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Abstract. In this paper, we study the bubbling phenomena of weak solution sequences of a

class of degenerate quasilinear elliptic systems of m-harmonic type. We prove that, under appropriate

conditions, the energy is preserved during the bubbling process. The results apply to m-harmonic maps

from a manifold Ωm to a homogeneous space, and to m-harmonic maps with constant volumes, and

also to certain Palais-Smale sequences.

§1 Introduction and Main Results

The Palais-Smale (P-S) condition for a functional E is a natural assumption for the existence of

a critical point of E; this condition says that any Palais-Smale sequence {un} (i.e., supn |E (un) | <∞
and ||DE (un) || → 0, as n → ∞) has a (strongly) convergent subsequence. In many interesting cases

where Palais-Smale condition fails, people discovered the bubbling phenomena of certain Palais-Smale

sequences. Generally speaking, the failure of strong convergence is due to the loss of energy, and a

bubbling phenomenon refers that the lost energy was recovered (or captured) by a few bubbles (solutions

of the blow-up equation) developed during the limit process (or bubbling process). For references on

bubbling phenomena and related problems, see [SaU] [Jj] [Sm1] [Pt] [Qj] on harmonic maps on surfaces;

[BN] [Sm2] on semilinear elliptic equations, and [Wh] [BC] [Sm3] on H-systems, which describe surfaces

of constant mean curvatures.

Suppose (Ωm, g) is a Riemannian manifold. The space W 1,m
(
Ω, Rk

)
consists of all functions

u : Ω→ Rk with finite energy:

Em (u) =
∫

Ω

|Du|m dΩ,

where dΩ denotes the volume element of Ω, often being omitted. Du =
(
Du1, ..., Duk

)
is the differential

of u. We assume that m, k ≥ 2 integers, and ∂Ω = ∅.
We are interested in bubbling phenomena of minimizing sequences and Palais-Smale sequences of

the energy E subject to certain constraints. The Euler-Lagrange equation can often be written as

(1.1) −div
(|Du|m−2Du

)
= f (u,Du) ,

where u ∈W 1,m
(
Ω, Rk

)
. We assume the following hypotheses.
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(H-I). f : Rk ×Rmk → Rk is a smooth function that can be written as:

(1.2) f (u,Du) =
q∑

α=1

aα (u,Du) ·Dbα (u) ,

where aα (·, ·) : Rk ×Rmk → Rmk
2

and bα (·) : Rk → Rk
2

are smooth vector-valued functions such that

|a (u,Du) | ≤ C|Du|m−1, |b (u) | ≤ C

for some constant C. Here C may depend on ‖u‖∞. Componentwise, (1.2) becomes

f i (u,Du) =
k∑

j=1

q∑
α=1

m∑

l=1

ailαj (u,Du) · ∂
∂xl

biαj (u) , i = 1, ..., k.

This assumption will be used, together with others, to show that f(u,Du) is in the local Hardy space,

better than L1. In a few interesting cases, this assumption naturally holds; see [Wh1] [Hf] [El] [MY]

[TW], and the examples below.

Equation (1.1) is understood in the weak sense: For all φ ∈ C1
0

(
Ω, Rk

)
, there holds

(1.3)
∫

Ω

|Du|n−2DuDφ =
∫

Ω

f (u,Du)φ.

We assume that (1.1) is conformally invariant in the following sense.

(H-II) Suppose Φ : (Ωm1 , h)→ (Ωm, g) is a conformal diffeomorphism, then (1.3) holds with u replaced

by u ◦ Φ, φ by φ ◦ Φ and Ω by Ωm1 .

Note that, since the energy
∫

Ω
|Du|m is conformally invariant, the Euler-Lagrange equation of∫

Ω
|Du|m subject to a constraint is conformally invariant in the sense of (H-II), as long as the constraint

is closed under conformal transformations. The m-harmonic map equations and the H-systems, defined

below, are two such examples. This property implies that the equation keeps the same form under

conformal transformations, especially under dilations and translations.

We consider a sequence {un}∞n=1 ⊂W 1,m
(
Ω, Rk

)
satisfying perturbed equations of (1.1):

(1.4) −div
(|Dun|m−2Dun

)
= f (un, Dun) + hn, hn → 0 in W−1,m′ ,

for m′ = m
m−1 , and

un ⇀ u in W 1,m, but u 6→ u in W 1,m.

The study of the convergence behavior of {un} leads to the below-up equation:

(1.5) −div
(|Du|m−2Du

)
= f (u,Du) ,

for u ∈ W 1,m
(
Rm, Rk

)
. This equation is obtained as a limit of the equations satisfied by properly

rescaled {un} (see (4.5)). Here Rm plays the role of tangent spaces of Ω. A nontrivial solution u of
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(1.5) is called a bubble. By the conformal invariance of the equation (1.5) and the conformal equivalence

of Rm and Sm under the stereographic projection, a bubble u is identified with ũ ∈ W 1,m
(
Sm, Rk

)
,

which satisfies (1.5) on Sm. Suppose u is regular (say C1; this is the case if div(a (u,Du)) = 0, by

Thm 2.6 and Prop 3.1 in [MY] , then ũ is regular on Sm except at the north pole (of the projection).

Suppose f (u,Du) · Du = 0, then by Theorem 5.1 in [MY], ũ can be extended across the north as a

regular solution on the whole Sm. The value of ũ at the north pole will be denoted simply by u (∞).

Note that both conditions div(a (u,Du)) = 0 and f (u,Du) ·Du = 0 are naturally satisfied by the two

examples below. A unique property of the bubbles is a uniform lower bound for their energy. That is,

there is a µ > 0 such that for any nontrivial bubble u,

∫

Rm
|Du|mdx ≥ µ.

It is well-known that for a weakly convergence sequence {un} ⊂ W 1,m
(
Ω, Rk

)
, un → u strongly

if and only if the energy converges: Em (un) → E (u), see [El] for example. Our main result describes

the convergence behaviors of certain weakly convergent sequences, and accounts for all the energy loss

with a finite number of bubbles.

Theorem 1.1. Suppose that (H-I) and (H-II) are satisfied. If {un} ⊂W 1,m
(
Ω, Rk

)
is a sequence that

satisfies (1.4) and for some p > m
m−1 ,

hn, div (a (un, Dun))→ 0 in W−1,p, as n→∞,

then there exist a solution u ∈ C1
(
Ω, Rk

)
of (1.1), a finite number l of bubbles ωi ∈ C1

(
Sm, Rk

)
, l

sequences of points
{
ain
} ⊂ Ω, l sequences of positive numbers

{
λin
}

, 1 ≤ i ≤ l, and a subsequence of

{un}, still denoted by {un}, such that

(1) limn→∞Em (un) = Em (u) +
∑l
i=1Em (ωi),

(2) For i 6= j, max
{
λin
λjn
,
λjn
λin
,
|ain−ajn|
λin+λjn

}
→∞ as n→∞,

(3)
∥∥∥un −

∑l
i=1

(
ωi

(
·−ain
λin

)
− ωi (∞)

)∥∥∥
W 1,m

→ 0 as n→∞.

