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Optimal Locations and the Mass Transport Problem

Michael McAsey and Libin Mou

Abstract. The mass transport problem seeks to find a transport plan to
move mass distributed according to one measure and place it according to the

distribution of a second measure so as to minimize total transportation costs.

In many cases the first measure is known but the second is only partially
specified. In such a case, part of the problem is to find the optimal location

of the support of the second measure. In this paper we show the existence of

the support of the second measure that minimizes total transportation costs in
the cases that (i) the target measure is supported on a finite number of points

and (ii) the support of the measure is a more general set.

1. Introduction

Suppose the measures µ and ν represent two mass distributions on Rm of equal
total measure. Let c(x, y) be the cost (per unit mass) for transporting the mass
from x to y. A transport plan is a measure γ on the product Rm × Rm with
marginals µ and ν, with total cost

(1)
∫

Rm×Rm

c(x, y)dγ.

The Monge-Kantorovich mass transport problem is to find the transport plan
that minimizes the cost (1). This was formulated by Kantorovich in the 1940’s,
generalizing Monge’s format in 1781. Monge’s original formulation of the problem
assumes that c(x, y) = |x− y| and asks for the existence of a mass-preserving map
f from the support, Spt(µ), of µ to Spt(ν) that minimizes the cost

(2)
∫

Rm

c(x, f(x))dµ.

This is a special case of (1) when γ is the measure supported on the graph of
f with marginals µ and ν. Since the functional (1) is linear in γ and the set of
γ’s whose marginals are µ and ν is a convex subset, a minimum of (1) exists under
general conditions on µ and c; see [8], [11] for examples. While Monge’s definition
of a transport plan appears to be more natural, the existence of a minimum for
(2) requires several conditions. First, to ensure the existence of a mass-preserving
map from Spt(µ) to Spt(ν), the measure µ should not be concentrated on small
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sets. Second, some sort of concavity of the cost function c is needed to assert the
uniqueness of the minimum. See [8] and the references therein.

The problem of mass transport can also be phrased in the language of prob-
ability. In this connection, the optimal mass transport problem corresponds to
optimal coupling of random variables. Results in one context can be interpreted
under the other. See [11], [13], [14], for examples. The authors wish to thank the
referee for pointing out several significant references.

Many real-life problems can be modeled by mass transport problems. Consider,
for example, the problem of finding locations of waste management facilities in a
city. Other examples can be found in [10], [11], [12].

In many cases, however, the source measure µ is known but the target measure
ν is only partially known, and the problem is to find the location of Spt(ν) and
the transport plan so that the cost is minimum. This is especially true in location
problems, see [2], [3], [9], [12], [16], [18] for examples. In this paper we show
the existence of Spt(ν) such that the total cost of transporting a source mass µ to
Spt(ν) is minimal among a class of admissible target measures.

We first consider the case that the target measure ν is supported on a fi-
nite number points z1, . . . , zn (to be determined) with prescribed positive masses
α1, . . . , αn with

∑n
i=1 αi = 1. That is, we assume

(3) ν =
n∑

i=1

αiδzi

where δzi
is the point mass concentrated at zi. (As applied to mass transport

problems, the αi can be thought of as the capacity constraint for a facility located
at zi.)

Assuming that z1, . . . , zn have been found and that µ does not concentrate on
certain sets of lower “dimensions”, then an optimal transport plan exists, which
can be represented by a map P from Spt(µ) to Spt(ν) = {z1, . . . , zn}. The map
P generates a partition D1, . . . , Dn of Spt(µ), given by Di = P−1(zi), i = 1, . . . , n.
(The transport plan is given by “transport the mass in Di to the location zi.”)
The total cost (2) can be written as

(4) F (z1, . . . , zn, D1, . . . , Dn) =
n∑

i=1

∫
Di

c(x, zi)dµ.

This result is proved by Abdellaoui [1], Cuesta-Albertos and Tuero-Diaz [6], Gangbo
and McCann [8], and Ruschendorf [13], [14].

Our first problem can now be stated as follows. Given a probability measure
µ and

(5) α1, . . . , αn > 0, with α1 + · · ·+ αn = 1,

find locations z1, . . . , zn in Rm and a partition D1, . . . , Dn of the support of µ such
that

(6) µ [Di] =
∫

Di

dµ = αi, i = 1, . . . , n

and the functional (4) is minimal among all locations and partitions satisfying (6).
In Theorem 2 below, we prove the existence of optimal z1, . . . , zn and D1, . . . ,

Dn under fairly general conditions on µ and c. As an important part of the proof of
Theorem 2, we need Theorem 1, which is a characterization of the optimal partitions
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D1, . . . , Dn of (4) for given z1, . . . , zn. In addition, we need to analyze the limit
behaviors of a minimizing sequence z1, . . . , zn and the corresponding sequence of
optimal partitions D1, . . . , Dn; some techniques of this part are similar to those in
the paper of Cuesta-Albertos [4].

There are conditions on µ and c(x, y) for which Theorem 1 is well-known (cf.
[1], [8], [14]). Our proof of Theorem 1 is somewhat long but is straightforward
and might be of interest in its own right.

In Section 3, we consider the problem for which the target measure ν is sup-
ported on a subset M of Rm. Here we do not make any assumptions on how the
resulting mass is distributed on M. Therefore, the optimal transport plan is simple:
the mass at the x ∈Spt(µ) is transported to a point in M such that c(x, y) ≤ c(x, z)
for all z ∈ M . The total cost of transferring the mass µ to M is

F (M) =
∫

Rn

c(x,M)dµ(x),

where c(x, M) is the cost of transferring a unit mass from x to M . Note that
c(x,M) = miny∈M c(x, y).

When the cost function c(x, y) = |x− y|2, then the optimal M is equivalent to
the self-consistent set (points, curve, or surface) of a distribution, see [15, Definition
6.1]. When the cost function is a more general function of the norm |x − y|, the
optimal set M of k points is called the k-means as in [4], [5]. The concept of
self-consistency is fundamental in statistics and it has applications in various fields
including signal transmission; see [15].

The existence of an optimal set M of a finite number of points has been proved
in [4], [5] and [10]. In Section 3, we prove the existence of M that gives the
minimal cost F in classes of compact sets of arbitrary dimensions.

