 0 0 1

Proof: The is just the weak form of the equation (22) ; v serves as a test
function. O

It follows from (23)-(29) that

n nH n

nH n (30)
‘|‘an (U) + EQ(U) -+ n+ 1@(1]),
where
Qn(v) = (n+1)/9u0~v1/\~~/\vn, by (17),
Ey(v) = /QM(VuO, V) + "z_—: Qi(v). (31)

Since the first two terms of (30) are constant, we are led to the functional

nH nH
= ny E . 2
@) = [[Vo]' + =00 (0) + Bav) + Q). (32
We look at each term in (32). Note that by (9),
1
Qu ()] < Csupuo] [ [V, where €= "2 (33)

The isoperimetric inequality for mappings [2][Theorem 12] implies that if
v € W™ (92, R"*1) then

V)l < 5 AW (34)

where C' = (n+ l)wn% and w,, is the area of the unit n-sphere S™.In terms of
Q)= (n+1)V (v) and / |Vol", it follows from (17) that
Q

Q)"+ < E/ﬂleVl, where S =nzw;'. (35)
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To estimate Ey(v), we first notice that Q(u) = R(u,u) and

S, Qilv) = Q(ug +v) = Qug) — Qu(v) — Qulv) — Qv)
= [R(ug, ug + v) — R(ug, ug) — R(ug,v)] + (36)
[R(v,ug +v) — R(v,v) — nR(ug,v)] — (n+ 1) R(v,up)

By (14), we have

R(v,v —|— up) R(U v) — nR(ug,v)|
[/ dSZuO (v + sug), A .. A Vi A /\(v—irsuo) ds]dt‘
SC||uo||oo||Vuo||Ln||VU||Ln|||VU|+|VUo|||

(37)
| R(ug, uo + v) — R(ug,up) — R(ug,v)|
/ / Zuo - (sug +tv); A LA v AL A (Sug +t), \izédt’
1 (38)
ds Zuo sug + tv); A LA vl AV (suo +tv), dsdt|
< CHuoHoo HVuoHLn Vol [V o] + \VUOHl
| R(v, u0)| < ClIV| o [[Vuol [ - (39)

By (31),(25) and (36)-(39), we get

ZQz

=2

B2(v)] < [ nln—2) (Vo] + Vo)™ [Vuo| [Vl +

< [ (Vuol" [Vo + [Vl [Vo]"~?) +
n—1
C’/Q " ol Vol V0] (IV0]" 72 + [Vuo|" ") + C Vo] [Vug|"
1=2

n—1 ) )
< Co [ 0190l Vo] + C Vol [Vuo|"
i=1
(40)

Note that ¢ is unbounded from above and below, and it is a typical case
not satisfying the Palais-Smale conditions. The standard variational method

12



fails to give the existence of a critical point. In the case n = 2, where FE,
does not appear in ®, Brezis and Coron [6] was able to find a nontrivial

2H
critical point of ® as a proper dilation of a minimum of / IVol” + ?Qg (v)
Q

subject to @Q(v) =constant. For n > 3, the terms of ® have at least three
different homogeneities, therefore, the method in [6] is unlikely to work. Our
method is to apply a mountain pass theorem of Ambrosetti-Rabinowitz [3]
in a min-max scheme. We will use the following form of the theorem in [3],
as used by Brezis and Nirenberg[7] in solving elliptic equations with critical
exponents.

Theorem 11 [3][7]Assumption: Let ® be a C* function on a Banach space
E. Suppose there exists a neighborhood U of 0 in E and a constant p such
that ®(u) > p for every u € OU, and

®(0) < p and ®(v) < p for some v & U.

Set ¢ = inf,ep maxy,ep, P(w) > p, where P denotes the class of paths joining
0 to v.
Conclusion: There is a sequence {u;} in E such that ®(u;) — ¢ and

Q' (u;) — 0 in E*.

The advantage of this theorem is that it does not require (PS)-condition.
We will show that a subsequence of {u;} converges to a nontrivial critical
point of ®. Our result is stated as follows.

Theorem 12 n € W'™(Q, R™) and [|n]|., + [Vl pn(ag) s small enough,
then the problem (22) has at least two solutions.