We now apply this result to two examples: m-harmonic maps to a homogeneous space and m-

harmonic maps with a constant volume.

Application to m-Harmonic Maps

Let Ωm and Nq be two closed Riemannian manifolds. Assume N is homogeneous, and isometrically

embedded into some Rk, k ≥ 2. Denote by W 1,m (Ω, N) the set of all v ∈W 1,m
(
Ω, Rk

)
with v (x) ∈ N

for a.e. x ∈ Ω. Similarly, for a given u ∈ W 1,m (Ω, N), W 1,m (Ω, TuN) denotes the space of all

v ∈W 1,m
(
Ω, Rk

)
with v (x) ∈ Tu(x)N for a.e x ∈ Ω. An m-harmonic map is a critical point of Em (u)

in W 1,m (Ω, N), which satisfies

−mE′m (u) ≡ div
(|Du|m−2Du

)
+ |Du|m−2A (u) (Du,Du) = 0,
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in W−1,m′ (Ω, TuN) =
[
W 1,m

0 (Ω, TuN)
]′

, where m′ = m
m−1 , and A is second fundamental form of N in

Rk.

A Palais-Smale sequence {un} ⊂W 1,m (Ω, N) of Em then satisfies

lim sup
n→∞

Em (un) <∞

and

−div
(|Dun|m−2Du

)
= |Dun|m−2A (un) (Dun, Dun) + hn,

where hn → 0 in W−1,m′
(
Ω, Rk

)
.

Under a slightly stronger condition on hn, Theorem 1.1 implies the following

Theorem 1.2. Suppose that Ω is a closed manifold, N is a homogeneous manifold and {un} ⊂
W 1,m (Ω, N) is a Palais-Smale sequence such that for some p > m′,

sup
n
‖hn‖W−1,p <∞.

Then there exist an m-harmonic map u ∈ C1 (Ω, N) and a finite number l of m-harmonic maps ωi ∈
C1 (Sm, N), l sequences of points

{
ain
} ⊂ Ω, l sequences

{
λin
}

of positive numbers, 1 ≤ i ≤ l, and a

subsequence of {un}, still denoted as {un}, such that

(1) limn→∞Em (un) = Em (u) +
∑l
i=1Em (ωi),

(2) For i 6= j, max
{
λin
λjn
,
λjn
λin
,
|ain−ajn|
λin+λjn

}
→∞ as n→∞,

(3)
∥∥∥un −

∑l
i=1

(
ωi

(
·−ain
λin

)
− ωi (∞)

)∥∥∥
W 1,m

→ 0 as n→∞.

The condition that hn is bounded in W−1,p for some p > m′ can not be droped, as shown by the

example in [Pt].

In a pioneer work, Sacks-Uhlenbeck first developed in [SaU] the blow-up method to study a per-

turbed energy functional. As an application, they obtained the existence of minimal immersions into a

Riemannian manifold. Struwe [Sm1] obtained a similar result for a class of solutions of harmonic map

heat flows on surfaces. Jost [Jj] described the bubbling process of a mini-max scheme for maps from

a surface to a closed manifold; see also the paper of Parker [Pt]. Bethuel [Bf] showed that the weak

limits of Palais-Smale sequences of energy of maps on a surface are also harmonic maps, but he did

not describe the bubbling process. Qing [Qj] described the bubbling behavior of certain Palais-Smale

sequences of maps from a surface to standard spheres. Our result can be considered as a generalization

of these results to higher dimension cases. In a forthcoming paper [Wc], the second author proves the

same result as Theorem 1.2 for maps from a surface to a general compact manifold N .

As a corollary, we obtain the strong convergence of certain Palais-Smale sequences.

Corollary 1.3. Suppose that Ω is a closed manifold, N is a homogeneous manifold and {un} ⊂
W 1,m (Ω, N) is a Palais-Smale sequence satisfying the conditions in Theorem 1.2. Then there exists a
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subsequence of {un} strongly convergent to an m-harmonic map u ∈ C1 (Ω, N), provided any one of

the following conditions holds:

(1) If lim supn→∞
∫

Ω
|Dun|m dx <

∫
Ω
|Du|m +µ, where µ > 0 is the largest lower bound of m-energy of

non-constant m-harmonic maps from Sm to N .

(2) N supports a strictly convex function f , namely, there exists a number c0 > 0 such that

Hessian (f) ≥ c0h,

where h is the metric on N .

Application to m-Harmonic Maps with Constant Volumes

Let Ω ⊆ Rm be a smooth domain. An m-harmonic map u ∈W 1,m
(
Ω, Rm+1

)
with constant volume

is a critical point of
∫

Ω
|Du|m subject to constant volume enclosed by the cone generated by u (Ω) with

vertex 0 ∈ Rm+1. The volume can be expressed as

V (u) =
1

m+ 1

∫

Rm
u · u1 ∧ · · · ∧ um,

where u1 ∧ · · · ∧ um is the cross product of derivatives ui = ∂u
∂xi .

An m-harmonic map with constant volume satisfies the equation

(1.6) −div
(|Du|m−2Du

)
= Hu1 ∧ · · · ∧ um,

for some constant H. See [MY] for details. It has been noticed that the right hand side

f (u,Du) = Hu1 ∧ · · · ∧ um

can be written in the form (1.2). Specifically, we have

f i = H (−1)i+1
∂
(
u1, ..., ûi, ..., um+1

)

∂ (x1, ..., xm)

=
m∑

l=1

ail
∂ui+1

∂xl
,

where i = 1, ..., n+ 1 (un+2 = u1), and

ail = H (−1)i+l
∂
(
u1, ..., ûi, ˆui+1, ..., um+1

)

∂ (x1, ..., x̂l, ...xm)
.

It is easy to check that

div
(
ai
)

=
m∑

l=1

∂ail

∂xl
= 0

for any u ∈W 1,m
(
Rm, Rm+1

)
; see [Db]. In the case Ω = Rm, W 1,m

(
Sm, Rm+1

)
can be identified with

W 1,m
(
Rm, Rm+1

)
through the stereographic projection π : Rm → Sm. Suppose u satisfies (1.6) on Rm,
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then and u ◦ π also satisfies (1.6) on Sm \ {north pole}. By the regularity results in [MY], both u and

u◦π have to be regular (C1,α, 0 < α < 1) on Rm and on Sm respectively, and u(∞) = u◦π(north pole)

esists. We state a result of application of Theorem 1.1 to the case Ω = Sm:

Theorem 1.4. Suppose {un} ⊂W 1,m
(
Sm, Rm+1

)
is a bounded sequence of solutions of

(1.7) −div
(|Dun|m−2Du

)
= Hun1 ∧ · · · ∧ unm + hn,

with hn → 0 in W−1,p, as n→∞, for some p > m
m−1 . Then there exist a solution u ∈ C1

(
Sm, Rk

)
of

(1.6), a finite number l of bubbles ωi ∈ C1
(
Sm, Rk

)
, l sequences of points

{
ain
} ⊂ Sm, l sequences of

positive numbers
{
λin
}

, 1 ≤ i ≤ l, and a subsequence of {un}, still denoted by {un}, such that

(1) limn→∞Em (un) = Em (u) +
∑l
i=1Em (ωi)

(2) For i 6= j, max
{
λin
λjn
,
λjn
λin
,
|ain−ajn|
λin+λjn

}
→∞ as n→∞

(3)
∥∥∥un −

∑l
i=1

(
ωi

(
·−ain
λin

)
− ωi (∞)

)∥∥∥
W 1,m

→ 0 as n→∞.

