
NECESSARY CONDITIONS FOR NONSMOOTH OPTIMIZATION
PROBLEMS WITH OPERATOR CONSTRAINTS IN METRIC SPACES

Boris S. Mordukhovich

Department of Mathematics, Wayne State University,
Detroit, Michigan 48202, USA

boris@math.wayne.edu

Libin Mou

Department of Mathematics, Bradley University,
Peoria, Illinois 61625, USA

mou@bradley.edu

Dedicated to Stephen Simons in honor of his 70th birthday.

This paper concerns nonsmooth optimization problems involving operator constraints given
by mappings on complete metric spaces with values in nonconvex subsets of Banach spaces.
We derive general first-order necessary optimality conditions for such problems expressed via
certain constructions of generalized derivatives for mappings on metric spaces and axiomat-
ically defined subdifferentials for the distance function to nonconvex sets in Banach spaces.
Our proofs are based on variational principles and perturbation/approximation techniques
of modern variational analysis. The general necessary conditions obtained are specified in
the case of optimization problems with operator constraints described by mappings taking
values in approximately convex subsets of Banach spaces, which admit uniformly Gâteaux
differentiable renorms (in particular, in any separable spaces).

Keywords: Variational analysis, generalized differentiation, optimization in metric spaces,
necessary optimality conditions, approximately convex functions and sets

2000 Mathematics Subject Classification: 49J53, 49J52, 49K27, 90C48

1 Introduction

A vast majority of problems considered in optimization theory are described in Banach (if
not finite-dimensional) spaces, where the linear structure is crucial to employ conventional
tools of variational analysis and (generalized) differentiation for deriving necessary opti-
mality conditions and subsequently developing numerical algorithms. On the other hand,
there is a number of remarkable classes of problems particularly important for optimization,
control, and their various applications that admit adequate descriptions in spaces with no
linear structures; see, e.g., [4, 13, 15, 16, 18, 19] and the references therein.

In this paper we pay the main attention to deriving first-order necessary optimality
conditions for a general class of optimization problems with operator constraints in complete
metric spaces. The basic problem is described as follows:{

minimize ϕ(w) with w ∈W
subject to f(w) ∈ Θ,

(1.1)
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where (W,ρ) is a complete metric space with the metric ρ, where ϕ : W → IR := (−∞,∞]
is a lower semicontinuous (l.s.c.) extended-real-valued cost function, and where f : W → X

is a continuous operator constraint mapping taking values in a closed subset Θ of a Banach
space (X, ‖ · ‖) equipped with the norm ‖ · ‖. Note that the case of additional geometric
constraints w ∈ Ω given by a closed subset Ω ⊂W can be easily reduced to the basic form
(1.1) in the complete metric space (Ω, ρ).

Recently problem (1.1) has been considered in [15] in the case when ϕ is a continuous
function and when Θ is a convex subset of a Banach space X whose topologically dual
space X∗ is strictly convex (or rotund in the norm topology; see, e.g., [6]). A version of
the abstract multiplier rule obtained in [15] has been applied in [16] to derive a maximum
principle for a general deterministic optimal control problem with state constraints.

Let us particularly emphasize that the convexity assumption on the constraint set Θ
imposed in [15] is clearly a restriction from both viewpoints of optimization theory and
applications. The primary goal of this paper is to establish necessary conditions for local
optimal solutions to problem (1.1) with no convexity requirements imposed on the constraint
set Θ and/or continuity assumptions on the cost function ϕ. We derive such optimality
conditions in the general case of complete metric spaces, lower semicontinuous cost functions
ϕ : W → IR, and continuous mappings f : W → X taking values in closed subsets Θ of
arbitrary Banach spaces. Furthermore, we obtain efficient specifications of our general
necessary optimality conditions in the case of approximately convex subsets Θ of Banach
spaces X admitting uniformly Gâteaux differentiable renorms (equivalent to rotundedness
in the weak∗ topology [6]) that encompass, in particular, every separable Banach space. The
latter result essentially improves the multiplier rule derived in [15] for problems with convex
constraint sets considered therein in the more restrictive setting.

To establish necessary optimality conditions for the general problem (1.1), we employ
the notions of subderivates for functions and mappings on metric spaces and also of the
(topological and sequential) outer-regular subdifferentials introduced and applied below for
the distance functions of closed subsets in Banach spaces. The latter abstract subdifferential
notions are defined axiomatically via several required properties that hold in natural settings
for major subdifferential constructions encountered in variational analysis and optimization.