2. Existence of Optimal Locations - the finite point case

In this section, we will give a direct proof (without using convex analysis) of the
existence of an optimal plan for measures ν of the form (3) under mild conditions
on µ and c(x, z). Theorem 1 shows how, given n points z1, . . . , zn, we can construct
an optimal partition D1, . . . , Dn. This is a technical result but gives an explicit
description of the sets Di. The form of these sets is suggested in Example 1.6 of [8].
For the cost c(x, y) = |x− y|p, Theorem 1 is also proved in [1]. Then in Theorem
2 we show that the support of ν, Spt(ν) = {z1, . . . , zn}, can be chosen such that
total transportation cost (4) is minimal among all possible points z1, . . . , zn in Rm

and partitions D1, . . . , Dn satisfying (6).

Theorem 1. Suppose c(x, z) : Rm × Rm → [0,∞) is a continuous function,
z1, . . . , zn in Rm are given points and α1, . . . , αn are positive numbers so that
α1 + · · ·+ αn = 1. Suppose µ is a regular Borel probability measure such that for
any zi, zj and constant λ,

(7) µ {x ∈ Spt(µ) : c(x, zi)− c(x, zj) = λ} = 0.

Then
(a) there exist λ1, . . . , λn such that the partition

(8) Di = {x : c(x, zi) + λi ≤ c(x, zj) + λj, j 6= i} ,

satisfies µ [Di] = αi;
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(b) among all partitions E1, . . . , En satisfying (6), the partition D1, . . . , Dn

defined in (8) is optimal, i.e., it minimizes the total cost (4) for the given z1, . . . , zn.

Note that (7) says that any boundary between two regions Di and Dj has zero
measure. This condition was also used in [6]. Also note that the sets Di defined
in (8) depend on the numbers λi. Theorem 1(a) says that it is possible to choose
λ = (λ1, . . . , λn) so that µ[Di] = αi for all i = 1, . . . , n. Clearly it is easy to find
λ and associated partitions of Rm that satisfy this equation for some i but not
necessarily for all i. In particular one of these λ’s can be specified arbitrarily and
then the others need to be chosen carefully. Showing that all the required λ’s can
be chosen simultaneously occupies most of the proof.

To prove Theorem 1(a) we will use induction on the number of those i’s for
which µ[Di] = αi. We will let λ = (λ1, . . . , λn) and fi(λ) = µ [Di]. For k =
1, . . . , n, we let

(9) S{α1,...,αk} = {λ : fi(λ) = αi, i = 1, . . . , k} .

The sets S{α1,...αk} measure how close we are to finding λ’s that describe a partition
satisfying the required condition (6). So for Theorem 1(a) we need to show that
S{α1,...,αn} 6= ∅. Because α1 + · · ·+αn = 1, we need only show that S{α1,...,αn−1} 6=
∅. This will be a special case of the following Main Lemma, which says that
S{α1,...,αk} 6= ∅ for any k ≤ n− 1. We say that a measure is strongly positive if the
measure of any measurable set with non-empty interior is positive.

Main Lemma. (i) For i = 1, . . . , n, fi(λ1, . . . , λn) is continuous in λ.
(ii) Suppose µ is strongly positive. For any k ∈ {0, 1, . . . , n− 1}, if

(λk+1, . . . , λn) ∈ Rn−k, then there exists unique (λ∗1, . . . , λ
∗
k) determined by

(λk+1, . . . , λn) such that fi(λ∗1, . . . , λ
∗
k, λk+1, . . . , λn) = αi for each i = 1, . . . , k.

The proof of this lemma is rather technical and depends in turn on several
other lemmas. The central job of these lemmas is to explore the functions fi (as
functions of the λ’s) and to show that we can solve for some of the λ’s in terms of
the others. The strong positivity assumption guarantees the uniqueness of the λ*’s.
To avoid obscuring the proof of Theorem 1, these results are stated and proved in
Section 4. Finally note that the statement of Theorem 1 does not require that the
measure µ satisfy the strongly positive hypothesis. To be able to apply the Main
Lemma we perturb µ with a strongly positive measure.

Proof of Theorem 1. (a) Let µ0 be a strongly positive absolutely continu-
ous probability measure. Consider µε = (1− ε)µ + εµ0 for ε ∈ (0, 1). Let λn = 0.
(Any fixed value for λn would work as well.) Applying the Main Lemma to µε

with k = n − 1, there exists (λ∗1,ε, . . . , λ
∗
n−1,ε) such that fi,ε(λ∗1,ε, . . . , λ

∗
n−1,ε, 0) =

µε[Di] = (1 − ε)µ[Di] + εµ0[Di] = αi, i = 1, . . . , n − 1, and Di is defined by (8)
using the parameters (λ∗1,ε, . . . , λ

∗
n−1,ε, 0). Since

∑n
i=1 fi,ε(λ∗1,ε, . . . , λ

∗
n−1,ε, 0) =∑n

i=1 αi = 1, then fn,ε(λ∗1,ε, . . . , λ
∗
n−1,ε, 0) = αn. We claim that when ε → 0, the

net
{
(λ∗1,ε, . . . , λ

∗
n−1,ε)

}
ε

must be bounded. For otherwise, by passing to a subnet
(and rearranging components if necessary), we may assume that λ∗1,ε → +∞ or −∞
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as ε → 0. If λ∗1,ε → +∞, we would have

α1 = f1,ε(λ∗1,ε, . . . , λ
∗
n−1,ε, 0)

= µε

[{
x : c(x, z1) + λ∗1,ε ≤ c(x, zj) + λ∗j,ε, j = 2, . . . , n

}]
≤ µε

[{
x : c(x, z1) + λ∗1,ε ≤ c(x, zn)

}]
≤ µ

[{
x : c(x, z1) + λ∗1,ε ≤ c(x, zn)

}]
+ ε → 0

as ε → 0, contradicting α1 > 0. Similarly, if λ∗1,ε → −∞, then

αn = fn,ε(λ∗1,ε, . . . , λ
∗
n−1,ε, 0)

≤ µε

[{
x : c(x, zn) ≤ c(x, z1) + λ∗1,ε

}]
≤ µ

[{
x : c(x, zn) ≤ c(x, z1) + λ∗1,ε

}]
+ ε → 0

as ε → 0. This contradicts αn > 0.
Now knowing that the net

{
(λ∗1,ε, . . . , λ

∗
n−1,ε)

}
ε

is bounded, we may assume
that (λ∗1,ε, . . . , λ

∗
n−1,ε) → (λ∗1, . . . , λ

∗
n−1) as ε → 0. Part (i) of the Main Lemma

implies fi,ε is continuous with respect to λ and ε and so

fi(λ∗1, . . . , λ
∗
n−1, 0) = lim

ε→0
fi,ε(λ∗1,ε, . . . , λ

∗
n−1,ε, 0) = αi.