Remark. In the case ∂Ω 6= ∅, bubbling phenomena also occur and can be described in the similar

manner as in Theorem 1.1. In such a case, one has to include bubbles on the half space (or equivalently,

on the unit ball B, through a conformal transformation), which are solutions of (1.5) on R+ × Rm−1

(or on B, resp.) and constant on R+ × {0} (on ∂B, resp.). For some equations, there are no nontrivial

bubbles on the half space (or the unit ball) and then conclusions of Theorem 1.1 hold for Ω with or

without boundary. This is the case for (1.6) when n = 2, where Wente [Wh2] proved that the only

solution of −∆u = 2u1 ∧ u2 in W 1,2
0

(
D,R3

)
is 0, where D =

{
x ∈ R2 : |x| < 1

}
. Wente’s this result

was used in the paper of Brezis and Coron [BC], which established the bubbling phenomena of solution

sequences {un} ⊂ W 1,2
0

(
D,R3

)
satisfying ∆un = 2un1 ∧ un2 + fn with fn → 0 in W−1,2. For harmonic

maps on a disc with constant boundary values, Lemaire proved that they must be constant [Ll]. It

would be interesting to know whether the results of Lemaire and Wente hold in higher dimensional

cases. For example, suppose u ∈ W 1,m
(
B,Rm+1

)
satisfies (1.6) (or (1.1)) and u = ∂u

∂n = 0 on ∂B,

where B = {x ∈ Rm : |x| < 1}. Is u ≡ 0? This is closely related to the unique continuation problem for

m-Laplacian equations.

The idea of proof for all these Theorems is based on two steps: first, we prove the so-called ε-

compactness lemma which is a consequence of the ε-continuity estimates; second, we study the problem

about bubbles over bubbles and show that there is no energy concentrating in neck regions (to be

specified below in Sections 2, 3, 4).

The paper is organized as follows. In §2, we prove the ε-continuity estimate. As a corollary, we

prove the regularity of the solutions being considered. In §3, we obtain an ε-compactness lemma and

some comparison lemmas that are necessary for the proof of Theorem 1.1. In §4, we prove the main

results, by analyzing the concentration density of the energy, using various estimates we obtained in

Sections 2 and 3.

Since we only consider the cases without boundary, all the needed estimates are of local version.

For this reason and for simplicity, in Sections 2 and 3, we assume Ω is a smooth domain in Rm with
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standard metric. As for notations, constants are generically denoted by C or Ci; they may change from

line to line. We will denote by o(1) a quantity or a sequence that goes to 0 as the variable (index) goes

to infinity. Br(x) denotes the ball in Rm centered at x and of radius r; Br = Br(0).

§2 ε-Continuity Estimates

The hypothesis I on f is used to show that f (u,Du) is in Hardy space H1
loc. For the definition and

properties of H1
loc (Ω, R) and BMO(Rm, R), please see [Ss] or [CLMS] and the references there. Here

we have

Proposition 2.1. Suppose u ∈W 1,m
(
Ω, Rk

)
such that

h̄ ≡ div (a (u,Du)) ∈W−1,p

for some p > m′. Then a (u,Du) ·Db (u) ∈ H1
loc

(
Ω, Rk

)
. Moreover, for any compact subset K ⊂⊂ Ω,

there is a constant CK such that

(2.1) ‖a (u,Du) ·Db (u)‖H1(K) ≤ CK
[
‖Du‖mm,Ω +

∥∥h̄
∥∥m′
W−1,p

]
.

Proof. This was essentially proved in [CLMS]. To trace the estimate, we sketch the proof. Take

a φ ∈ C∞0 (Rm, R) such that
∫
Rm

φ = 1 and spt (φ) ⊂ B (0, 1). For given K ⊂⊂ Ω, x ∈ K and

r < d (x, ∂Ω), we define φr (y) = r−mφ
(
y−x
r

)
. Then by integration of parts,

[a (u,Du) ·Db (u)] ? φ (x) =
∫

Rm
[a (u,Du) ·Db (u)] (y)φr (y) dy

=
∫

Rm

(
b (u)− b (u)x,r

)
h̄ · φr +

∫

Rm

(
b (u)− b (u)x,r

)
a (u,Du) ·Dφr = I + II.

Here b (u)x,r = −∫
Br(x)

b (u). We estimate I and II separately.

|II| ≤ Cr−(m+1)

∫

Br(x)

|Du|m−1|b (u)− b (u)x,r |

≤ CM
(
|Du|(m−1)q

) 1
q

(x)M (|Du|s) 1
s (x) ,

where q and s are chosen so that 1 < q < m′, s = mq′

m+q′ and 1 < s < m. Here M (f) is the local

maximal function defined by

M (f) (x) = sup

{
1

|Br (x) |
∫

Br(x)

|f | : Br (x) ⊂ Ω

}
.

By the isomorphism theorem of ∆ : W 1,p
0 → W−1,p, we find an H ∈ W 1,p

0

(
Ω, Rk

)
such that

∆H = h̄ with ‖H‖W 1,p ≤ C
∥∥h̄
∥∥
W−1,p . It follows
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I =
∫

Rm

(
b (u)− b (u)x,r

)
∆Hφr

= −
∫

Rm
DHDb (u)φr −

∫

Rm
DH

(
b (u)− b (u)x,r

)
Dφr.

Therefore,

|I| ≤ Cr−m
∫

Br(x)

|DH||Du|+ Cr−(m+1)

∫

Br(x)

|DH||b (u)− b (u)x,r |.

= III + IV.

For IV , choose 1 < q < p, 1 < s < m such that s = mq′

m+q′ . Then

IV ≤ C
[
M

1
q (|DH|q)Ms

(
|Du| 1s

)]
.

As for III, take 1 < α < m and β = α′ such that m′ < β < p. Then

III ≤ CM (|Du|α)
1
α M

(|DH|β)
1
β .

By the Hardy-Littlewood maximum theorem (see Stein [Se]), Hölder inequality, and the definition

of ‖·‖H1(K), we have

‖a (u,Du) ·Db (u)‖H1(K)

≤ C
∫

Ω

|Du|m + C

∫

K

|DH|m′ + C

∫

K

M
(|DH|β)m

′/β

≤ C ‖Du‖mm,Ω + CK

(∫

K

|DH|p
)m′/p

+ CK

(∫

K

M
(|DH|β)

p
β

)m′/p

≤ C ‖Du‖mm,Ω + CK ‖h‖m
′

W−1,p .

It was proved in Toro-Wang [TW] that any m-harmonic map to a Riemannian homogeneous space

has Hölder continuous gradient. The same result was shown in [MY] for the solutions u of (1.1) that

satisfy (H-1) and div (a (u,Du)) = 0. Now we prove an energy decay lemma, which will be used to show

C0 continuity of solutions u of (1.4).