The rest of the paper is organized as follows. In Section 2 we define and discuss the
notions of approximate (sub)derivates and strict (sub)derivates for generally nonsmooth
mappings and extended-real-valued functions on metric spaces as well as of abstract outer-
regular subdifferentials for the distance functions in Banach spaces.

Section 3 presents the main result of the paper establishing first-order necessary optimal-
ity conditions for the general problem (1.1) with operator constraints. The result obtained
is expressed in terms of the strict subderivates of ϕ and f in (1.1) and of the outer subd-
ifferentials for the distance function dΘ of the constraint set Θ defined in Section 2. The
proof is based on employing the Ekeland variational principle and advanced perturbation
techniques of variational analysis via the strict derivate construction and the appropriate
properties of outer subgradients postulated and justified in the previous section.

Section 4 is devoted to the description and certain useful properties of extended-real
valued approximately convex functions in Banach spaces introduced in [21]. These con-
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structions are closely related to some other remarkable notions of generalized convexity,
which play an important role in variational analysis and optimization. We establish new
properties of approximately convex functions and sets in terms of generalized differential
constructions of variational analysis paying the main attention to a modified version of
approximate convexity around the reference points.

In the concluding Section 5 we apply the general necessary optimality conditions estab-
lished in Section 3 and the properties of approximately convex functions and sets from Sec-
tion 4 to derive efficient specifications of the general result in the case of problem (1.1) with
approximately convex constraint sets Θ in Banach spaces X admitting uniformly Gâteaux
differentiable renorms. As mentioned, this class of spaces contains every separable Banach
spaces particularly important for variational analysis and its applications to optimization
and related topics. We show that the major subdifferential constructions in variational
analysis—that are known to be the same for the distance functions of approximately convex
sets—enjoy the required properties of the topological and sequential outer subdifferentials,
which agree in the Banach spaces under consideration and allow us to efficiently apply the
main result of Section 3. Furthermore, the latter result is constructively specified for ap-
proximately convex sets and expressed in the form similar to the case of (full) convexity
developed in [15]. We also discuss various modifications and extensions of the proofs and
results developed in Sections 4 and 5.

Throughout the paper we mainly use standard notation of variational analysis; see, e.g.,
[18, 23]. Recall that IN = {1, 2, . . .}, that IB and IB∗ stand for the closed unit ball in the
Banach space in question and its topological dual, that B(x̄; r) is the closed ball centered
at x̄ with radius r > 0, and that x w∗

→ x∗ signifies the weak∗ convergence in the dual X∗ to
a Banach space X with the canonical paring 〈·, ·〉 between the primal and dual spaces. We
use the notation F : X →→ Y for set-valued mappings with the graph

gphF :=
{
(x, y) ∈ X × Y

∣∣ y ∈ F (x)
}

to distinguish them from single-valued mappings denoted as usual by f : X → Y . Given a
set-valued mapping F : X →→ X∗ between a Banach space and its dual, the symbol

Lim sup
x→x̄

F (x) :=
{
x∗ ∈ X∗

∣∣∣ ∃ a bounded net (xν , x
∗
ν) ∈ gphF

with (xν , x
∗
ν) → (x̄, x∗)

}
.

(1.2)

signifies the topological Painlevé-Kuratowski outer limit of F as x→ x̄. If the nets in (1.2)
are replaced by sequences, we call (1.2) the sequential Painlevé-Kuratowski outer limit of
F as x→ x̄ and use the same notation while indicating each time what kind of the limit is
under consideration in the specific situation.

Given further a nonempty subset Θ ⊂ X of a Banach space X, denote by clΘ its closure,
by bdΘ its boundary, by cone Θ := {αx| α ≥ 0, x ∈ Θ} its conic hull, and by

dΘ(x) := inf
{
‖x− y‖

∣∣ y ∈ Θ
}

(1.3)

the distance function associated with Θ. We use the symbol Θ′ := X \ Θ to signify the
complement of Θ in X and the symbol x Θ→ x̄ to indicate that x → x̄ with x ∈ Θ. By
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convention, let α∅ := ∅ for α ∈ IR with α 6= 0 and 0 · ∅ := 0. We always suppose that all
the extended-real-valued functions ψ : W → IR under consideration are proper, i.e.,

domψ :=
{
w ∈W

∣∣ ψ(w) <∞
}
6= ∅.

2 Subderivates and Subdifferentials

In this section we introduce and discuss the major notions of generalized differentiation
used in this paper: the approximate (sub)derivates and strict (sub)derivates for nonsmooth
mappings and extended-real-valued functions on metric spaces as well as of the axiomatically
defined outer-regular subdifferentials for the distance functions in normed spaces.