This shows part (a).
(b) Suppose E1, . . . , En is any partition of Spt(µ) satisfying (6). Then by the

definition (8) of D1, . . . , Dn,

F (z1, . . . , zn, E1, . . . , En) =
n∑

j=1

∫
Ej

c(x, zj)dµ

=
n∑

j=1

n∑
i=1

∫
Ej∩Di

c(x, zj)dµ

≥
n∑

i=1

n∑
j=1

∫
Ej∩Di

(c(x, zi) + λi − λj)dµ

=
n∑

i=1

∫
Di

c(x, zi)dµ +
n∑

i=1

n∑
j=1

(λi − λj)µ(Ej ∩Di)

=
n∑

i=1

∫
Di

c(x, zi)dµ +
n∑

i=1

λiµ(Di)−
n∑

j=1

λjµ(Ej)

=
n∑

i=1

∫
Di

c(x, zi)dµ + 0 = F (z1, . . . , zn, D1, . . . , Dn).

Thus the total cost function is minimized with the partition D1, . . . , Dn defined in
(8). �

Now that we know a suitable partition exists for arbitrary choices of points
z1, . . . , zn, we want to show that it is possible to choose these points to minimize
the total cost (4). This is the first of the existence theorems of the paper. The
hypotheses on the cost function c(x, z) in Theorem 2 (and Theorem 3) are supposed
to suggest properties of a per unit transportation cost between points x and z in
applications.
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Theorem 2. Suppose
(i) c(x, z) : Rm ×Rm → [0,∞) is continuous in both x and z with

c0 = sup {c(x, z) : (x, z) ∈ Rm ×Rm} ∈ (0,∞]

such that for any compact set E ⊂ Rm,

max {c(x, z) : (x, z) ∈ E × E} < c0

min {c(x, z) : x ∈ E} → c0 as ‖z‖ → ∞;
(ii) µ is a regular Borel probability measure such that for all points z1, z2 and

constant λ,
µ {x ∈ Spt(µ) : c(x, z1)− c(x, z2) = λ} = 0.

Then there exist points z1, . . . , zn and a partition D1, . . . , Dn of Spt(µ) such that
the total cost is minimal among all locations and partitions satisfying (8).

Proof. For any collection of points z1, . . . , zn, Theorem 1 guarantees the ex-
istence of a partition D1, . . . , Dn defined using these points as in (8) and satisfying
the requirements of (6). Furthermore, this partition gives a minimum value for the
total cost F for all partitions satisfying (6). Thus we can regard F as a function
of the points z1, . . . , zn and write

F (z1, . . . , zn) =
n∑

i=1

∫
Di

c(x, zi)dµ.

We now show that there is a choice of z1, . . . , zn that minimizes F (z1, . . . , zn).
First note that assumption (i) implies that for any z1, . . . , zn,

(10) F (z1, . . . , zn) < c0.

This shows that the greatest lower bound Fmin of F among all possible z1, . . . , zn

exists and satisfies

(11) Fmin < c0.

The rest of the proof consists of showing that Fmin is achieved at some z0
1 , . . . , z0

n.
Take a minimizing sequence

{
zk
1 , . . . , zk

n

}∞
k=1

such that F (zk
1 , . . . , zk

n) → Fmin

as k → ∞. Let Dk
1 , . . . , Dk

n be the partition and λk
1 , . . . , λk

n be the parameters as
in (8), that are associated with zk

1 , . . . , zk
n; that is,

(12) Dk
i =

{
x : c(x, zk

i ) + λk
i ≤ c(x, zk

j ) + λk
j for all j 6= i

}
.

The following assertion will allow extraction of convergent subsequences of
{
λk

i

}
k

and of
{
zk
i

}
k
.

Assertion. For all i ∈ {1, . . . , n},
(i)

{
λk

i

}
k

can be chosen to be bounded.
(ii)

{
zk
i

}
k

has a bounded subsequence.

The proof of this assertion can be found in Section 5. Assuming the assertion,
we continue the proof. By passing to a subsequence, we may assume that for all
i ∈ {1, . . . , n} , we have λk

i → λ0
i and also zk

i → z0
i , as k →∞.

Let D0
1, . . . , D

0
n be defined as in (8) with λ0

1, . . . , λ
0
n and z0

1 , . . . , z0
n. Note that

the interior Int(D0
i ) of D0

i can be expressed as

(13) Int(D0
i ) =

{
x : c(x, z0

i ) + λ0
i < c(x, z0

j ) + λ0
j for all j 6= i

}
.
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This is a strengthened version of (8). We show next that in fact D0
1, . . . , D0

n satisfy
the requirements of the target measure (8). Define intersections and unions of Dk

i

by

(14) Eim = ∩∞k=mDk
i and Ei0 = ∪∞m=1Eim.

Then by (12) and (13), it is easy to verify that for each i = 1, . . . , n

Int(D0
i ) ⊂ Ei0 ⊂ D0

i .

(If x ∈Int(D0
i ), then by (13), x ∈ Eim for all large m, which implies that x ∈

Ei0. If x ∈ Ei0, then x ∈ Eim for some m, which implies that x ∈ Dk
i for all

k ≥ m. Taking the limit in (12), we see that x ∈ D0
i .) Assumption (ii) implies

that µ
[
Int(D0

i )
]

= µ
[
D0

i

]
= αi. So D0

1, . . . , D
0
n satisfy (6). Letting χE be the

characteristic function of the set E, we have

(15)
n∑

i=1

∫
D0

i

c(x, z0
i )dµ =

n∑
i=1

∫
Int(D0

i )

c(x, z0
i )dµ

≤
n∑

i=1

∫
Rm

c(x, z0
i )χEi0(x)dµ

By (14), we see that χEik
(x) → χEi0(x) for all x as k → ∞. It follows that

c(x, zk
i )χEik

(x) → c(x, z0
i )χEi0(x). By (15) and Fatou’s lemma,

(16)

F (z0
1 , . . . , z0

n) =
n∑

i=1

∫
D0

i

c(x, z0
i )dµ

≤
n∑

i=1

∫
Rm

c(x, z0
i )χEi0(x)dµ

≤lim inf
k→∞

n∑
i=1

∫
Rm

c(x, zk
i )χEik

dµ

≤lim inf
k→∞

n∑
i=1

∫
Dk

i

c(x, zk
i )dµ

=Fmin.