Lemma 2.2. Suppose u ∈W 1,m
(
Bm, Rk

)
is a solution of

(2.2) −div
(|Du|m−2Du

)
= f (u,Du) + h, with h̄ = div (a (u,Du)) ,

where f satisfies (H-1) and h̄, h ∈W−1,p for some p > m′. Then there exist positive numbers ε0, θ0 < 1,

α0 < 1 and C0, independent of u, such that for every x ∈ Bm1
2

and r < 1
4 , if

∫
Bm
|Du|m ≤ εm0 , then

(2.3)
∫

Br(x)

|Du|m ≤ θ0

∫

B2r(x)

|Du|m + C0

[
‖h‖m′W−1,p +

∥∥h̄
∥∥m′
W−1,p

]
rα0 .
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Proof. For given x ∈ B 1
2

and r < 1
4 , take η ∈ C1

0 (B2r (x) , [0, 1]) such that η = 1 in Br (x). Denote

A (x, r) = B2r (x) \ Br (x) and ux,2r = −∫
A(x,r)

u. Multiplying (2.2) by ηm (u− ux,2r) and integrating,

we get that

(2.4)∫

B1

|Du|m−2Du ·D (ηm (u− ux,2r)) =
∫

B1

f (u,Du) ηm (u− ux,2r) +
∫

B1

hηm (u− ux,2r) = I + II.

Denote E(u, 2r) =
∫
B2r(x)

|Du|m. By Poincare inequality, Hölder inequality and the definition of BMO,

we have

‖ηm (u− ux,2r)‖mW 1,m ≤ CE(u, 2r);

∥∥ηm−1 (u− ux,2r)
∥∥
BMO

≤ C (E(u, 2r))
1
m ≤ Cε0;

|
∫

Rm
ηm (u− ux,2r) | ≤ Crm−1

(∫

B2r(x)

|η (u− ux,2r) |m
) 1
m

≤ Crm
(∫

B2r(x)|D (η (u− ux,2r)) |m
)1/m

≤ Crm (E(u, 2r))
1
m ≤ Cε0.

It follows

|II| ≤ C ‖h‖W−1,m′ (B2r(x)) ‖ηm (u− ux,2r)‖W 1,m(2.5)

≤ C ‖h‖W−1,m′ (B2r(x)) (E(u, 2r))
1
m

≤ Cε0 ‖h‖W−1,m′ (B2r(x)) .

In order to estimate I, we define f̄ (u,Du) = (E(u, 2r))−1
f (u,Du) and pick up a p1 ∈ (m′, p).

Then Lemma 2.1 implies that f̄ (u,Du) ∈ H1
loc (B1) and for K = spt (η) we have

∥∥f̄ (u,Du)
∥∥
H1(K)

≤ C (E(u, 2r))−1

[∫

B2r(x)

|Du|m +
∥∥h̄
∥∥m′
W−1,p1 (B2r(x))

]
(2.6)

≤ C + C (E(u, 2r))−1 ∥∥h̄
∥∥m′
W−1,p1 (B2r(x))

.

Then we have

I = E(u, 2r)
∫

B1

f̄ (u,Du) ηm (u− ux,2r)

= E(u, 2r)
∫

Rm
η
(
f̄ (u,Du)− µ) ηm−1 (u− ux,2r)

+ µE(u, 2r)
∫

Rm
ηm (u− ux,2r) .

9



Here µ =
∫
ηf̄ (u,Du) /

∫
η. Use Proposition [S] in [TW] to conclude that η

(
f̄ (u,Du)− µ) ∈ H1 (Rm)

with

∥∥η (f̄ (u,Du)− µ)
∥∥
H1(Rm)

≤ C
(

1 +
∥∥f̄ (u,Du)

∥∥
H1(K)

)

≤ C
[
1 + (E(u, 2r))−1 ∥∥h̄

∥∥m′
W−1,p1 (B2r(x))

]
.

|µ| ≤ Cr−m ∥∥f̄ (u,Du)
∥∥
H1(K)

.

By the duality of H1 and BMO, I can be estimated as follows.

|I| ≤ CE(u, 2r)
∥∥η (f̄ (u,Du)− µ)∥∥H1

∥∥ηm−1 (u− ux,2r)
∥∥
BMO

(2.7)

+ |µ|E(u, 2r)
∣∣∣∣
∫
ηm (u− ux,2r)

∣∣∣∣

≤ CεE(u, 2r) + Cε
∥∥h̄
∥∥m′
W−1,p1 (B2r(x))

.

For the left hand side of (2.4), we have
∫

B1

ηm|Du|m +m

∫

B1

ηm−1Dη|Du|m−2Du · (u− ux,2r)

≥
∫

Br

|Du|m − C
∫

A(x,r)

|Du|m.

Here we used Hölder and Poincare inequalities. Use Hölder inequality for the h and h̄ terms in (2.5)

and (2.7) and combine (2.4)-(2.7). We obtain
∫

Br(x)

|Du|m ≤ C
∫

A(x,r)

|Du|m + Cε0

∫

B2r(x)

|Du|m

+ Cε0 ‖h‖m
′

W−1,p(B1) r
α0 ,

α0 = min
{
m
(

1
m′ − 1

p

)
,m
(
m′
p1
− m′

p

)}
. Add C

∫
Br(x)

|Du|m to the above inequality. We have

∫

Br(x)

|Du|m ≤ θ0

∫

B2r(x)

|Du|m + Cε0
∥∥h̄, h

∥∥
W−1,p(B1)

rα0 ,

where θ0 = C+Cε0
C+1 < 1, if we choose ε0 < 1

2C . Hence (2.3) holds.

Theorem 2.3. There exist positive constants ε0, δ0 < 1 and C1 such that if u ∈W 1,m
(
Bm, Rk

)
satisfies

the conditions in Lemma 2.2, and
∫
B1
|Du|m ≤ εm0 , then u ∈ Cδ0 (B1/2, R

k
)

and ‖u‖Cδ0(B1/2) ≤ C1.

Proof. For every x ∈ B 1
2

and r < 1
4 , if we define F (x, r) =

∫
Br(x)

|Du|m then Lemma 2.2 implies that

F (x, r) ≤ θ0F (x, 2r) + Crα0 ,

where C depends on p, p1, ε0,
∥∥h̄, h

∥∥
W−1,p(B1)

. By Lemma 8.23 in Gilbarg-Trudinger [GT], there are

numbers β0 ∈ (0, 1) and R ≤ 1
4 , such that for all r ≤ R,

F (x, r) ≤ C
(r
r

)β0

F (x,R) +
( r
R

)α0

.
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By the Morrey’s decay lemma (see Morrey [Mc]), u ∈ Cδ0
(
B1/2

)
for δ0 = min {α0, β0} and

‖u‖Cδ0(B1/2) ≤ C1.

