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Let ©Q be a smooth bounded domain in R™, N be a compact smooth sub-
manifold of R¥, and p > 2. Recall [HL] that a p-harmonic map to N is a map
u e WHP(Q, N) that is a weak solution of an equation of the form

div (|Vu|P~2Vu) + f(u,Vu) = 0,

where |f(u, Vu)| < en|VulP, that is,
/ (IVulP2Vu - V¢ — f(u,Vu) -¢) dz = 0.
Q

for all ¢ € C3°(Q, R¥). The above equation then also holds for ¢ € Wy (Q,R¥) N
L>.

Here we show how WP weakly convergent sequences of p-harmonic maps are
strongly convergent in W14 for 1 < ¢ < p < oo. First we prove some useful
inequalities.

Lemma 1. If p>2 and 0 < u < A, then for all a > 0,
A =P < 20+ M) T A= (a+p®) "7 4

Proof : Let fo(A) = (a+ )\2)17772)\.
In case %)\Sug)\andu<c<)\,

(fa)(0) = (@+ AT +(p-2(a+A)T & > 240 > (A—p)?
so that the mean value theorem gives
faO) = falp) = A =p)P2A=p) = A=),
Incase—)\gu<%/\,
A= )Pt < AL < (a+A2)T A
< 2@+ (A ) < 2[faV) — falw)] -
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Corollary 1. If p > 2, then,
p—2 p—2 1 p
(g = 1277%2) - (y —2) = 5ly—=|

for any vectors y and z in RF.

Proof : Switching y and z if necessary, we may write
y=z+\w, z=x+ pw ,

for some vectors z and w in R* and numbers p and A with || < A\, z-w = 0, and
|lw| = 1. Then

y—z=A-pw,
y-(y—2)=MA—pn), z-(y—2)=pA—pn),
yl? = [z)> + X, |2]P =z + 47 .

Thus, by Lemma 1,

ly— 27 = (A —p)? < 220z + AT A= (|2 + 1) T (A - p)
= 2P (lylP %y —2P7%2) - (y — 2) .

Remark. Such an inequality fails for p < 2 and n > 2 as is seen by taking
y; = (—1,7) and z; = (1,7). However, Corollary 2 below gives a suitable integral

inequality for 1 < p < 2.
Lemma 2. If1 < p < 2, then,
_ _ -2
P2y = 12[P722) - (y = 2) > (0= 1)yl + [21)" "y — 2

for any vectors y and z in RF.

Proof : Let F(z) = |z|P~2%x so that

OF"

o, (1) = 1220+ (o= Del i




Then, letting z; = z + t(y — 2), we see from Schwarz’s inequality that

(Fw) =P (=2) = [ ZFG)- (-2
= /0 Zgi(zt)(yi—zi)(yj—zj)dt

- / P2y — 2P dt + (p— 2/2\2# (20)iz0)3 (01 — 20) (s — 25) db

> / P2y — 2P dt — (p—2) / 2Pz Py — 2|2 de
0
2
> (p— 1) (lyl + 12" 2y — =2 .

Corollary 2. If 1 < p < 2, £ is a nonnegative integrable function on ) and
u,v € WHP(Edx), then, by Holder’s inequality,

/\Vu—Vv]”{dx _ /yvu—w|p(\w+yw)< (V| + Vo))
Q Q

< (/Q|VU—VU|2(]VU\+|Vv\)p_2§dx>§ (/Q(|Vu|+|VU|)p§dx)

< [2% /Q(|Vu|p2Vu — |Vo|P~2V)(Vu — V)€ dx} ’ {/Q(|Vu| + | Vo|)PE dm] =
|

Theorem. Suppose 1 < p < oo and, for each i = 1,2,..., u; € WHP(Q, N) is a
weak solution of

div (|Vu|P~2Vu) + f; =0

with K = sup, ||u;||we +sup; || fill r < oo. Ifu; — u weakly in WP then u; — u
strongly in W9 whenever 1 < q < p.

Proof : Tt suffices to prove that, for each § € (0, 1],

1
/|Vui—Vu\qdw = o(d) + 05(5),
Q

where we say an expression M (6, 1) is

o(9) if gii%sqp |M(4,i)] =0 ,or



05(%) if, for cach 4, lim [M(3,4)| =0 .
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Denote by E} and Fs the subsets
Fs={xcQ: dx) <6}; Ei={xcQ:|ux)—u(x) >},

where d(z) = dist(z,0Q) and i = 1,2,3,.... Clearly |(E})| is 05(1) and |Fs| is o(9).
The lower-semicontinuity of fQ |VulP and the weak convergence u; — u imply
that
[ullwrr < K = sup Jwillwae -

For q < p, the Holder inequality gives
. P—4q b—g 1
/ |VU1 - Vu|q < 29K1 <|E};|T + |F5|T> = 95(—,) + 0(5) (1)
EiUFs t

To show that fﬂ\(Egqu) [Vu; — Vul? = 0(6) + 0s(1), it suffices, by Holder’s
inequality again, to show that

1
/ |\Vu; — VulP = 0(d) + o5(=) .
Q\(EUFs)

i
For this, we define functions & : Q — [0,1] and n : R¥ — R* by

o) =uin{ 1), weni gl —min T 1) yeRY

It is direct to verify the following properties of £ and n:
1

Using Corollaries 1 and 2, together with these properties of £ and 7, we obtain

1 1
—/ |Vu; — VulP < —/ ¢|Vu; — VulP
2 Jo\(EiuFs) 2 Jo\E:

< / ¢ (IVus|P?Vu; — |[VulP~?Vu) - (Vu; — Vu)
Q\Ei

= / EIVu; P2V - V(no (u; —u)) — / EIVulP~2Vu - (Vu; — V)
O\E: O\E:

= / I— / II . (2)
O\Bi O\Bi



Now we look at each term. By the p-harmonic map equation and Holder’s
inequality,

1= |/f|wz|p2w V(0o (us — w)) | (3)

- I/ffz 7o (u — 1) /Wum (o (ui — u)) - VE
< 6K + KPYFs|MP = o(5)

To estimate fE, I, we note that on E%,
5

I =8¢V P2V, - Vo
ui — ul
Vu,; P2V — B _uP

_ oVl (Vg — Vu®) - (uf —u )_(“12 4 )(v VuP)

lu; — ul lu; — ul
_ eIVl Ve (G —u) =) o

U; — U U; — U

| | ’ | 2 ’

+ &6

P27 o @) (yf —
|V [P~V (Vua _ (uf —u)(uy —u )Vu,8> — '+ 1,

[u; — ul

where the repeated indices o and 3 are summed from 1 to k. Note that I’ > 0. As
for I, we have, by the Holder inequality,

1/p
\/ I" < 2/ |V, [P~ V| < 2KP1 / |VulP = 05(1.). (4)
B} B} ; !

For II, we use that u; — u in WP and Holder’s inequality to get

| Il < |/ EIVuP2Vu - V(u; —u)| +| [ &VulP~2Vu - V(u; — u)|
O\Ei 0 B

p—1

< 01(%) + 2K (/i|vu|p> . 05(%).

Using that I’ > 0 and combining (1)-(4), we obtain

/ Vu; — VulP < /I—/ I —/ 11
Q\(ELUF;5) i O\E:

1
<ifnsif e[ = oo+
Ei Q\E!



Remarks. In case N is the standard sphere S¥, the weak limit w above is also a

weak solution of the p-harmonic map equation.

In fact, a map u € W1P(Q,S*) is, by an argument similar to Lemma 2.2 of
[C], a weak solution of the p-harmonic map equation if and only if

|VulP2VuAu)-V¢dr = 0
Q

for all ¢ € C$°(2, R¥). Since |u| = 1, this condition is clearly preserved under strong
convergence in W1P~1(Q, S¥) .

It remains an open problem whether a WP weak limit of p-harmonic maps
is again p-harmonic, even for p = 2. For energy minimizers this is easy to verify
because the convergence is then necessarily strong in W1?. Here the limit is also
energy minimizing by [L]. Also, by the recent preprint [TW], a weak limit of p-
harmonic maps will be p-harmonic in case the target /N is a homogeneous space or
in case the sequence consists of stationary maps (see [B]). But in the latter case it
is unknown if the limit is also stationary.

For a blowing-up sequence, there is a convergence result similar to Theorem 1

above, and one may verify that the limit function satisfies the blow-up equation. (A
different proof of this has been given by M. Fuchs [F]).

Suppose that, for i = 1,2,..., u; € WHP(Q,N) is a weak solution of the p-
harmonic map equation,

gi = ||Vuillrr — 0 as i — oo,

and

Uj — U _ _
v; = where u; = (meas () 1/ u; dx .
lors B

If v; — v weakly in WYP | then v; — v strongly in W19 whenever 1 < q < p, and

v is a weak WP (Q, R¥) solution of the p-harmonic equation, i.e.

/ |VuP™2Vu - V¢ de = 0 for all ¢ € C°(Q,RF) .
Q



Proof : First observe that
‘ / V0 [P2 V0, - V¢ da:’
Q

_ 1-p
€

/ VP2V - V¢ dx’
Q

1-p

:€’L

Q
< 61'CN||CHLoo/ |Vu;[Pdex — 0as i— oo .
Q

Then we argue as in the proof of Theorem 1, now using v; — v in the definition of
E} and in choosing the test function ¢ = &no (v; — v). [ ]

John Hutchinson has kindly pointed out to us that the latter fact is used,
without proof, in the argument on [HL, p.564].

References

[B] F. Bethuel, On the singular set of stationary harmonic maps, Manuscripta Math.
78(1993), 417-443.

[C] Y. Chen, Heat flow for harmonic mappings into spheres, Math.Z.201(1989),
69-74.

[F] M. Fuchs, The blow-up of p-harmonic maps, Manuscripta Math. 81(1993), 89-
94.

[HL] R. Hardt and F.H. Lin, Mappings minimizing the LP norm of the gradient,
C.P.A.M. 40(1987), 555-588.

[L] S. Luckhaus, Convergence of minimizers for the p-Dirichlet integral, Math. Z.
213(1993), 449-456.

[TW] T. Toro and C.Y.Wang, Compactness properties of weakly p-harmonic

mappings into homogeneous spaces, Preprint.

Mathematics Department, Rice University, Houston, TX 77252 USA
Courant Institute of Mathematical Sciences, NYU, New York City, NY 10012 USA
Mathematics Department, University of lowa, lowa City, IA 52242 USA

7