This shows that F has a minimum at z0
1 , . . . , z0

n. �

3. Existence of Optimal Locations of Higher Dimensions

In this section, we consider target measures ν that are supported on sets M in
Rm of higher dimensions. The mass of µ at x ∈Spt(µ) is transported to a point in
M so as to minimize the unit cost:

c(x,M) = min
y∈M

c(x, y).

The total cost of transferring the mass µ to M is:

F (M) =
∫

Rm

c(x, M)dµ(x).

The goal is to find M (in a specified class of sets M) to minimize F (M). Note
that the distribution of ν is not prescribed. It is determined by the transport plan,
which may not be unique. So the distribution of ν is not necessarily unique.
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To state Theorem 3, we need assumptions on the class M of allowable sets and
the cost function c. These assumptions are broken into two groups. Recall that
the diameter of a set D ⊂ Rm is the number diam(D) = max {||x− y||, x, y ∈ D}.

Assumption 1. Suppose M is a collection of bounded and closed subsets of
Rm such that

(i) If M ∈M, then M contains the union of any of the connected components
of M .

(ii) If (Mk) is a sequence in M and Mk → M0 in Hausdorff distance, then
M0 ∈M.

(iii) There is a fixed bound d0 > 0 for the diameter of any connected component
D of a set M ∈M:

(17) diam(D) ≤ d0.

Assumption 2. (i) c(x, z) : Rm ×Rm → [0,∞) is continuous in both x and z
with

c0 = sup {c(x, z) : (x, z) ∈ Rm ×Rm} ∈ (0,∞]

such that for any compact set E ⊂ Rm,

(18) max {c(x, z) : (x, z) ∈ E × E} < c0,

(19) min {c(x, z) : x ∈ E} → c0 as ‖z‖ → ∞.

(ii) µ is a regular Borel probability measure with compact support.

Some examples of classes of sets M are given next. It is not difficult to check
that these examples satisfy Assumption 1. Suppose N is a positive integer and L
is a positive number.

(1) M = {M : M ⊂ Rm with |M | ≤ N}, where |M | is the cardinality of M .
This was considered previously in [4], [5], [10].

(2) M = {M : M is a line segment in Rmof length ≤ L} or M = {M : M is a
union of at most N segments of total length ≤ L}.

(3) M = {M : M is the image of a map from [0, 1] to Rm with ||f ′||∞ ≤ L} ,
where ||f ′||∞ is the maximum norm of |f ′|.

(4) M =
{
M : M is a continuum, such that H1(M) ≤ L

}
, where H1 is the

Hausdorff measure of dimension one. Or we can consider M = {M : M is the
union of at most N continua with H1(M) ≤ L}. By definition, a continuum
is a connected compact set. Property (ii) of Assumption 1 is due to the lower
semicontinuity of H1; see [7, Theorem 3.18].

(5) For any integer s ∈ [1, n] , let

M =
{
M : M is a continuum such that V i(M) ≤ L, i = 1, . . . , s

}
,

where V i is the i-variation, which is the i-dimensional volume for smooth surfaces
generalized to compact sets [17]. Vitushkin’s semicontinuity theorem [17] im-
plies that M is closed with respect to Hausdorff distance. More generally, the
set M =

{
M : M is a union of at most N continua with V i(M) ≤ L, i = 1, . . . , s

}
satisfies Assumption 1.

Theorem 3. Assumption 1 on M and Assumption 2 on c and µ imply that F
has a minimum among all M ’s in M.
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The proof follows along the same lines as the proof of Theorem 2. We need the
lower semi-continuity of F which is proven next. Let H(A,B) denote the Hausdorff
distance between the sets A and B; see [7] for the definition.

Lemma 1. The cost function F (M) is lower semi-continuous with respect to
Hausdorff distance, that is, if Mk, M0 ∈M and H(Mk,M0) → 0 as k →∞, then

(20)
∫

Rm

c(x,M0)dµ ≤ lim
k→∞

∫
Rm

c(x, Mk)dµ

Proof. Since H(Mk,M0) → 0 and M0 is bounded, all of the Mk are contained
in a ball Br0 of radius r0 and centered at the origin. Let r ≥ r0 be any number.
For δ > 0, define

E(δ) = sup {|c(x, y1)− c(x, y2)| : x, y1, y2 ∈ Br, |y1 − y2| ≤ δ} .

Then the continuity of c implies that

(21) E(δ) → 0 as δ → 0.

Now for x ∈ Br and each k, let yk ∈ Mk be such that

c(x, yk) = c(x,Mk),

and y0 ∈ M0 be such that |y0 − yk| = H(Mk,M0). (Note that y0 may also depend
on k.) Therefore

c(x, M0) ≤ c(x, y0) ≤ c(x, yk) + |c(x, yk)− c(x, y0)|
≤ c(x, yk) + E(H(Mk,M0))

= c(x,Mk) + E(H(Mk,M0)).

Integrating over Br, we get∫
Br

c(x,M0)dµ(x) ≤
∫

Br

c(x,Mk)dµ(x) + µ[Br]E(H(Mk,M0)).

Taking the limit as k →∞ and using (21) and H(Mk,M0) → 0 we have∫
Br

c(x,M0)dµ(x) ≤ lim
k→∞

∫
Br

c(x,Mk)dµ(x)

≤ lim
k→∞

∫
Rm

c(x,Mk)dµ(x).

Since r is arbitrary, we conclude (20). �

Proof of Theorem 3. Assumption 2(i) implies that for all M ∈M,

(22) F (M) < c0.

For otherwise we would have c(x, M) ≡ c0, contradicting (18). So the greatest
lower bound Fmin of F among all possible M ∈M exists and satisfies

(23) Fmin < c0.

Take a minimizing sequence {Mk}∞k=1 such that F (Mk) → Fmin as k → ∞.
Let

d(0,Mk) = min {||x|| : x ∈ Mk} ,

which is the distance from the origin to Mk.
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Assertion. The sequence {d(0,Mk)} is bounded; that is, there is a number,
say d1, such that for all k,

(24) d(0,Mk) ≤ d1.

For otherwise, we may assume d(0,Mk) →∞ as k →∞. By assumption (19),
for any r > 0, we have inf ‖x‖≤rc(x,Mk) → c0 as k →∞. Therefore we have

(25)

F (Mk) =
∫

Rm

c(x,Mk)dµ

≥
∫

x∈Br

c(x,Mk)dµ

≥ inf x∈Brc(x, Mk)µ [Br] .