Corollary 2.4. Suppose u ∈W 1,m
(
Ω, Rk

)
is a solution of

(2.2) −div
(|Du|m−2Du

)
= f (u,Du) + h, with h̄ = div (a (u,Du)) ,

where f satisfies (H-1) and h̄, h ∈W−1,p for some p > m′. Then there exists a positive number δ0, such

that for every u ∈ C1,δ0(Ω, Rk).

Proof. For every point in Ω, say 0 ∈ Ω, we take a small number r > 0 such that
∫
Br
|Du|m < εm0 as

in Theorem 2.3. Consider ur ∈ W 1,m(B1, R
k) defined by ur(x) = u(rx). Then ur satisfies (2.2) with

f being replaced by f(ur, Dur) and h by rmh with
∫
B1
|Dur|m < εm0 . Therefore, Theorem 2.3 implies

that ur ∈ Cδ0(B1/2) for some δ0. So u ∈ Cδ0(Br/2). C1,δ0 regularity can be obtained by considering

the equation satisfied by Du, as explained in [MY].

We end this section with a sufficient condition for strong convergence of Palais-Smale sequences.

Proposition 2.5. Let {un} ⊂W 1,m
(
Ω, Rk

)
be a sequence satisfying (1.4). If un → u in L∞loc

(
Ω, Rk

)
,

then un → u in W 1,m
loc

(
Ω, Rk

)
. In particular, u is a solution of (1.1).

Proof. It suffices to prove that {un} is a Cauchy sequence in W 1,m
loc . In order to do that, let ξ be any

cut-off function in Ω. Multiplying both equations of un and ul by ξ2 (un − ul) and subtracting one from

the other, we get
∫

Ω

(|Dun|m−2Dun − |Dul|m−2Dul
)
D
(
ξ2 (un − ul)

)
=
∫

Ω

(hn − hl) ξ2 (un − ul)(2.8)

+
∫

Ω

(f (un, Dun)− f (ul, Dul)) ξ2 (un − ul) .

It is easy to see that the right hand side satisfies

|RHS| ≤ ‖hn − hl‖W−1,m′
∥∥ξ2 (un − ul)

∥∥
W 1,m

+ (‖Dun‖mm + ‖Dul‖mm)
∥∥ξ2 (un − ul)

∥∥
L∞ .

→ 0, as n, l→∞.

Therefore, by the convexity of integrand and the strong convergence of un in Lm (see [HLM], for

example), the left hand side of (2.8) ≥ ∫
Br
|Dun −Dul|m + o (1) (as l, n→∞). It follows

∫

Br

|Dun −Dul|m → 0, as l, n→∞.

§3 ε-Compactness Lemmas

This section consists of some preparatory lemmas for the proof of the main Theorem 1.1.
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Lemma 3.1. Suppose the hypotheses (H-I) and (H-II) hold. Then there is an ε0 > 0 such that if

{un} ⊂W 1,m
(
Bm, Rk

)
satisfies

(3.1) −div
(|Dun|m−2Dun

)
= f (un, Dun) + hn,

with both h̄n ≡ div (a (un, Dun)), ‖hn‖W−1,m′ → 0, sup
∥∥h̄n, hn

∥∥
W−1,p < ∞ for some p > m′ and∫

B1
|Dun|m ≤ εm0 , then un contains a subsequence that converges to u in W 1,m

loc

(
B1, R

k
)
. u ∈

C1
(
B1, R

k
)

and satisfies (1.1).

Proof. By passing to a subsequence, we may assume that un → u weakly in W 1,m and strongly in Lm.

By Theorem 2.3, for any 0 < r < 1, ‖un‖Cδ0 (Br) ≤ C1 for some δ0 and C1 independent of i. Therefore,

by Arzela-Ascolli’s compactness theorem, we can extract a subsequence of {un} (denoted by {un}) such

that un → u in C0
(
Br, R

k
)
. Now apply Proposition 2.5 to get the conclusion.

We will compare the energy of the solutions to (1.4) with the energy of m-harmonic functions. First,

we calculate the energy of the m harmonic function on an annulus with constant boundary values.

For 0 < R1 < R2, let A (R1, R2) = {x ∈ Rm : R1 ≤ |x| ≤ R2} and ∂A (R1, R2) = ∂BR1 ∪ ∂BR2 .

We have

Lemma 3.2. Suppose that u ∈W 1,m
(
A (R1, R2) , Rk

)
satisfies

div
(|Dv|m−2Dv

)
= 0, in A (R1, R2) ,(3.2)

u|∂BR1
= a,

u|∂BR2
= b.

Here a and b are constants in Rk. Then

(3.3) .
∫

A(R1,R2)

|Dv|m =
|a− b|m(

log R2
R1

)m−1 .

Proof. From the convexity of
∫
A(R1,R2)

|Dv|m, we know that the solution of (3.2) is unique. Since the

values of v on boundary are constant, we consider the radial solution v (x) = v (|x|). Then the equation

of v becomes

v′′ (r) +
1
r
v′ (r) = 0,(3.4)

v (R1) = a,

v (R2) = b.

It follows v (x) = C + b−a
log

R2
R1

log |x| for some C and

∫

A(R1,R2)

|Dv|m =
∫ R2

R1

|v′ (r) |mrm−1 dr

=

(
|a− b|
log R2

R1

)m
log

R2

R1
.
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Lemma 3.3. Suppose f satisfies hypotheses (H-I) and (H-II) and u ∈W 1,m
(
Ω, Rk

)
satisfies

−div
(|Du|m−2Du

)
= f (u,Du) + h

with h̄ ≡ div (a (u,Du)), h ∈ W−1,p for some p > m
m−1 . There exist ε0 > 0 and C such that if∫

Ω
|Du|m ≤ εm0 , and for Ω1 ⊂⊂ Ω, define

−div
(|Dv|m−2Dv

)
= 0, in Ω1;

v|∂Ω1 = u|∂Ω1 .

Then

(3.5) ‖Du‖mm,Ω1
≤ C ‖Dv‖mm,Ω1

+ C ‖h‖m′W−1,p ,

Proof. Multiplying both equations of u and v by u− v and subtracting them, we get that
∫

Ω1

(|Du|m−2Du− |Dv|m−2Dv
)
D (u− v) =

∫

Ω1

h (u− v) +
∫

Ω1

f (u,Du) (u− v) = I + II.(3.6)

With the identification of h with ∆H for H ∈ W 1,p
0 , by Hölder inequality and Sobolev embedding

theorem, we have

|I| ≤ C
∫

Ω1

|DH||D (u− v) |

≤ C ‖DH‖m′,Ω1
‖D (u− v)‖m,Ω1

≤ C ‖h‖W−1,m′ (Ω1) ‖D (u− v)‖m,Ω1
.

Let ξ ∈ C∞0 (Ω, R) be such that ξ ≡ 1 on Ω1. Then again by Proposition [S] in [TW], we have

|II| = |
∫

Rm
f (u,Du) ξ (u− v) |

≤ C ‖f (u,Du)− µ‖H1(Rm) ‖u− v‖BMO + µ

∫

Rm
ξ|u− v|

≤ C
(
‖Du‖mm,Ω1

+
∥∥h̄
∥∥m′
W−1,p

)
‖D (u− v)‖m,Ω1

.