Let us start with the constructions of subderivates and derivates and define them for
mappings f : W → X on metric spaces (W,ρ) with values in normed spaces (X, ‖ · ‖).
Although the definitions below do not use the completeness of the domain and image spaces,
these properties are essential in the proofs of the our main results. Thus we always assume
that the underlying domain metric space W is complete and the image space X is Banach.
Furthermore, the presented subderivate/derivate definitions are automatically applied to
extended-real-valued functions ϕ : W → IR finite at the reference points.

Given f : W → X and w̄ ∈W , denote by S(w̄) the sets of sequences (wi, ti)IN such that
wi ∈W , ti ∈ (0,∞), and ρ(wi, w̄) ≤ ti ↓ 0 as i→∞.

Definition 2.1 (subderivates and derivates of mappings on metric spaces). Let
f : W → X, w̄ ∈W , and S(w̄) be as described above. Then:

(i) Given ε ≥ 0, we say that v ∈ X is an ε-subderivate of f at w̄ if there is a sequence
(wi, ti) ∈ S(w̄) such that

lim sup
i→∞

∥∥∥f(wi)− f(w̄)
ti

− v
∥∥∥ ≤ ε. (2.1)

We call v a subderivate of f at w̄ if ε = 0 and approximate subderivate of f at w̄
if ε > 0. The collection of ε-derivates of f at w̄ is called the ε-derivate (derivate and
approximate derivate, respectively) of f at this point and is denoted by Dεf(w̄).

(ii) We say that v ∈ X is a strict subderivate of f at w̄ if for every sequence
wk → w̄ there is a sequence εk ↓ 0 as k → ∞ such that v ∈ Dεk

f(wk) for all k ∈ IN . The
collection of strict subderivates of f at w̄ is called the strict derivate of f at this point
and is denoted by Dsf(w̄).

The above construction of strict derivate slightly extends the one from [15], where the
sequence εk is replaced by a positive function ε(w) ↓ 0 as w → w̄. Note that the derivate
and strict derivate have certain similarities with the classical derivative and strict derivative
of mappings between Banach spaces, while they are different even for smooth real-valued
functions ϕ : IR→ IR in which case

Dεϕ(w̄) =
[
− |ϕ′(w̄)| − ε, |ϕ′(w̄)|+ ε

]
as ε ≥ 0 and Dsϕ(w̄) =

[
− |ϕ′(w̄)|, |ϕ′(w̄)|

]
.
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On the other hand, the derivate constructions from Definition 2.1 make sense for heavily
discontinuous mappings and extended-real-valued functions. We have, e.g.,

Dεϕ(w) = [−1− ε, 1 + ε] and Dsϕ(w) = [−1, 1] as w ∈ IR, ε ≥ 0

for the function ϕ : IR→ IR equal to w at rational numbers and to 1 + w otherwise.
It is worth mentioning that there is a number of pointwise calculus rules available for

the strict derivate of mappings between both finite-dimensional and infinite-dimensional
spaces. They are not needed in this paper and will be presented in subsequent publications.

Let us next introduce the notions of (topological and sequential) outer-regular subdif-
ferentials for the class of distance functions ϕ = dΘ : X → IR defined in (1.3), where Θ ⊂ X

is a closed subset of a Banach spaces; in fact, we apply these subdifferential constructions
just to the distance function of the constraint set Θ in the original problem. Note that the
(Lipschitz continuous) distance functions play a fundamental role in subdifferential theory
and variational analysis generating subdifferentials of extended-real-valued functions, which
are not needed in this paper; see, e.g., [5, 10, 18, 26] for more details and references.

By an abstract outer-regular subdifferential of the distance function dΘ : X → IR around
a given point x̄ ∈ Θ we understand a set-valued mapping DdΘ : U →→ X∗ defined at x̄ and
on some outer neighborhood U ⊂ Θ′ of x̄ that satisfies several properties formulated and
discussed below including the major outer regularity requirement. We present two generally
different versions of the required properties, topological and sequential, which depend on the
(topological or sequential) type of the weak∗ convergence in the dual space X∗ and generate
the corresponding notions of topological and sequential outer-regular subdifferentials.