Taking the limit as k →∞, we have Fmin ≥ c0µ [Br]. Since r is arbitrary, we
obtain Fmin ≥ c0, a contradiction to (23). So the assertion is proved.

Let d0 be as in (17). By the assumptions (18) and (19) there is a number R0

such that for all x ∈Spt(µ) (a compact set), we have

(26) inf
||z||≥R0−d0

c(x, z) ≥ max
||w||≤d1+d0

c(x, w).

For each k, write Mk = M ′
k ∪M ′′

k , where

M ′
k = ∪{D : D is a connected component of Mkwith d(0, D) ≤ R0} ,

M ′′
k = ∪{D : D is a connected component of Mkwith d(0, D) > R0} .

By Assumption 1(i), M ′
k ∈M for each k. Note that if z ∈ M ′′

k , then z ∈ D ⊂ Mk

for some connected component D with d(0, D) > R0. By (17), diam(D)≤ d0. So
||z|| ≥ R0−d0. At the same time, by (24) there is a w ∈ Mk such that ||w|| ≤ d1+d0.
Therefore, by (26), for x ∈Spt(µ),

c(x,M ′′
k ) ≥ c(x, w) ≥ c(x,Mk).

Consequently, we have

c(x,M ′
k) = c(x,Mk), for x ∈ Spt(µ),

which implies that F (M ′
k) = F (Mk). So {M ′

k}k is also a minimizing sequence, with
bounded diameters. By Blaschke’s selection theorem [7, p. 37], {M ′

k}k contains
a subsequence converging to M0 in Hausdorff distance. By Assumption 1(ii),
M0 ∈ M. By Lemma 1, F (M0) ≤ limk→∞ F (M ′

k) = Fmin. So M0 minimizes
F . �

4. Proof of Main Lemma from Section 2

Recall λ = (λ1, . . . , λn) and fi(λ) = µ [Di], where Di is defined by (8). We will
have occasion to group indices together. So more generally, for I ⊂ {1, 2, . . . , n} ,
we let λI = (λi)i∈I , and let I ′ be the complement of I so that I ′ = {1, 2, . . . , n} \I.
Let

DI = ∪i∈IDi = {x : c(x, zi) + λi ≤ c(x, zj) + λj , i ∈ I, j ∈ I ′} ,

fI(λ) = µ [DI ] =
∑
i∈I

fi(λ).

We will occasionally write fI(λ) as fI(λI , λI′) and DI as DI(λI , λI′) to em-
phasize the dependence on λI , λI′ .
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Parts (i) and (ii) of the Main Lemma stated in Section 2 are direct consequences
of Lemma 2 and Lemma 6 below. The proofs of these lemmas rely on several
properties of fi(λ) and fI(λ) contained in other lemmas in this section.

Lemma 2. For any subset I of {1, 2, . . . , n} , fI is continuous in λ1, . . . , λn.

This fact can be derived from the following general fact.

Lemma 3. For γ = (γ1, . . . , γm) ∈ Rm and continuous real-valued functions
g1, . . . , gm on Rm such that µ {x : gi(x) = α} = 0 for all i and α. Define g(γ) =
µ{x : g1(x) ≤ γ1, . . . , gm(x) ≤ γm}. Then g is continuous.

Proof. We will prove the case m = 2; the cases m ≥ 3 are similar. Suppose
{(ak, bk)}k is a sequence such that (ak, bk) → (a0, b0) as k →∞. We need to show
that

g(a0, b0) = lim
k→∞

g(ak, bk).

Define sequences {(a′k, b′k)}k and {(a′′k , b′′k)}k that squeeze (ak, bk) as follows:

a′k = inf {ak, ak+1, . . .} , b′k = inf {bk, bk+1, . . .} ,

a′′k = sup {ak, ak+1, . . .} , b′′k = sup {bk, bk+1, . . .} .

Then it is clear that componentwise (a′k, b′k) ≤ (a0, b0) ≤ (a′′k , b′′k), that both com-
ponents of (a′k, b′k) are increasing, that both components of (a′′k , b′′k) are decreasing,
and both converge to (a0, b0) as k →∞. Define three sequences of sets

Fk = {x : g1(x) ≤ a′k and g2(x) ≤ b′k},
Gk = {x : g1(x) ≤ ak and g2(x) ≤ bk},
Hk = {x : g1(x) ≤ a′′k and g2(x) ≤ b′′k}.

Then
g(a′k, b′k) = µ [Fk] , g(ak, bk) = µ [Gk] , g(a′′k , b′′k) = µ [Hk] .

From the properties of the sequences, we see that

Fk ⊂ Gk ⊂ Hk and g(a′k, b′k) ≤ g(ak, bk) ≤ g(a′′k , b′′k)

for k = 1, 2, . . . , and the equalities hold for k = 0. Since Hk is decreasing and
H0 = ∩Hk, we have limk→∞ g(a′k, b′k) = limk→∞ µ(Hk) = µ(H0) = g(a0, b0). On
the other hand, we have Fk increasing and⋃

k

Fk ⊂ F0 ⊂ {x : g1(x) = a0} ∪ {x : g2(x) = b0}
⋃
k

Fk.

Since the measures of both {x : g1(x) = a0} and {x : g2(x) = b0} are zero, it follows
that µ(Fk) → µ(F0), that is, limk→∞ g(a′′k , b′′k) = g(a0, b0).

Consequently we have limk→∞ g(ak, bk) = g(a0, b0). So g is continuous. �

Proof of Lemma 2. Note that fI(λ) = µ [DI ], where DI can be expressed
in the form

{x : g1(x) ≤ γ1, . . . , gm(x) ≤ γm}
where gi(x) takes the form of c(x, zk) − c(x, zl) and γi = λk − λl. By Lemma 3,
µ [DI ] is continuous in γ1, . . . , γm, and so is continuous in λ1, . . . , λn. �
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Lemma 4. (a) fI(λI , λI′) increases if each component of λI′ increases or each
component of λI decreases.

(b) Assume µ is strongly positive and 0 < fI(λ) < 1. Then fI(λ) strictly
increases if each component of λI′ strictly increases or if each component of λI

strictly decreases.

In the proof of the Lemma, we use the slightly awkward notation λ∗I for the
point (λ∗i )i∈I .