Remark 13 One solution is the small solution ug found in Section 2; it
satisfies ||uo||o, < |0l and is a minimum of E in M. Thus

1
2n + 2

[ IVl < B(u) < E@).

where 77 (z) = |z|n (ﬁ) is a special extension of 1. Thus

/Q|Vu0|" < /Q (Vi +2nHQ(7) < C'o/Q Val* < G (||77||oo + ||V77||Ln(89)> :
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It follows that [[n]], +[[Vn||n(ag) 15 small implies that [[uo||, +[|Vuol| n g
is also small. The smallness condition used in the proof actually is referred
to Ugp-

We now start the proof of Theorem 12 with verifying the conditions in
Theorem 11.

Proposition 14 There are numbers o, p > 0 such that
d(v) > p for v € Wy™(Q, R™Y) with || V|| pn o) = 9.

Proof: By (32),(33), (35), (40) and the Holder inequality, for any € > 0, there
are numbers Cy, C' (€), such that

o) = [ Vol = Coluolloe [ IVel" =€ [ [V0]" =

n41
C(©) (luoloy +11Vtollniey) = Co ( [ 1907) .

i and a number 0 > 0 such that Cyo < é. Suppose ug satisfies

Colluglls < 1 and C(3) (]uoloo—i- HVuoHLn(Q)> < £0™. Then for any v €

W, (Q, R™1Y) with ||V||nq) = 6, we have

Fix € =

n+1
o) 2 3 [[190l" = Co ([ 1V0") " = @) (luol.c + [Tl o)
> 15" = C() (ol + [ Vetl 1(e) = 50"
()

The proposition holds with p = %5”. O

Proposition 15 There is a v € Wy (Q, R"t1) such that

d(v) <0,
Sn+1
d(t _ 41
W ) S T ) “

The proof of Proposition 15 will be given later. Now we prove Theorem
12.
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Proof of Theorem 12: By the theorem of Ambrosetti-Rabinowitz above

and Propositions 14 and 15, there exists {v'} € W, ™ (€, R"*') such that as

17— 00,

i im ., nd i

d(v') = /Q"Vv +n+1Q”<U>+ (42)
Ey(v') + 2 Q) — ¢,

n+1
where
= ”%f max {®()}, (43)
and
1, R
SR() = = div (Ve Ve) @ ()
—EL () + Hvl A~ - AUl — 0 in Wh,
n
where 0 = — B Multiply (44) by v* and integrate. We get
n —

" H AN 1 AR i
+m<Q’n(v),v >+5<E§(v),v > +HQ(v') — 0. (45)

/Q ‘Vvi

for some constant C. To prove (46), we first note that since @, (v*) is ho-
mogeneous in v* of degree n,

/ ‘Vvi
Q

We claim that

"<cC (46)

n

n(n;—nl) e

<o ol [ [V

and by (40) and the Hélder inequality, for € > 0, there is a constant C (e),
such that

<@ ()" >[ = nQu (v)

n

‘Ez (v') ; (48)

gC(e)/Q\Vuo\ue/Q\w

‘< Ey(v"), 0" >‘ < C’((—:)/Q|Vu0|n —l—e/Q ‘Vvi

n

(49)
Now look at the difference of (42) and (45), we then get

H

i H i 1 N i
an(v )+ m@(v )+ - < Ej(v"),v" > —F3(v') — —c.

15



It follows for some constant C, depending on ¢,

ge/ ‘Vvi
Q

Combining (50) with (42) , we get (46) . As in [18], we may assume, by passing
to a subsequence, that v’ weakly converges to a v in W' (Q, R**1)  and
strongly converges to v in W1?(Q, R"*1) for any p € [1,n).