Here µ =
(∫
ξ
)−1 ∫

ξf (u,Du), and we used Sobolev inequality and the fact that |µ| is less than the

Hardy norm of f (u,Du). Therefore (3.6) implies

‖D (u− v)‖mm,Ω1
≤ C

(
‖Du‖mm,Ω1

+
∥∥h̄, h

∥∥m′
W−1,p

)
‖D (u− v)‖m,Ω1

.

i.e.,

(3.7) ‖D (u− v)‖m−1
m,Ω1

≤ C
(
‖Du‖mm,Ω1

+
∥∥h̄, h

∥∥m′
W−1,p

)
.
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On the other hand,

‖Du‖m−1
m,Ω1

≤ 2m−1
(
‖D (u− v)‖m−1

m,Ω1
+ ‖Dv‖m−1

m,Ω1

)

Using (3.7), we get

‖Du‖m−1
m,Ω1

≤ C ‖Du‖mm,Ω1
+ C ‖Dv‖m−1

m,Ω1
+ C

∥∥h̄, h∥∥m
′

W−1,p(Ω1)
.

Choose ε0 small enough, then (3.5) follows.

Finally, we give the proof that the energy of bubbles has a lower bound.

Proposition 3.4. Suppose that (H-I) and (H-II) are satisfied.

µ = inf
{∫

Sm
|Du|m : u : Sm → Rk is non-constant solution of (1.5)

}
> 0.

Proof. Suppose µ = 0, then by its definition, there exists a sequence of non-constant solutions {un} :

Sm → Rk such that
∫
Sm
|Dun|m → 0. By the regularity results in [MY][TW], {un} are C1,α with

‖un‖C1,α ≤ C with 0 < α < 1, C independent of i. Since un are not constant, there exist {pn} ⊂ Sm

such that |Dun| (pn) 6= 0. Using the conformal invariance of m-energy, we can assume, by composing ui
with suitable conformal transformation of Sm, that |Dun| (p) = 1 for some fixed p ∈ Sm. By passing to

a subsequence, we can assume un → u in C1 ∩W 1,m. This implies that u =constant and |Du| (p) = 1,

a contradiction.

§4 Proofs of Main Theorems.

Proof of Theorem 1.1. Without loss of generality, we assume that there exists u ∈ W 1,m
(
Ω, Rk

)

such that un → u weakly in W 1,m and strongly in Lm. For clarity, we divide the proof into four steps.

Step 1. Define the concentration set Σ ⊂ Ω by

Σ = ∩r>0

{
x ∈ Ω : lim inf

n→∞

∫

Br(x)

|Dun|m > εm0

}
,

where ε0 is the same number as in Theorem 2.3. It follows from a standard argument that Σ is a finite

subset of Ω; see [SaU] or [TW]. Furthermore, for any x0 /∈ Σ, there exists r0 > 0 such that

lim inf
n→∞

∫

Br0 (x0)

|Dun|m ≤ εm0 .

Thus the ε-compactness Lemma 3.1 implies that a subsequence of {un}, still denoted by {un}, satisfies

un → u in W 1,m
loc (Br0 (x0)) ∩ C0

loc (Br0 (x0)) .

It follows

un → u in W 1,m
loc ∩ C0

loc (Ω \ Σ) .
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In particular, u satisfies the equation (1.1) on Ω \Σ and so on Ω (isolated singularities are removable).

By the regularity results in [TW][MY], u is C1,α on Ω.

Step 2. As in Brezis-Coron [BC], we define, for 0 < δ1 <
1
2 min {d (x1, xi) : 2 ≤ i ≤ l},

(4.1) Qn (t) = sup
x∈Bδ1 (x1)

∫

x+tB1

|Dun|m.

It is easy to see that there exist sequences
{
a1
n

}
(⊂ Bδ1 (x1))→ x1 and λ1

n → 0 such that

(4.2) Qn
(
λ1
n

)
=
∫

a1
n+λ1

nB1

|Dun|m =
εm0
2
.

Define the rescaling functions by

vn :
(
λ1
n

)−1 (
Ω \ {a1

n

})→ Rk by vn (x) = un
(
a1
n + λ1

nx
)
,

then by conformal invariance of the energy,

(4.3)
∫

(λ1
n)−1(Ω\{a1

n})
|Dvn|m =

∫

Ω

|Dun|m.

(4.4)
∫

B1(x)

|Dvn|m ≤ εm0
2
,

for all x ∈ Rm and with equality when x = 0. Moreover,

(4.5) −div
(|Dvn|m−2Dvn

)
= f (vn, Dvn) +

(
λ1
n

)m
hn.

From (4.3) to (4.5), Lemma 3.1 applies to vn. We have for some ω1 ∈W 1,m
(
Rm, Rk

)
,

(4.6) vn → ω1 in C0
loc ∩W 1,m

loc

(
Rm, Rk

)
.

In particular,
∫
B1
|Dω1|m = εm0

2 . So ω1 is a nontrivial bubble. Repeating this process to x2, ..., xl, we

get bubble solutions ωi : Sm → Rk and sequences
{
ain
}→ xi, and λin → 0, as n→∞, such that

(4.7) un
(
ain + λin·

)→ ωi in C0
loc ∩W 1,m

loc

(
Rm, Rk

)
.

Step 3: Define wn = un−
∑l
i=1

[
ωi

(
·−ain
λin

)
− ωi (∞)

]
, where ∞ denotes north pole in Sm and ·−a

i
n

λin
=

(
λin
)−1 exp−1

ain
(·). We claim that

(4.8)
∫

Ω

|Dwn|m =
∫

Ω

|Dun|n −
l∑

i=1

∫

Rm
|Dωi|m + o (1) .
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In fact, for 0 < δ < 1
2 min {d (xi, xj) : i 6= j} we have

∫

Bδ(xi)

|Dwn|m =
∫

B
Riλ

i
n

(ain)

|Dwn|m +
∫

Bδ(xi)\BRiλin (ain)

|Dwn|m(4.9)

= I + II.

1/m Note that ωi and ωj have disjoint supports for j 6= i. It follows by a change of variables,

(4.10)
∫

B
Riλ

i
n

(ain)

|Dωj |m = o (1) .

Hence

I =
∫

B
Riλ

i
n

(ain)

|Dwn|m(4.11)

=
∫

B
Riλ

i
n

(ain)

∣∣∣∣D
(
un − ωi

( · − ain
λin

))∣∣∣∣
m

+ o (1)

=
∫

BRi

|D (un
(
ain + λin·

)− ωi
) |m.

On the other hand, by local strong convergence of un
(
ain + λin·

)
to ωi in W 1,m, we have the following

identity (see page 11 in Evans [El]) provided that Ri is chosen to be sufficiently large.

(4.12)
∫

BRi

|D (wn
(
ain + λin·

)− ωi
) |m =

∫

BRi

|Dun
(
ain + λin·

) |m −
∫

BRi

|Dωi|m + o (1) .

(4.9) =
∫

B
Riλ

i
n

(ain)

|Dun|m −
∫

Rm
|Dωi|m + o (1) .