Proof. For part (a), suppose (λI , λI′) is fixed and λI′ ≤ λ∗I′ component-wise,
then from the definition of DI , we see DI(λI , λI′) ⊂ DI(λI , λ∗I′), which implies
that fI(λI , λI′) ≤ fI(λI , λ∗I′). Similarly, if the components of λI each decrease,
then fI(λ) decreases.

For part (b), suppose (λI , λI′) is fixed such that

(27) fI(λI , λI′) = µ [DI(λI , λI′)] ∈ (0, 1),

and λI < λ∗I component-wise. From the definition of DI we see

(28) DI(λI , λI′) ⊃ DI(λ∗I , λI′).

By assumption (7) and (27), we know DI = DI(λI , λI′) must have non-empty
interior, denoted by Int(DI). Note that (27) also implies that Int(DI) cannot be
the whole space Rm, therefore ∂Int(DI) is non-empty.

Take a point x0 ∈ ∂Int(DI). Then for any r > 0, B(x0, r)∩Int(DI) is open and
non-empty, and because µ is strongly positive, we have

(29) µ [B(x0, r) ∩ Int(DI)] > 0.

Note that

(30) Int (DI) = {x : max {c(x, zi) + λi, i ∈ I} < min{c(x, zj) + λj , j ∈ I ′}}

so

(31) ∂Int(DI) ⊂ ∂DI

= {x : max {c(x, zi) + λi, i ∈ I} = min{c(x, zj) + λj , j ∈ I ′}} .

By (31) and λI < λ∗I , we may take a small r > 0 such that if x ∈ B(x0, r), then

(32) max {c(x, zi) + λ∗i , i ∈ I} > min{c(x, zj) + λj , j ∈ I ′}.

Note that (32) implies that x /∈ DI(λ∗I , λI′); so B(x0, r) ∩ DI(λ∗I , λI′) = ∅.
This together with (28) and (29) implies

fI(λI , λI′) =µ [DI(λI , λI′)]

≥µ [B(x0, r) ∩DI(λI , λI′)] + µ [DI(λ∗I , λI′)]

≥µ [B(x0, r) ∩ Int(DI)] + µ [DI(λ∗I , λI′)]

>µ [DI(λ∗I , λI′)]

=fI(λ∗I , λI′).

So fI strictly decreases if each component of λI strictly increases. The assertion
for λI′ is proved similarly. �

We write λI →∞ (−∞) if each component approaches ∞ (−∞, respectively).

Lemma 5. If λI →∞, then fI(λ) → 0. If λI → −∞, then fI(λ) → 1.
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This is obvious from the definition of DI .
Regarding Lemma 5, we note that DI is well-defined even if some of the λi’s

are replaced by ∞ or −∞ as long as an infinity of the same sign does not appear
on the both sides of any inequality. For example,

f1(λ1, . . . , λn−1,∞) = lim
λn→∞

f1(λ1, . . . , λn)

= µ [{x : c(x, z1) + λ1 ≤ c(x, zj) + λj , j = 2, . . . , n− 1}] .

Here the condition for λn is void because λn = ∞.

Lemma 6. Suppose µ is strongly positive. For I = {1, . . . k} with k = 0, . . . , n−
1, if λI′ = (λk+1, . . . λn) ∈ Rn−k, then there exists unique λ∗I = (λ∗1, . . . , λ

∗
k)

determined by λI′ such that fi(λ∗I , λI′) = αi for i = 1, . . . , k.

A few remarks are needed before proving Lemma 6. Suppose I = {1, . . . k}
with k = 0, . . . , n− 1. (If k = 0, we take I = ∅.) For λI′ ∈ Rn−k, by Lemma 6, we
can take λ∗I depending uniquely on λI′ such that fi(λ∗I , λI′) = αi for i = 1, . . . , k.
Therefore, for j = k + 1, . . . , n, we obtain a function Fj which is, roughly, the
function fj restricted to an “n− k dimensional subset”

(33) Fj(λI′) = fj(λ∗I , λI′), λI′ ∈ Rn−k.

The following lemma contains properties of Fj which are needed in the proof
of Lemma 6. These properties are analogous to the results of Lemmas 1-3 for fI .
Note that if k = n− 1, then Fn(λn) is the constant αn.

Lemma 7. Suppose µ is strongly positive and I = {1, . . . k} with k = 0, . . . , n−
2. For j = k + 1, . . . , n, the function Fj defined by (33) satisfies

(a) Fj(λI′) is continuous in λI′ .
(b) If λj strictly increases, or λi strictly decreases for all i = k+1, . . . , n, i 6= j,

then Fj(λI′) strictly decreases. If λi increases for some i = k + 1, . . . , n, i 6= j,
then Fj(λI′) increases.

(c) If λj →∞ then Fj(λI′) → 0, and if λj → −∞ then Fj(λI′) → 1−
∑k

i=1 αi.

Proof of Lemmas 6, 7. We prove both Lemmas together by using mathe-
matical induction on k. If k = 0, then I ′ = {1, . . . , n}. Lemma 6 is trivial and
Lemma 7 is implied by Lemmas 2-5 above. (For k = n−1, Lemma 7 is also trivial.)

Assume Lemmas 6 and 7 hold for k − 1, with k ≥ 1. Now consider the case
k. Let I = {1, . . . , k} , I ′ = {k + 1, . . . , n}. Also, let I− = {1, . . . , k − 1} and
I ′+ = {k + 2, . . . , n}.

Proof of Lemma 6. Suppose λI′ = (λk+1, . . . , λn) ∈ Rn−k is given. For any
λk ∈ R, by Lemma 6 with k− 1, there is a unique λ∗I− = (λ∗1, . . . , λ

∗
k−1), depending

on (λk, λI′) such that(λ∗I− , λk, λI′) satisfies

(34) fi(λ∗I− , λk, λI′) = αi, i = 1, . . . , k − 1.

Now look at fk(λ∗I− , λk, λI′). By Lemma 7 (a)(b) with k− 1, fk(λ∗I− , λk, λI′)
is continuous in (λk, λI′) and strictly decreasing as a function of λk. Furthermore,
by Lemma 7(c) with k − 1 and j = k,

fk(λ∗I− , ∞, λI′) = 0, and fk(λ∗I− , −∞, λI′) = 1−
k−1∑
i=1

αi > αk.
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By the intermediate value theorem, there is a unique λ∗k having the property
fk(λ∗I− , λ∗k, λI′) = αk. Of course, equations (34) are still satisfied with λk replaced
by λ∗k. Let λ∗I = (λ∗I− , λ∗k), we then have

(35) fi(λ∗I , λI′) = αi, i = 1, . . . , k.