We claim that v is nontrivial. For otherwise, v = 0 implies that

Q@) "+ C(e). (50)

<@, (v),v" > =nQu(v') = (n+1) fouo-vi Av-- Avp, — 05

Fa(v') — 0, < Ey(vi). v > 0. (51)

n
—

By passing to a subsequence if necessary, we may assume further that / ‘Vvi
Q

[. Tt follows that Q(v") — —[l{ by (45). By (42), we have

nH 1
—— )1 . 2
i n+1 < H ) e (52)
l
It follows that ¢ = T On the other hand, by isoperimetric inequality,
n
>S5 L]
> G|
-_ H )
n+1
which implies [ > W Therefore,
Sn+1

P —
~H[" (n+1)

Sn—i—l
Hr(n+1)
So v is nontrivial. Taking the limit in (44) , we have that v satisfies ®'(v) = 0,
or equivalently, u = ug + v is a solution. O

This is a contradiction, because Proposition 15 implies that ¢ <
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The rest of this section is devoted to the proof of Proposition 15. The
case n = 2 has been shown in [6].We generalize the argument in [6] to higher

dimensions.
For v € Wy (Q, R*™), denote

= [V + 0 w); (53)
E3 (U)
R(v : 54
= Qu)|= oY
/ |Vol"
= inf { 22 W%,Q (v) # 0,0 € W™ (Q, R™1) b . (55)
Define
J=inf {T(v) : Q) #0,v € Wy (, R} (56)

We first prove
Proposition 16 J < S.

Proof: Suppose 0 € 2 and Vu(0) # 0. Choose a coordinate basis e ..., €541
for R™*! that has the same orientation as the canonical basis of R**! such
that

ou ou
=—(0)- 0)-e, <0. 57
12 Go0) et () e < 67)
Let v : R — S™ be the stereographic projection:
(21‘, _2)
v(r) = —, v € R", 58

(v is written in the coordinate e ..., e,41 ). For € > 0, consider the map

o (2w, —2¢)
ve(x) = e

Let R > 0 be a number such that Bygr = Byr(0) C Q. Let € € Cj (Bag, [0,1])
be a cut-off function such that & = 1 on Bg. Note that {&v¢ € Cf (Q, R
and the following properties of v can be easily verified:

1 =z

vi(z) = —v(=),

€ €
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2

O p———
€2+ ||
C
Vo <
Vo) < G

for a constant C' independent of € and .
We shall establish

T(€v) =8+ coe + O <€1+a) as € — 0,

(59)

(60)

where ¢g < 0 and « € (0, 1) are constants. Here, as a notation, O (f) denotes
a quantity satisfying |O(f)| < C'|f] for some constant C.The inequality of

the Proposition 16 follows by taking e small enough.

We now proceed to show (60). By the mean value theorem,
la9) = F@l =0 ( sup 7+ )]} bl
0<t<1
Applying this to f(a) = |a|” with a = £V, b = V&<, we have
LIV = [ 1eve+ e
0 R®
= [ 1evur o ([ evuil+ Iver) T ver)

: : . .1
Since v is conformal and v (R™) is a sphere of radius —, we have
€

VvV n"wy,
en

/ IVoe|™ = v/ - area (vf (R™)) =
Rn
On the other hand, by (59),

/Rn (€ —1) V" =0 (/@ZR vay") ~0 (/: ’”:; dr) —00).

Similarly,

O ([, (evviy 1) = o)

0 (/R |vgv6\“) — 0(1).

18

(61)

(62)

(63)

(64)

(65)



It follows from (62)-(65)

[19 (@) = Y 1 o). (66

€

We now estimate Q(§v°). Applying (61) to f(a) = v1 A - -+ A v, (where
a = (v})) with a = £V, b = VEue, we have

Qev) = [ € () A-e A (&),

= [t n a0 ([ 160 (9v] + V€] 1V
(67)
Recall that Q(v¢)/(n + 1) is the oriented volume of v¢(R"™). So we have

Q(v°) = % (n + 1) vol(v*(R")) = i;:fl. (68)
Similarly to (64) and (65), we have
/(2(§"+1—1)v6~vf/\---/\U;:O(l). (69)
O ([ 11 (€ver] + [Vew )" [Vew'|) = O(). (70)
So (67) — (70) imply that
QW] = —5 + O(L). (71)

Similar argument applies to Q(£v), and we have

Qi) = [ (@) A (&),

= [ nu 0 ([l (€9 + (Ve ver])  (72)
:/anu-vi/\~~Ava+O(1).