Observe that, for a given subdifferential DdΘ on a Banach space X, the topological
and sequential properties defined below are equivalent provided that the dual unit ball IB∗

is sequentially weak∗ compact in X∗. This is the case of all Banach spaces admitting a
Gâteaux differentiable renorm at nonzero points as well as all Asplund generated spaces;
the latter class includes every Asplund space and every weakly compactly generated (WCG)
space and thus all reflexive and all separable Banach spaces. We refer the reader to the
classical texts [6, 7] and to the paper [9], where similar relations between topological and
sequential properties are considered in detail in the framework of variational analysis.

Definition 2.2 (outer robustness). Given x̄ ∈ Θ, we say that DdΘ is topologically

outer robust around x̄ if there exists an outer neighborhood U ⊂ Θ′ of x̄ such that for
every x ∈ U we have the inclusion

D′dΘ(x) := Lim sup
u

Θ′
→x

DdΘ(u) ⊂ DdΘ(x), (2.2)

where Lim sup stands for the topological outer limit (1.2) relative to Θ′. If (2.2) holds with
the replacement of the topological outer limit by the sequential one, we say that DdΘ is
sequentially outer robust around x̄.

Note that the topological outer robustness property implies the sequential one but not
vice versa. It is also obvious that these properties are always satisfied around interior points
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of Θ, since the left-hand side set in (2.2) is empty in this case. For boundary points of any
closed sets, the outer robustness (both topological and sequential versions) holds for the
generalized gradient by Clarke [5] and for the “approximate” G-subdifferential by Ioffe [10]
in arbitrary Banach spaces as well as for the basic/limiting subdifferential by Mordukhovich
[18] in WCG Banach spaces (not necessarily Asplund); see Theorem 3.60 and the discussions
after its proof in [18, pp. 323–326]. We can similarly justify the outer robustness in WCG
Banach spaces for certain modifications of the limiting subdifferential: namely, for the right-
sided subdifferential introduced in [20] (see also [18, Subsetion 1.3.3]) and the closely related
outer subdifferential of [11], and also for the sequential limiting subdifferential developed in
[8] in the case of Asplund generated spaces.

The next required properties (topological and sequential) of DdΘ are more selective
than the corresponding outer robustness and depend, for specific subdifferentials, on the
set Θ ⊂ X and the point x̄ ∈ Θ under consideration.

Definition 2.3 (outer regularity). Given x̄ ∈ Θ, we say that DdΘ is topologically

outer regular at x̄ if every sequence xk
Θ′
→ x̄ as k →∞ has a infinite subset S such that

the topological Painlevé-Kuratowski outer limit

Lim sup
x

S→x̄

DdΘ(x) is a singleton in X∗. (2.3)

We say that DdΘ is sequentially outer regular at x̄ if the topological outer limit in
(2.3) can be replaced by a sequential one.

Note that the singleton in (2.3) generally depends on the chosen subset S. Similarly to
the case of outer robustness, observe that the topological outer regularity property implies
its sequential counterpart but not vice versa and that these properties obviously hold for
interior points x̄ of any set Θ.

If Θ is “smooth” around x̄ ∈ bd Θ (in the sense that dΘ is smooth around this point),
then the outer regularity properties obviously hold for any natural subdifferentials DdΘ on
Banach spaces such that D reduces to the classical derivative for smooth functions. We show
in Section 5 that all the major subdifferentials in variational analysis are outer regular at
any points of approximately convex sets in Banach spaces admitting Gâteaux differentiable
renorms. This implies, in particular, the outer regularity of the classical subdifferential of
convex analysis in the case of convex sets in Definition 2.3.

Further, taking into account the projection formula

∂dΘ(x) =
x−Π(x; Θ)
dΘ(x)

, x /∈ Θ,

for computing the afore-mention limiting subdifferential of the distance function at out-of-set
points of closed sets in IRn via the Euclidean projector Π(x; Θ) (see, e.g., [23, Example 8.53]
and [18, p. 111] with more discussions and references therein), we conclude that the limiting
subdifferential is outer regular at x̄ ∈ bd Θ whenever

Lim sup
x
Θ′
→x̄

Π(x; Θ) is a singleton in IRn.
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The latter depends, of course, on Θ and x̄ and may hold for sets that are not approximately
convex and have a set-valued projector as for Θ = epi (−|x|γ) with 0 < γ < 1. However, it
is violated when γ = 1 in the above example. We refer the reader to [18, Subsection 1.3.3]
and [20] for more results on the limiting subgradients of the distance function at out-of-set
points that can be used for establishing efficient conditions ensuring the outer regularity of
the basic subdifferential of [18] and its modifications.

Another major property required for the abstract subdifferentials considered in this
paper is the Extended Mean Value Inequality (EMVI), which is a weak extended form of
the mean value theorem in generalized differentiation.