This shows Lemma 6 with k. �

Proof of Lemma 7(a). We assume that k ≤ n − 2. From Lemma 6, since
λ∗I is determined by λI′ , we see that the equations

(36) Fj(λI′) = fj(λ∗I , λI′), j = k + 1, . . . , n

can be considered as functions of λI′ in Rn−k.
If Fj(λI′) were not continuous at some λ0

I′ , then we would have a sequence
{λq

I′}
∞
q=1 converging to λ0

I′ as q → ∞, but Fj(λ
q
I′) does not converge to Fj(λ0

I′).
Since {Fj (λq

I′)}q is bounded, some subsequence must converge. Therefore, by
passing to a subsequence, we may assume that

(37) Fj(λ
q
I′) → lj but lj 6= Fj(λ0

I′).

We claim that the sequence λ∗qI = (λ∗q1 , . . . , λ∗qk ), determined by λq
I′ , must also

be bounded. For otherwise, by passing to a subsequence, we partition the index set
I into those indices for which λ∗qi approaches ∞, −∞, or a finite number. That
is we define sets I−∞, I∞ and I0 such that as q → ∞, for i ∈ I∞, I−∞, and I0,
respectively, we have

λ∗qi →∞, λ∗qi → −∞, and λ∗qi → λ∗0i (real numbers).

If I∞ 6= ∅, then by Lemma 5∑
i∈I∞

αi = fI∞(λ∗qI , λq
I′) → 0 as q →∞,

which is impossible since each αi > 0. If I−∞ 6= ∅, then by Lemma 5 again∑
i∈I−∞

αi = fI−∞(λ∗qI , λq
I′) → 1 as q →∞,

which contradicts the condition
∑

i∈I−∞
αi < 1.

So
{
λ∗qI

}
q

must be bounded. Therefore, by passing to a subsequence, we may
also assume that λ∗qI converges (componentwise) to some λ∗0I . From (37) we have
as q →∞,

(38) Fj(λ
q
I′) → lj 6= Fj(λ0

I′) and Fj(λ
q
I′) = fj(λ

∗q
I , λq

I′) → fj(λ∗0I , λ0).

On the other hand, by taking the limit in (35): fi(λ
∗q
I , λI′) = αi as q → ∞, we

obtain fi(λ∗0I , λ0
I′) = αi, i = 1, . . . , k, which shows that (λ∗0I , λ0

I′ ) ∈ S{α1,...,αk} by
definition (9). By definition (36), Fj(λ0

I′) = fj(λ∗0I , λ0
I′) = lj , a contradiction to

(38). �

Proof of Lemma 7(b). To be more specific, assume j = k + 1 (k ≤ n − 2).
So we need to show that if λk+1 strictly increases, or λI′+

= (λk+2, . . . , λn) strictly
decrease, then Fk+1(λI′) strictly decreases. Also, if λi increases for some i =
k + 2, . . . , n, then Fk+1(λI′) increases.

Fix λI′ = (λ1
k+1, λk+2, . . . , λn) and increase λ1

k+1 to λ2
k+1 > λ1

k+1. For q = 1, 2,

let λ∗qI = (λ∗q1 , . . . , λ∗qk ) be determined by (λq
k+1, λI′+

) as in (35).
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If λ∗1l = λ∗2l for some l ∈ {1, . . . k} , say, λ∗1k = λ∗2k , then the situation is reduced
to Lemma 7(b) with k − 1, which implies that

Fk+1(λ∗1k , λ1
k+1, λI′+

) > Fk+1(λ∗1k , λ2
k+1, λI′+

)

Fj(λ∗1k , λ1
k+1, λI′+

) ≤ Fj(λ∗1k , λ2
k+1, λI′+

), j = k + 2, . . . n,

that is, Fk+1 is strictly decreases and Fj increases for j ≥ k + 2.
So we assume that λ∗1l and λ∗2l are componentwise different, l ∈ {1, . . . k}. In

fact, we assert that

(39) λ∗1l < λ∗2l for l ∈ {1, . . . k} .

If (39) does not hold, there is a l0 ≥ 1 such that λ∗1l > λ∗2l for l ∈ I0 = {1, . . . , l0}
and λ∗1l < λ∗2l for l = l0 + 1, . . . , k. By the Lemma 2, fI0(λ1, . . . , λn) is strictly
increasing as λI0 strictly decreases and as λI′0

= (λl0+1, . . . , λk, λk+1, . . . , λn) in-
creases, so

(40) fI0(λ
∗1
I , λ1

k+1, λI′+
) < fI0(λ

∗2
I , λ2

k+1, λI′+
).

But both sides of (40) are equal to
∑

i∈I0
αi by the definition of λ∗qI , q = 1, 2; this

contradiction shows that the assertion that (39) must hold is valid.
With (39) and by Lemma 4 again, we have that for all j ≥ k+2, fj is increasing,

that is,
fj(λ∗1I , λ1

k+1, λI′+
) ≤ fj(λ∗2I , λ2

k+1, λI′+
),

while their sum is strictly increasing:

(41) f{k+2,...,n}(λ∗1I , λ1
k+1, λI′+

) < f{k+2,...,n}(λ∗2I , λ2
k+1, λI′+

).

Inequality (41) implies that

fk+1(λ∗1I , λ1
k+1, λI′+

) > fk+1(λ∗2I , λ2
k+1, λI′+

)

because
∑n

i=k+1 fj(λ∗1I , λ1
k+1, λI′+

) =
∑n

i=k+1 fj(λ∗2I , λ2
k+1, λI′+

) = 1−
∑k

i=1 αi.
In summary, we see that as λk+1 strictly increases, fk+1 strictly decreases while

fj increases, j ≥ k + 2. The remaining case (λi increasing for i = k + 2, . . . n) is
similar. �

Proof of Lemma 7(c). Once again we assume j = k + 1 (k ≤ n− 2). Recall
the definition (36) to see that

Fk+1(λI′) = fk+1(λ∗I , λI′) = µ [Dk+1] ,

where Dk+1 is defined using λ∗1, . . . , λ
∗
k, λk+1, λk+2, . . . , λn. Recall that λ∗i (i =

1, . . . , k) are determined by λj (j = k + 1, . . . , n). Note that

Dk+1 ⊂ {x : c(x, zk+1) + λk+1 ≤ c(x, zk+2) + λk+2} → ∅

as λk+1 → ∞. Therefore, Fk+1(λI′) → 0 as λk+1 → ∞. Here we used the
assumption that k ≤ n− 2, so that k + 2 exists and ≤ n.