Denote @ = ™. Since 4 is in Cy'® (Byg) by the regularity theorem in [24],
we have that for all x € R,

19



i(z) = @(0) + Vii(0)z + O (||Vill g || )
= u(0) + Vu(0)z + O (J[ull cr.a (s, 1217) -

Therefore, by conformal invariance of @,, and (73),

(73)

1
/1~L'1jf/\~~-/\vf1 = — U(ex) - vy A~ Avgda
== ([ () + eFu(0)z) v A Avade) +

€’I'L

—n+a 14+«
0 (A Fulley [y e 1907 ).

(74)
We have
/ w(0) vy A+ - Avpde =0, (75)

and

[ plal vt =0+ [ = o() £ o). (T6)
|o| <22 1<Ir|<?

€

Next we show that

/n Vu(0)z - vy A+ Avpdr = cE 12 e = . (77)
Proof of (77) : By (17),
/nVu(O)x-vl/\--~/\vndx
:—:L/ni: Vu(0 /\li)/\ Av, dx
—1
_ _; ) Zn; SZ ey A A (z Z—l) Ney) (1 W dx

20



dx

v S0 (72) — (77) together imply that
(1+ =)

where ¢ = [zn

/Qu (&) A A (&), = dye T+ O (61’”“) : (78)

It follows from (66) (71) (440) that

_n_ -1 ,
T(&ve) = [6_"@7“ + O(l)} (e_”n”/an +0(1) + S~ + O (6_"+1+°‘))

n+1
=S+ cpe + O (e17) | where ¢y = Zﬂ”’y < 0.

This finishes the proof of (60). O

Proof of Proposition 15: Let £&v° be as in the proof Proposition 16 such
that T'(€v¢) < S. Tt is easy to check the + sign in (68) is (—1)" . Take v = £v°
for n odd. Take v = —&v° for n even; so T'(v) = T'({v°) and Q(v) = —Q(&v°).
Thus for any n, T'(v) < S and Q(v) < 0. We may also assume that ®(v) <0,
by replacing v by Av for large A > 0. Consider

nH nH
*(tv) = E — =1"E ——t""Q(v).

(tv) 3(tv) + - 1Q(tv) t"E3(v) + . 1t Q(v) (79)
It is easy to check that ®* has a maximum at ¢t = — &31)()”[){, with maximum
value o

Es(v) r 1 Sntt
O*(tv) = l S - < - . (80)
1Q(v)|7 |H|" (n+1) |[H|"(n+1)

To show (41), we need to assume that wg is small, say, / |Vuo|™ < 1, then
Q
by (40)

n—1 ) )
Ba)] < C [ 30 IVuol" Vel
i=1

<oy (/Q|vu0|”>n"i (/Q|W|”>:’ (81)

gc(/g\wd”)"zg“f (/Qyw”)’l’.

It follows

21



3=

S ([ver)”

B(tv) < t"Es(v)+ L tm1Q(0) + 0 ([ Vol
n+1 Q

= O™ (t,v).
(82)
By the construction of v, we have that
€"E3(v) = v/n"w, + O(e); e"/Q |Vol" = vVnrw, + O(e); (83)

6”“@(1}) = —w, + O(€n+1).
Therefore, there are positive numbers C, Cs, C3, such that for any number

5 >0,

d**(Be,v) = 5"6"E3(v)+;flﬁ"“e”“@(v)+ |
c( / |Vuo\”)"2j:f gie ( i |w“); (84)
< - G+ G ([ Vo) 0 8

It follows that there is a §* such that ®**(fFe,v) < 0 for all 0 < e << 1
and 5 > [*. By (82), we have,

SUPg<; O(tv) < SUDPg<i< e O (t,v) 1 |
n n n—1 i n n
< supg<y ©*(¢,v) + supg<y<gee C (/Q [Vuo| ) Zi:l t (/Q Vvl )

W\ n\ "
< supye, @(t,0) + C [ [Vaol”) S0 et ([ 9er)

< supog, @ (t,0) + Co [ [Tuol")"

(85)
n+1
where G depends on . Since supog; &*(1,v) < 77—y, SuPog, B(t0) <
Sn+1
H(n+1) if /Q |Vug|™ is small enough. O
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4 Regularity of Conformal Solutions
Our result is

Theorem 17 If u is a conformal solution of (1) and f satisfies (2), then
u € CH(Q) for some a € (0,1). If u =1 on 0 and n € C°(0), then
ue C'Q).