Definition 2.4 (extended mean value inequality). We say that the extended mean

value inequality (EMVI) holds for DdΘ around x̄ ∈ Θ if there exist an outer neighbor-
hood U ⊂ Θ′ of x̄, a function ω : U × [0, 1) → [0,∞) with ω(x, τ) ↓ 0 as (x, τ) → (x̄, 0+),
and a dense subset S ⊂ U such that for any x, u ∈ S we can find v ∈ (x+ ‖u− x‖IB) ∩ U
and x∗ ∈ DdΘ(v) satisfying

dΘ(u)− dΘ(x) ≤ 〈x∗, u− x〉+ ‖u− x‖ω
(
x, ‖u− x‖

)
. (2.4)

The case of ω ≡ 0 in (2.4) corresponds to the conventional Mean Value Inequality (MVI)
and holds for the majority of known subdifferentials of Lipschitz continuous functions useful
in applications; see, e,g., [1, 4, 5, 8, 18, 23, 24, 25] and the references therein. Considering
a dense subset S in Definition 2.4 allows us to cover the sequential limiting subdifferential
on Asplund generated spaces in [8] for which the MVI is proved relative to a dense Asplund
subspace. Thus the extended inequality (2.4) is a natural subdifferential property, which
does not impose any restrictions on the class of subdifferentials used in what follows. Ob-
serve that the EMVI property from Definition 2.4 is not a limiting one and hence does not
have topological and sequential versions as those from Definition 2.2 and Definition 2.3.

Combining the above requirements on DdΘ with another property that must be always
fulfilled, we arrive at the following definition of the topological and sequential abstract
outer-regular subdifferentials for the class of distance functions under consideration.

Definition 2.5 (abstract outer-regular subdifferentials of distance functions).
Given a nonempty set Θ ⊂ X and a point x̄ ∈ Θ, we say that DdΘ is a topologi-

cal outer-regular subdifferential of the distance function dΘ around x̄ if the sets
DdΘ(x) ⊂ X∗ are defined at least at x̄ and on some outer neighborhood U ⊂ Θ′ of this point
and the following properties are satisfied:

(P1) DdΘ(x) ⊂ IB∗ for all x ∈ U ;
(P2) DdΘ is topologically outer robust around x̄;
(P3) DdΘ is topologically outer regular at x̄;
(P4) The extended mean value inequality holds for DdΘ around x̄.

We say that DdΘ is a sequential outer-regular subdifferential of dΘ around x̄

if it satisfies properties (P1), (P4) and the sequential versions of properties (P2) and (P3)
from Definition 2.2 and Definition 2.3, respectively.
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Note that there are several versions of axiomatically defined abstract subdifferentials
in nonsmooth analysis; see, e.g., [1, 10, 12, 17, 18, 25]. Both topological and sequential
outer-regular subdifferentials of Definition 2.5 are essentially different from all the known
constructions. The major differences consist of considering sets (via their distance functions
in contrast to arbitrary functions) and paying the main attention to outer properties of
subdifferentials that deal with out-of-set points. In this approach the validity of the imposed
subdifferential requirements and their realization for specific subdifferentials depend on the
set and its boundary point in question; see the discussions and examples presented above.

3 Necessary Optimality Conditions for General Problems

In this section we establish the main result of the paper providing first-order necessary
optimality conditions for the general problem (1.1) via the strict derivate and outer-regular
subdifferential constructions introduced and discussed in Section 2.

Theorem 3.1 (necessary conditions for constrained optimization in metric spaces).
Let w̄ be a local minimizer for problem (1.1), where (W,ρ) is a complete metric space and
(X, ‖ · ‖) is a Banach space, ϕ : W → IR is finite at w̄ and l.s.c. around this point while
f : W → X is continuous around x̄ := f(w̄), and where Θ is locally closed around x̄. Let
further Ds(ϕ, f)(w̄) be the strict derivate of the mapping (ϕ, f) : W → (IR,X) at w̄ and
DdΘ be a topological outer-regular subdifferential of dΘ around x̄. Assume further that

0 /∈ D′dΘ(x̄) (3.1)

via the topological outer limit of DdΘ relative to Θ′ defined in (2.2). Then there are elements
(λ, x∗) ∈ [0, 1]×X∗ such that

(λ, x∗) 6= (0, 0), x∗ ∈
√

1− λ2D′dΘ(x̄), and (3.2)

λϑ+ 〈x∗, v〉 ≥ 0 for all (ϑ, v) ∈ Ds(ϕ, f)(w̄). (3.3)

If in addition the dual unit ball IB∗ ⊂ X∗ is weak∗ sequentially compact in X∗, then the
topological outer-regular subdifferential DdΘ and its topological outer limit D′dΘ can be
replaced by their sequential counterparts in the relations above.