It follows from (4.9)-(4.12) that

(4.10) I =
∫

B
Riλ

i
n

(ain)

|Dun|m −
∫

Rm
|Dωi|m + o (1) .

On the other hand, for j 6= i

(4.14)
∫

Bδ(xi)\BRiλin (ain)

∣∣∣∣Dωj
( · − ajn

λjn

)∣∣∣∣
n

≤
∫

Bδ(xi)

∣∣∣∣Dωj
( · − ajn

λjn

)∣∣∣∣
m

≤
∫

Rm\B
δλ
j
n

|Dωj |m = o (1) .

We choose Ri sufficently large so that

(4.15)
∫

Rm\BRi
|Dωi|m = o (1)
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(4.14) and (4.15) imply that

(4.16) |II| ≤
∫

Bδ(xi)\BRiλin (ain)

|Dun|m + o (1) .

Combining (4.10) with (4.16), we get, for 1 ≤ i ≤ l, that

(4.17) .
∫

Bδ(xi)

|Dwn|m =
∫

Bδ(xi)

|Dun|m −
∫

Rm
|Dωi|m + o (1) .

On Ω \ ∪li=1Bδ (xi), we have un → u in W 1,m. Which implies that

(4.18)
∫

Ω\∪l
i=1Bδ(xi)

|Dwn|m =
∫

Ω\∪l
i=1Bδ(xi)

|Dun|m + o (1) .

So, the combination of (4.17) and (4.18) implies the claim (4.8).

Step 4

Case 1: If limn→∞
∫

Ω
|Dwn|m =

∫
Ω
|Du|m, then we already conclude that wn → u in W 1,m

(
Ω, Rk

)
.

Otherwise, we have

Case 2: limn→∞
∫

Ω
|Dwn|m >

∫
Ω
|Du|m. Let Σ1 ⊂ Ω be the set of concentration of wn. In fact, from

(4.18) we know that Σ1 ⊂ Σ. We assume that Σ1 = {x1, · · · , xl′} for some 1 ≤ l′ ≤ l. Pick x1 ∈ Σ1,

then we have

(4.19) lim sup
t→0

lim
n→∞

∫

Bt(x1)

|Dwn|m = εm1 > 0.

1/m Define Qn for wn, then there exist
{
al+1
n

} ⊂ Bδ (x1) and
{
λl+1
n

} ⊂ R such that

(4.20) Qn
(
λl+1
n

)
=
∫

al+1
n +λl+1

n Bm
|Dwn|m = min

{
εm1
2
,
εm0
2

}
.

It is easy to see that λl+1
n ≥ λ1

n and λl+1
n → 0 (otherwise, there exists λ0 > 0 such that

∫

x1+λ0Bm
|Dwn|m ≤ εm1

2
,

which contradicts with (4.19); moreover, al+1
n → x1 (otherwise, there exists concentrate point outside

Σ1). We define w′n :
(
λl+1
n

)−1 (Ω \ al+1
n

)→ Rk by w′n (x) = wn
(
al+1
n + λl+1

n x
)
, as in Step 2. Then

(4.21) . sup
n

∫

(λl+1
n )−1(Ω\al+1

n )
|Dw′n|m = sup

n

∫

Ω

|Dwn|m <∞.

(4.22)
∫

B1(x)

|Dw′n|m ≤ min
{
εm1
2
,
εm0
2

}
, ∀x ∈ Rm; with equality for x = 0.

We may assume that w′n → ωl+1 weakly in W 1,m
loc

(
Rm, Rk

)
. We now prove the following
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Claim (1): For 1 ≤ i ≤ l,

(4.23) max
{
λl+1
n

λin
,
λin
λl+1
n

,
|ain − al+1

n |
λin + λl+1

n

}
→∞.

(2): w′n → ωl+1 in W 1,m
loc

(
Rm, Rk

)
and ωl+1 is a non-trivial bubble.

Proof of the Claim: It suffices to prove (4.23) for i = 1. Suppose it did not hold, there would exist

R <∞ such that R−1 ≤ λl+1
n

λ1
n
≤ R and |a

1
n−al+1

n |
λ1
n+λl+1

n
≤ R. Then

∫

al+1
n +λl+1

n B1

|Dωn|m ≤
∫

a1
n+(R2+2R)λ1

nB1

|Dωn|m

=
∫

BR2+2R

|D (un
(
a1
n + λ1

n.
)− ω1

) |m

→ 0,

which contradicts to (4.20). So (4.23) holds. To prove the Claim (2), we consider the two cases of

(4.23).

Case (a): There exists M > 0 such that

(4.24) either M−1 ≤ λl+1
n

λ1
n

≤M,
|a1
n − al+1

n |
λ1
n + λl+1

n

→∞, or
λl+1
n

λ1
n

→∞, |a
1
n − al+1

n |
λ1
n + λl+1

n

→∞.

In this case,
(
al+1
n + λl+1

n BR
) ∩ (a1

n + λ1
nBR

)
= ∅ for large R > 0. Therefore,

∫

BR

∣∣∣∣Dω1

(
al+1
n − a1

n + λl+1
n .

λ1
n

)∣∣∣∣
m

≤
∫

Rm\BR
|Dω1|m ≤ o (1) .

and
∫

B1(x)

|Dun
(
al+1
n + λl+1

n ·
) |m ≤ min

{
εm1
2
,
εm0
2

}
+ o (1) , ∀x ∈ Rm, with equality for x = 0.

So we apply lemma 3.1 to conclude that un
(
al+1
n + λl+1

n .
) → ωl+1 in W 1,m

loc

(
Rm, Rk

)
for some ωl+1 :

Rm → Rk, which is a bubble.

Case (b): There exists M <∞ such that λl+1
n

λ1
n
→∞, |al+1

n −a1
n|

λl+1
n

≤M . For the simplicity, we assume that

al+1
n = a1

n = x1. Then, for all α > 0 and 1 ≤ i ≤ l

(4.25)
∫

Rm\Bα

∣∣∣∣Dωi
(
al+1
n − a1

n + λl+1
n ·

λ1
n

)∣∣∣∣
m

≤
∫

Rm\B
αλ
l+1
n /λin

(
a
l+1
n −a1

n
λ1
n

) |Dωi|m = o (1) ,

which implies
∫

B1(x)\Bα
|Dun

(
al+1
n + λl+1

n ·
) |m ≤ min

{
εm1
2
,
εm0
2

}
+ o (1) , ∀x ∈ Rm,

with equality at x = 0. Again, by Lemma 3.1, we get un
(
al+1
n + λl+1

n .
)→ ωl+1 in W 1,m

loc (Rm \Bα) and

ωl+1 is a non-constant solution, which extends to Rm by letting α→∞. Moreover, for any R > 0,

(4.26)
∫

BR

|D (wn
(
al+1
n + λl+1

n ·
)− ωl+1

) |m =
∫

Bα

|D (wn
(
al+1
n + λl+1

n ·
)− ωl+1

) |m + o (1)
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=
∫

B
αλ
l+1
n

(al+1
n )

∣∣∣∣D
(
wn − ωl+1

( · − al+1
n

λl+1
n

))∣∣∣∣
m

+ o (1) .