When n = 2, this theorem was proved by Griiter in 1980 [16]. We will
use the main idea of the proof in [16].
Consider the set G of good points of u defined by

G ={x €Q: wis approximately differentiable at x,and
x is a Lebesgue point of |Vu|", and |Vu|(z) # 0}.

Here u is approximately differentiable at a point x, with approximate dif-
ferential Vu(zg), by definition, if there is a ug € R such that for every
€ >0,

QL™ | Q\{z : |u(z) — up — Vu(zg)(x — x0)| < €|z — 20|}, 0] =0,

where ®" denotes the n-dimensional density and L™|€ is the Lebesgue mea-
sure, restricted to €.

We will need the following property for functions in W1 (Q, R¥).

Proposition 18 ([12] [Theorem 4.5.9]) If u € WY(Q, R¥), then u has weak
derivative and approximate differential almost everywhere, and when both
exist, they coincide.

For a proof, see [12]. Next, we have
Lemma 19 Suppose u € W™(Q, R*) and B C Q is a ball. Then
oscgu < dmaz{ay, as}, (86)

where a; =08cop U, ag = sup inf |u(x) —u(y)|.
yeGNB z€0B
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Proof: The proof is similar to that in [16]. Denote o =max{ay, as}. Take
a point x; € 0B. Define z = u — u(x;) and v =max{|z| — 2a,0}. Then
v e Wy (Q). From the definitions of o, o, one sees thatv =0 on GNB. It
follows that Vu(y) = 0 if y € G N B. On the complement of G N B, Vv =0
almost everywhere. Therefore Vo = 0 almost everywhere on B, and so v
must be a constant, which is zero. O

We also need the Courant-Lebesgue Lemma.

Lemma 20 Suppose u € WhHn (Q,Rk) and B(xz,r) C Q,0 < r < 1. Then

there is a constant C' > 0 and some § € [g, r] such that

osc u < CKY™  where K :/ |Vul". (87)

Proof: Recall that for y € B(x,r), |Vu(y)|* > p2|Veu(y)|?, where p =
—~ € 571 Tt follows

ly — x| and 0 = 2

/ / oLV guly)|"dddp < K. (88)
By Fubini’s theorem, there is a § € [5, r] such that

/ [ 57 Vaut)dodp = 2 [ [Vou(y)|"de. (89)

Since § < r, (88) (89) imply that [gn—1 |Vou(y)|"df < 2K. (87) follows from
Sobolev embedding theorem W' (S"~1, R¥) — CY/". O

This lemma gives a control of the oscillation of u on the boundary dB(z, 9).
Our following step is to estimate the interior oscillation. We need some
propositions.

Proposition 21 Suppose u € W1™(Q, R¥) is conformal and B C Q is an
open subset. Define D, = BN{z : [u(z) — u(xg)| < o} for xy € BNG and

o> 0. Then
n

—1
limsup 0_"/ Vul* >n2 w, 1, (90)
Do

c—0

where w,_1 is the area of the sphere S™ 1.
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Remark 22 This Proposition was proved by Griter [16] when n = 2.

Remark 23 Without the assumption that u is conformal, then (90) still
holds, with the right hand being replaced by n™ w,_1.

Proof: We may assume u(zg) = 0. For €,0 > 0, define

T. = B\{z : [u(z) = Vu(wo)(z — w0)| < —=[x — o},

B.=Bn{x: |z — x| <rc}, wherer.= |Vu0x0n| e
We claim
BT, € D,\T..
Indeed, if z € BT, then
€
|u(z) = Vu(zo)(x — w0)| < —=l|2 — ol;

vn

while the conformality condition (8) implies that
1

V(o) (x — o) ” < —[Vu(o) Pl — o,

Therefore,

u(@)| < —=([Vu(zo)| + €)[z — x| <0,

4

n
and so x € D,\T..
Note that for any a,b > 0,¢ > 0,and p > 1, there holds

a? > (1 — )b — (1 —1)|a? — b7|.