If λk+1 → −∞, then for i = k + 2, . . . n, we have

Fi(λI′) = µ [Di] ≤ µ [{x : c(x, zk+2) + λk+2 ≤ c(x, zk+1) + λk+1}] → 0.

Because
∑n

i=k+1 Fi(λI′) = 1−
∑

i∈I αi, we conclude that Fk+1(λI′) → 1−
∑

i∈I αi

as λk+1 → −∞.
This finishes the proof of the Lemmas. �
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5. Proof of Assertion from Theorem 2

The proof is divided into four steps.
Step 1. If c0 = ∞, then for all i,

{
zk
i

}
k

is bounded.
Step 2. If c0 < ∞, then for some i,

{
zk
i

}
k

is bounded.
Step 3. For all i,

{
λk

i

}
k

can be chosen to be bounded.
Step 4. If c0 < ∞, then for all i,

{
zk
i

}
k

are bounded.

Step 1. Suppose c0 = ∞. Suppose also that for some i, ||zk
i || → ∞ as k

→∞. Let r > 0 be large enough so that µ [B(0, r)] > 1− αi/2, which implies that
µ

[
Dk

i ∩B(0, r)
]
≥ αi/2. So

F (zk
1 , . . . , zk

n) =
n∑

i=1

∫
Dk

i

c(x, zk
i )dµ

≥
∫

Dk
i ∩B(0,r)

c(x, zk
i )dµ

≥ min
{

c(x, zk
i ), x ∈ B(0, r)

}
αi/2.

In this step, assumption (i) in Theorem 2 implies min
{
c(x, zk

i ), x ∈ B(0, r)
}
→

∞ as k →∞. Therefore, Fmin = limk→∞ F (zk
1 , . . . , zk

n) = ∞. This is a contradic-
tion to (11). So we proved that for all i,

{
zk
i

}
k

must be bounded.
Step 2. Suppose c0 < ∞. First note that at least one of the sequences

{
zk
1

}
,

. . .,
{
zk
n

}
will be bounded. For otherwise, we may assume that ||zk

i || → ∞ as k
→∞ for all i as k →∞. Let 0 < ε < min(c0, 1) be an arbitrary number, and r > 0
be large enough so that µ [B(0, r)] > 1 − ε. Then assumption (i) implies that for
large k, min

{
c(x, zk

i ), x ∈ B(0, r)
}
≥ c0 − ε. So we have

F (zk
1 , . . . , zk

n) =
n∑

i=1

∫
Dk

i

c(x, zk
i )dµ

≥
n∑

i=1

∫
Dk

i ∩B(0,r)

c(x, zk
i )dµ

≥ (c0 − ε)(1− ε).

It follows that Fmin = limk→∞ F (zk
1 , . . . , zk

n) ≥ (c0 − ε)(1 − ε). Since ε is
arbitrary, we get Fmin ≥ c0, which contradicts (11).

Step 3. As shown in Theorem 1, we may take λk
n = 0, for all k. (In defining the

partition, one of the λ’s can always be specified arbitrarily.) Therefore, if
{
λk

i

}
k

is
not bounded for some i, then by passing to a subsequence, we may assume λk

i →∞
or −∞. If λk

i →∞, then

αi = µ
[
Dk

i

]
≤ µ

[{
x : c(x, zk

i ) + λk
i ≤ c(x, zk

n)
}]
→ 0, as k →∞,

which contradicts αi > 0. If λk
i → −∞, then

(42) αn = µ
[
Dk

n

]
≤ µ

[{
x : c(x, zk

n) ≤ c(x, zk
i ) + λk

i

}]
.

Note that in the case c0 = ∞,
{
zk
i

}
k

must also be bounded as shown in step 1; in
case c0 < ∞, c(x, zk

i ) < c0. So in either case, c(x, zk
i ) is bounded (in i and k),

which implies the right hand term of (42) approaches 0 as k →∞, a contradiction.
So

{
λk

i

}
k

has to be a bounded sequence for each i.
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Step 4. Suppose instead that there is an integer n′ ≥ 1 such that ||zk
i || → ∞ for

i ∈ {1, . . . , n′} and zk
i → z0

i for i ∈ {n′ + 1, . . . , n} as k → ∞. Define D0
1, . . . , D

0
n

as in (8) with z0
1 = ∞, . . . , z0

n′ = ∞, z0
n′+1, . . . , z

0
n with the convention c(x,∞) = c0

for any x. Then as shown in the proof of Theorem 2, we have D0
i , i = 1, . . . , n

satisfies condition (6). Again let r > 0 be large enough so that µ [B(0, r)] > 1− ε.
Then

F (zk
1 , . . . , zk

n) =
n∑

i=1

∫
Dk

i

c(x, zk
i )dµ

≥
n′∑

i=1

∫
Dk

i ∩B(0,r)

c(x, zk
i )dµ +

n∑
i=n′+1

∫
Dk

i

c(x, zk
i )dµ.

Take the limit as k → ∞. For the first term, use the fact that the minimum
min

{
c(x, zk

i ), x ∈ B(0, r)
}

approaches c0 for i = 1, . . . , n′, and for the second term
apply Fatou’s lemma as in (16). We have

Fmin ≥ (α1 + · · ·+ αn′ − ε) c0 +
n∑

i=n′+1

∫
D0

i

c(x, z0
i )dµ.

Since ε is arbitrary, we get

(43) Fmin ≥ (α1 + · · ·+ αn′) c0 +
n∑

i=n′+1

∫
D0

i

c(x, z0
i )dµ.

We show how this contradicts the definition of Fmin. By replacing z0
1 = ∞, . . . ,

z0
n′ = ∞ by any n′ points, say z∗1 , . . . , z∗n′ , and with the same partition D0

i , we get
cost

(44)
n′∑

i=1

∫
D0

i

c(x, z∗i )dµ +
n∑

i=n′+1

∫
D0

i

c(x, z0
i )dµ.

As noted in (10),
∫

D0
i

c(x, z∗i )dµ < αi c0 for each i. So (44) is strictly smaller than

the cost in (43), which contradicts Fmin. So all
{
zk
i

}
must be bounded. �
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