Proof. The proof of the theorem is rather long but not difficult to follow. We split it
into seven steps. Observe first that the interior case of x̄ = f(w̄) ∈ intΘ is trivial, since
D′dΘ(x̄) = ∅ in this case by construction (2.2) and therefore the theorem holds with x∗ = 0
and λ = 1 by our convention at the end of Section 1 that α∅ 6= ∅ if and only if α = 0. Thus
we consider the boundary case x̄ ∈ bd Θ in what follows. In Steps 1–6, which are devoted
to the proof of the “topological” optimality conditions via the topological outer-regular
subdifferential in (3.1)–(3.3), the space X is assumed to be arbitrary Banach.

Step 1: approximation by unconstrained minimization problems. The first step of
the proof is to construct a sequence of unconstrained minimization problems approximating
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the given minimizer w̄ for the original problem (1.1) with operator constraints. We proceed
by using the Ekeland variational principle; see, e.g., [18, Theorem 2,26].

Assume without loss of generality that ϕ(w̄) = 0, take an arbitrary sequence εk ↓ 0 as
k →∞, and build the penalized function ϕk : W → IR by

ϕk(w) :=
√[

(ϕ(w) + εk)+
]2 + dΘ

(
f(w)

)2
, (3.4)

where φ+(w) := max{φ(w), 0} as usual. It is easy to see that for each k ∈ IN the function ϕk

is lower semicontinuous (l.s.c.) and bounded from below. Applying the Ekeland variational
principle to (3.4) for each k ∈ IN , find wk ∈W satisfying the relations

ϕk(wk) +
√
εkρ(wk, w̄) ≤ ϕk(w̄) = εk and (3.5)

ϕk(wk) < ϕk(w) +
√
εkρ(w,wk) for all w ∈W \ {wk}. (3.6)

It follows from (3.5) that ρ(wk, w) ≤ √
εk ↓ 0, while (3.6) shows that wk is a global minimizer

for the function ϕk(w)+
√
εkρ(w,wk) and an approximate minimizer for the functions ϕk(w)

from (3.4). Since the constraint function f : W → X in (1.1) is continuous, we suppose that

f(wk) ∈ U for all k ∈ IN, (3.7)

where U is the fixed outer neighborhood of x̄ from the imposed properties of outer robustness
in Definition 2.2 and the extended mean value inequality (EMVI) in Definition 2.4.

Step 2: approximation of strict subderivates. Intending further to justify the neces-
sary condition (3.3) of the theorem, take an arbitrary strict subderivate (ϑ, v) ∈ Ds(ϕ, f)(w̄)
and, by Definition 2.1(ii) along the sequence wk → w̄ built in Step 1, find a numerical se-
quence γk ↓ 0 as k →∞ such that

(ϑ, v) ∈ Dγk
(ϕ, f)(wk) for all k ∈ IN (3.8)

via the approximate subderivates from Definition 2.1(i). Taking into account that (ϑ, v) is
a γk-subderivate (3.8) of the pair (ϕ, f) at wk and using (2.1), for each k ∈ IN we get a
sequence (wi

k, t
i
k)i∈IN ∈ Swk

, such that
lim sup

i→∞
|Eϕ(i, k)| := lim sup

i→∞

∣∣∣ϕ(wi
k)− ϕ(wk)
tik

− ϑ
∣∣∣ ≤ γk,

lim sup
i→∞

‖Ef (i, k)‖ := lim sup
i→∞

∥∥∥f(wi
k)− f(wk)
tik

− v
∥∥∥ ≤ γk,

(3.9)

where Eϕ(i, k) and Ef (i, k) inside of | · | and ‖ · ‖ in (3.9) are the corresponding relative
errors in approximating the subderivate (ϑ, v) of ϕ and f . It follows from construction (3.4)
of the penalized functions ϕk that the difference ϕk(wi

k)− ϕk(wk) can be written as

ϕk(wi
k)− ϕk(wk) = λi

k

{[
ϕ(wi

k) + εk
]+ − [ϕ(wk) + εk]

+
}

+αi
k

{
dΘ

(
f(wi

k)
)
− dΘ

(
f(wk)

)}
,

(3.10)
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where the coefficients λi
k and αi

k are defined by
λi

k :=

[
ϕ(wi

k) + εk
]+ + [ϕ(wk) + εk]

+

ϕk(wi
k) + ϕk(wk)

∈ [0, 1] ,

αi
k :=

dΘ

(
f(wi

k)
)

+ dΘ

(
f(wk)

)
ϕk(wi

k) + ϕk(wk)
∈ [0, 1] .