(For a proof, note that eb? 4+ ¢~ '|a? — b°| > 2bP/%|a? — bP|Y/2 > |aP — bP| —
(a? — bP) .) Using this inequality, we obtain

o [ V@)l = o [ [Gu()l
(1 — ¢) / V(o) | — (91)

Bg\T6
o (el — 1) /BE\TE(]Vu(xﬂ” — |Vau(zo) ).

v

v
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We look at each term in (91) as o — 0. For the first term,

o (1 — ¢) /B o [Vulao)l" = 07" (1= | Vulao)"L'(BAT)  (92)

wnt o Vula)l N
- Vvnn(1 6)<|Vv“(5€0>)+5>n (1 —9"(L|T.,x0))
- =vr-a (gt

For the second term in (91), using that xq is a Lebesgue point of |Vu|™, we
have, for fixed e,

o =) g IV = Vo))

= |vu((2;01) y_+1e))\7@(36) 17" =Vt
—0aso—0.

Now taking the limit in (91) and using (92) (93), we obtain (90). O

Theorem 24 Suppose B C 2 is a ball, o € BN G, and ¥ > 0 is a number
such that

MAY < 1, (94)
dist (u(0B),u(zg)) > X, (95)

where A is as in (2). Then
[19u > S ami s (96)

Corollary 25 Suppose B C 2 is a ball such that

Wnp—1

/B ‘VUl < 2N+2pn/2+1 An’

Then for any o € BN G,

dist (u(OB), u(zo)) < — ( /B \vu|n)l/n.

g 2_1
Wn—172
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Proof of Corollary 25: Let

1/n
4 n
= (wn_lnn/2_1 /B|VU| > .

Then the condition (94) is satisfied, but the conclusion (96) does not hold,
therefore, (95) must not hold. O

Proof of Theorem 24: For ¢ € (0, Y], denote
D, =Bn{z: |u(z) —u(xy)| < o}.

Let A € Cj(R,[0,1]) be a function such that A(t) = 0 for ¢ < 0. For p € (0,),
define

n=Ap — [ul)u.
From (94), we have n € Wol’"(B, RF)N L>. Multiplying 7 to the equation (1)
and integrating by parts, we obtain

u

| 1vulap = lul) = [ 192X o~ ul) Va2
D, D,

|u (97)
= /Dp fz,u, Vu) ul(p — |ul).
Define )
2(p) =, [, 1Vul" Ao~ Jul).
Then we have )
V()2 [ IVulX (o ) (98)

1
From the conformality of u, it follows that |Vu - u|*> < —|Vu|*|u|>. The
n
property of A implies that
N(p = lul) [ul < pX(p = [ul) .
Therefore, we have that
U

1 /
| 1wl G = I Vu <= [Vl (o = ful) Jul
D, |ul n Jp,

(99)
< ;P/D [Vau|" N (p — |u]) < p®'(p).
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Also, we have

IN

|, @ Vuyuse =) < A [ [9ul"Mo = ful) ul

A/ V" /p N (o — |u])|uldo
D, 0

A/Opa (/D V"N (o — yu|)\u|> do

IA

IN

< nA /p o®'(0)do.
0
(100)
Thus (97) together with (99) and (100) yields
n®(p) — p®'(p) < nA /p o® (0)do. (101)
0
This can be rewritten as
(p)\" _ nA o
_(2() < n /p o®'(0)do < nA (p) (102)
pn pn+1 0 pn

nAp(p(p)
pn
has a limit as p — 0. Furthermore, for 0 < p; < py < 3 by

This differential inequality implies that e

D(p)

Y22

is increasing in p; in par-

ticular,

integrating 102 from p; to ps, we have

) ) )
(1)  2e2) |y 1" 20)y, (103)
P1 P2 o p"
The second term of (103) can be estimated by integration by parts and using
(101)
2 O i) P2 d(p)\
/ (f)dp < ffﬁ) +/ p(—(f)> dp
o p A 0
d 1
< Slp_zl) A/p2 — pa@’(a)dadp
p 0 pr 70 (104)
) r2 O
< 20 4oy / (o 1> d
bl , R
P2
2