On the other hand, for β > 0

(4.27)
∫

B
βλ1
n

(a1
n)

|Dwn|m = o (1) ,

(4.28)
∫

B
βλ1
n

(a1
n)

∣∣∣∣Dωl+1

( · − al+1
n

λl+1
n

)∣∣∣∣
m

=
∫

B
βλ1
n/λ

l+1
n

|Dωl+1|m = o (1) .

Therefore, if we denote A
(
a1
n, βλ

1
n, αλ

l+1
n

)
= Bαλl+1

n

(
a1
n

) \Bβλ1
n

(
a1
n

)
, then

(4.29)∫

BR

|D (wn
(
al+1
n + λl+1

n .
)− ωl+1

) |m =
∫

A(a1
n,βλ

1
n,αλ

l+1
n )

∣∣∣∣D
(
wn − ωl+1

( · − al+1
n

λl+1
n

))∣∣∣∣
m

+ o (1) .

We choose α so small and β so large that

(4.30)
∫

Bα

|Dωl+1|m = o (1) ,
∫

∂Bα

|D (ωl+1 − ωl+1 (0)) |m = o (1) .

(4.31)
∫

∂Bβ

|D (un
(
a1
n + λ1

n·
)− ω1 (∞)

) |m = o (1) .

Then

(4.32)
∫

BR

|D (wn
(
al+1
n + λl+1

n ·
)− ωl+1

) |m =
∫

A(a1
n,βλ

1
n,αλ

l+1
n )
|Dun|m + o (1) ,

≤ min
{
εm1
2
,
εm0
2

}
+ o (1) .

If we define vn on A
(
a1
n, βλ

1
n, αλ

l+1
n

)

−div
(|Dvn|m−2Dvn

)
= 0,(4.33)

vn = un, on ∂A
(
a1
n, βλ

1
n, αλ

l+1
n

)
.

Then, from lemma 3.3, we have

(4.34)
∫

A(a1
n,βλ

1
n,αλ

l+1
n )
|Dun|m ≤ C

∫

A(a1
n,βλ

1
n,αλ

l+1
n )
|Dvn|m + C ‖hn‖m

′

W−1,p .

In particular,

(4.35)
∫

BR

∣∣D (wn
(
al+1
n + λl+1

n ·
)− ωl+1

)∣∣m ≤ C
∫

A(a1
n,βλ

1
n,αλ

l+1
n )
|Dvn|m + o (1) .
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Now, we define fn and gn on A
(
a1
n, βλ

1
n, αλ

l+1
n

)
by

−div
(|Dfn|m−2Dfn

)
= 0,(4.36)

fn = un − ωl+1 (0) , on ∂Bαλl+1
n

(
a1
n

)

fn = un − ω1 (∞) , on ∂Bβλ1
n

(
a1
n

)
.

−div
(|Dgn|m−2Dgn

)
= 0,(4.37)

gn = ωl+1 (0) , on ∂Bαλl+1
n

(
a1
n

)

gn = ω1 (∞) , on ∂Bβλ1
n

(
a1
n

)
.

Then, from (4.30)- (4.31) and Proposition 3.2, we have, with A = A
(
a1
n, βλ

1
n, αλ

l+1
n

)
,

(4.38)
∫

A

|Dfn|m = o (1) ,
∫

A

|Dgn|m =
|ω1 (∞)− ωl+1 (0) |m(

log αλl+1
n

βλ1
n

)m−1 .

By the minimality of vn, we know that
∫

A

|Dvn|m ≤
∫

A

|Dfn|m +
∫

A

|Dgn|m

It follows from (4.38) and λl+1
n /λ1

n →∞, for fixed α and β,

(4.39)
∫

A(a1
n,βλ

1
n,αλ

l+1
n )
|Dvn|m = o (1) .

Now (4.39) and (4.35) imply
∫

BR

|D (wn
(
al+1
n + λl+1

n ·
)− ωl+1

) |m = o (1)

This completes proof of the claim. We can repeat this argument for wn near other points in Σ1 to

get bubbles ωj : Rm → Rk and
{
ajn
} ⊂ Ω, λjn ⊂ R for l + 1 ≤ j ≤ l + l′ such that (2) in Theorem

1.1 holds and (4.8) holds with l replaced by l + l′, wn
(
ajn + λjn·

) → ωj in W 1,m
loc

(
Rm, Rk

)
. Since

each ωi : Sm → Rk has at least energy µ, this bubbling process terminates after
[
C
µ

]
times, where

C = limn

∫
Ω
|Dun|m. Notice that the argument keeps all energy during the bubbling process. The

conclusions of theorem follow.

Proof of Corollary 1.3. Suppose the conclusion were not true. Then, from theorem 1.1, there exists

at least one non-constant m-harmonic map ω : Rm → N such that limn

∫
Ω
|Dun|m ≥

∫
Ω
|Du|m + µ,

which contradicts to the assumption.

(2): In this case, we will show that any m-harmonic map ω from Sm to N is constant. In fact, if f is

the given convex function on N , then we have the following chain rule (see, Jost [Jj]):

(4.30) div
(|Dω|m−2D (f ◦ ω)

) ≥ c0|Dω|m.
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Then we integrate this inequality over Sm to conclude that Em (ω) = 0.

Proof of Theorem 1.2. We start by recalling that on a Riemannian homogeneous manifold (for

details, we refer to Helein [Hf] or Toro-Wang [TW]), that there exist q fields Yα (1 ≤ α ≤ q) and q

smooth killing vector fields Xα (1 ≤ α ≤ q) on N such that for any y ∈ N and v ∈ TyN , we have

v =
q∑

α=1

〈Xα, v〉Yα.

In particular

|Dun|m−2Dun =
q∑

α=1

|Dun|m−2〈Dun, Xα (un)〉Yα (un) .

1/m Note the property of Xα(1 ≤ α ≤ q) that for 1 ≤ α ≤ q

(4.31) −div
(|Dun|m−2〈Dun, Xα (un)〉) = 〈hn, Xα (un)〉.

Therefore, we can write the m-harmonic equation as

−div
(|Dun|m−2Dun

)
=

q∑
α=1

〈hn, Xα (un)〉Yα (un)

+
q∑

α=1

〈|Dun|m−2Dun, Xα (un)〉Yα (un)

= h̄n +
q∑

α=1

aα (un, Dun) bα (un) .

Since hn → 0 in W−1,p for some p > m
m−1 and Xα, Yα are smooth in u, it follows that h̄n → 0 in W−1,p∗

for some p∗ > m
m−1 . The conformal invariance of the m-harmonic map equation follows from that of∫

Ω
|Du|m. Therefore, the conditions of Theorem 1.1 are satisfied, and so the conclusions of Theorem

1.2 hold.

Proof of Theorem 1.4. In this case, we already observed in §1 that f = Hu1∧· · ·∧um can be written

as

f i =
m∑

l=1

ail · ∂u
i+1

∂xl

with div
(
ai
)

= 0. Moreover, the blow-up equation is conformally invariant. In particular, conditions

of Theorem 1.1 are satisfied and hence the conclusions follow.
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