(3.11)

Fixed a natural number k ∈ IN , we consider the following three cases, which completely
cover the situation. For simplicity and with no loss of generality, assume that each of the
listed cases hold for all k ∈ IN .

(A) The typical case: we have

ϕ(wk) + εk > 0, dΘ

(
f(wk)

)
> 0, k ∈ IN. (3.12)

(B) The mixed sign case: there is a subsequence of {εk}, still denoted by {εk}, such that

ϕ(wk) + εk ≤ 0, dΘ

(
f(wk)

)
> 0, k ∈ IN. (3.13)

(C) The zero case: there is a subsequence of {εk}, still denoted by {εk}, such that

dΘ

(
f(wk)

)
= 0, k ∈ IN. (3.14)

Next we analyze each case above separately paying the main attention to the typical
case (A) and indicating the necessary changes needed in the other case (B) and (C).

Step 3: relating the subderivates of (ϕ, f) with the topological outer-regular
subdifferential DdΘ(f(wk)) in the typical case (A). Employing the lower semiconti-
nuity property of ϕ around wk and the continuity property of f around this point for each
fixed k ∈ IN , we have the relations

ϕ(wi
k) + εk > 0, dΘ

(
f(wi

k)
)
> 0, f(wi

k) ∈ U (3.15)

whenever i ∈ IN is sufficiently large. Thus the limit (λk, αk) := limi→∞(λi
k, α

i
k) of the

sequences in (3.11) exists and is computed by

(λk, αk) =

(
ϕ(wk) + εk
ϕk(wk)

,
dΘ

(
f(wk)

)
ϕk(wk)

)
(3.16)

due to the strict inequalities in (3.12). Note that (λk, αk) ∈ (0, 1) × (0, 1) in this case and
that λ2

k + α2
k = 1. It follows furthermore that[
ϕ(wi

k) + ε
]+ − [ϕ(wk) + ε]+ = ϕ(wi

k)− ϕ(wk) for all large i ∈ IN. (3.17)

Let us handle the dΘ term in (3.10) by using the EMVI property (P4) of the outer
subdifferential DdΘ on the dense subset S of outer neighborhood U . It follows from the
density of S in U that there are elements ai

k, b
i
k ∈ S satisfying

‖ai
k − f(wk)‖+ ‖bik − f(wi

k)‖ ≤ (tik)
2 for all i ∈ IN, (3.18)
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where the numbers tik are taken from (3.9). Since dΘ is Lipschitz continuous with modulus
` = 1, the last inequality implies that

dΘ

(
f(wi

k)
)
− dΘ

(
f(wk)

)
≤ dΘ(ai

k)− dΘ(bik) + (tik)
2. (3.19)

Employing now the extended mean value inequality (2.4) on the dense set S, we find ele-
ments cik ∈ S ∩B(ai

k; ‖ai
k − bik‖) and u∗ik ∈ DdΘ(cik) such that

dΘ(ai
k)− dΘ(bik) ≤ 〈u∗ik, ai

k − bik〉+ ‖ai
k − bik‖ω

(
ai

k, ‖ai
k − bik‖

)
. (3.20)

Combine (3.19) and (3.20) to get the inequality

dΘ

(
f(wi

k)
)
− dΘ

(
f(wk)

)
≤ 〈u∗ik, ai

k − bik〉+ ‖ai
k − bik‖ω

(
ai

k, ‖ai
k − bik‖

)
+ (tik)

2. (3.21)

Substituting expressions (3.17) and (3.21) into (3.10) and dividing the latter by tik, we arrive
at the upper estimate of the finite difference

ϕk(wi
k)− ϕk(wk)
tik

≤ λi
k

[ϕ(wi
k)− ϕ(wk)
tik

]
+ αi

k

{〈
u∗ik,

ai
k − bik
tik

〉
+
∥∥∥ai

k − bik
tik

∥∥∥ω(ai
k, ‖ai

k − bik‖
)

+ tik

} (3.22)

held for all indices i ∈ IN that are sufficiently large. Let further ∆f i
k := f(wi

k)− f(wk) and
observe by (3.9) that ∆f i

k = tik [v + Ef (i, k)]. It follows from (3.9) and(3.18) that

lim sup
i→∞

∥∥∥ai
k − bik
tik

− v
∥∥∥ ≤ lim sup

i→∞

1
tik

[
‖ai

k − bik −∆f i
k‖+ ‖∆f i

k − tikv|‖
]