From the assumption, nApy < nAY < 5. Thus it follows that from (104)

) o

I (0) 4y < 22P2) (105)
o p P2

Now (103) and (105) imply that

(I)(l;l) < (p2) 1 onA (P2) <2<D(Z2).
£1 p3 Py P2

(106)

Given € > 0, we choose A(t) with the additional property that A(t) =
for t > €p;. Then it easy to see

-/ V" < (o), )< [Vl (107)

P1(1 )

Apply (106) with ps = X, and use (107), we then obtain
Ip

p1(1—

Vb Ju IVl Jyul"
Pl xr un

(108)

Let py — 0 in (108) and apply Proposition 21, and then send ¢ — 0. (96)
then follows. O

Proof of Theorem 17. We divide the proof into several steps. The first
step, showing the continuity of wu, is the essential one. The other steps are
standard.

(a). u is continuous. Fix xg € Q. Choose R > 0 small enough such that
Wn

B(xo,R) C Q and [, gy [Vu|* < m By the Courant-Lebesgue
Lemma 20, there is a § € [£, R] such that

1/n
osc u<C </ |Vu|”> = a1(R).
0B(z0,9) B(zo,R)

Because [pio.5 VU™ <[5 r) [Vul", by Corollary 25, for any zo € B N
G, B = B(Io,(s),

1/n
dist (u(0B),u(w0) < —— < / -, |Vu|"> = as(R).

Wp—1M 2
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Now Lemma 19 implies that
0SCB(z0,0) U < 4max{oq(R), s (R)} — 0 as R — 0. (109)

In particular, oscp(u,,r/2) 4 — 0 as R — 0. So u is continuous at x.

(b). u is CP for some 8 € (0,1). We claim that if 2o € W and R > 0 such
that B(zo, R) C Q and o0scpyy,ryu A < 1, then there is a number 7 € (0,1)
so that for every ball B (z,7) C B(xo, R)

/ Vul" < T/ V|, (110)
B(z,r/2) B(z,r)

By iteration, we have for some constants C' and v € (0,1),
/ |Vu|" < Cr? for x € B(xy, R/2) and r € (0, R/2).
B(z,r)

That u is C? for some 3 € (0, 1) follows from Morrey’s Lemma [23][3.5.2]. The
proof of (110) is a standard “hole-filling” method. Let @ be the mean value
of u on B(z,r)\B(z,r/2) and n € Cj(B(z,r),[0,1]) be a cut-off function
such that n = 1 on B(z,r/2) and |Vn| < 3/r. Take ¢ = (u — u)n, then
¢ € W(}’"(B(a:,r),Rk). Multiply ¢ to the equation (1) and integrate. We
then get

/ n|Vul® +/ |Vu|"?VuVn(u — )
B(z,r) B(z,r)

-1/ oy V(= @)

< 0SCB(x uA/ Vul|".
o B(@o,R) B(z,r) | |

(111)

By Hélder and Poincare’s inequalities, we estimate the second term of (111),

‘/ IVu|"?VuVn(u — )
B(z,r)

(n—1)/n 1/n
ay war) (1 =
B(z,r)\B(z,r/2) B(z,r)\B(z,r/2)

C’g/ )|Vu|",

B(z,r)\B(z,r/2

IN

IN

(112)
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where C and C3y depend only on n and k. Put (112) back to (111) and note
the property of 7. It follows

/ |Vu|" — Cy |Vu|" < oscB(wO,R)uA/ |Vu|"
B(z,r/2) B(xz,r)\B(z,r/2) B(z,r)

C+1) [
( 2 ) B(z,r/2)

Let 7 = ((;*2 + 0SCB(z0,R)U A) /(Cy+1). Then (43) follows.

(c). u is C* for some o € (0,1). For the proof of C1® regularity based
on CP, we refer [17] or [13].

(d). u is continuous up to 0S2. This was proved in [24] [Theorem 4.1]. O

or

|Vu|" < (02 - oscB(xO,R)uA> /B( )\Vu‘n
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