≤ lim sup
i→∞

[
tik + ‖Ef (i, k)‖

]
≤ γk and

lim sup
i→∞

ϕ(wi
k)− ϕ(wk)
tik

= lim sup
i→∞

[ϑ+ Eϕ(i, k)] ≤ ϑ+ γk,

which imply, in particular, that

lim sup
i→∞

∥∥∥ai
k − bik
tik

∥∥∥ ≤ ‖v‖+ γk and lim sup
i→∞

‖ai
k − bik‖ = 0. (3.23)

Now we intend to pass to the limit in the finite difference estimate (3.22) as i→∞ for
each fixed k ∈ IN . To proceed, we need to take care of an appropriate convergence of the
dual elements u∗ik ∈ X∗. Since the sequence of subgradients (u∗ik)i∈IN in (3.22) is uniformly
bounded for any k ∈ IN by the outer subdifferential property (P1) from Definition 2.5, the
classical Alaoglu-Bourbaki theorem allows us to conclude that the sequence (u∗ik)i∈IN contains
a subnet {u∗νk} converging to some element u∗k in the weak∗ topology of X∗. Passing to the
limit in (3.22) along this subnet (while keeping the notation lim supi→∞ for the limit) and
using (3.23) as well as the convergence ω(x, τ) ↓ 0 as x→ x̄ and τ ↓ 0, we get the estimate

lim sup
i→∞

ϕk(wi
k)− ϕk(wk)
tik

≤ λkϑ+ αk〈u∗k, v〉+ σk, (3.24)
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where the remainder σk is given by

σk = λkγk + αk

{
γk + (‖v‖+ γk)ω

(
f(wk), 0

)}
, k ∈ IN. (3.25)

Further, it follows from (3.18) that

ai
k → f(wk) and ‖ai

k − bik‖ ≤ ‖∆f i
k‖+ (tik)

2 → 0 as i→∞.

Therefore we have the convergence cik → f(wk) as i → ∞ for the intermediate points
cik ∈ S ∩B(ai

k, ‖ai
k − bik‖) defined above via the mean value property u∗ik ∈ DdΘ(cik). Then

the topological outer robustness property (P2) of the subdifferential DdΘ gives

u∗k ∈ D′dΘ

(
f(wk)

)
⊂ DdΘ

(
f(wk)

)
, k ∈ IN,

for the weak∗ limit u∗k of (u∗ik)i∈IN whenever k ∈ IN .
Observe that the left-hand side of (3.24) is bounded below by −√εk. This follows from

relation (3.6) with w = wi
k in the variational principle and from the estimate ρ(wi

k, wk) ≤ tik
in the derivate definition. Thus (3.24) implies that

−(σk +
√
εk) ≤ λkϑ+ αk〈u∗k, v〉, k ∈ IN. (3.26)

Step 4: completing the proof of the topological optimality conditions in the
typical case (A). As justified above in “typical” case (A), inequality (3.26) holds with
some u∗k ∈ DdΘ(f(wk)) for all k ∈ IN . Observe that f(wk) → f(w̄) as k → ∞ for the
sequence of approximate minimizers wk from (3.5) and (3.6) and that f(wk) /∈ Θ for all
k ∈ IN in this case due to (3.12). Note also that {wk} is independent of the particular strict
subderivate (ϑ, v) ∈ Ds(ϕ, f)(w̄) and the selected outer subgradients u∗k of dΘ(f(wk)) under
consideration. Employing the topological outer regularity property (P3) of the subdifferential
DdΘ along the sequence {f(wk)}, we find by Definition 2.3 an infinite subset f−1(S) of {wk}
generated by the one S of {f(wk)} from the construction in (2.3) and a dual element u∗ ∈ X∗

independent of (ϑ, v) such that

Lim sup
w

f−1(S)→ w̄

DdΘ

(
f(w)

)
=
{
u∗
}

(3.27)

via the topological Painlevé-Kuratowski outer limit (1.2). It follows from the topological
outer robustness property (P2) of DdΘ and the continuity of f that u∗ ∈ DdΘ(f(w̄)). Since
the sequence of u∗k ∈ DdΘ(f(wk)), k ∈ IN , is uniformly bounded by (P1), it contains—by
the Alaoglu-Bourbaki theorem—a weak∗ convergent subnet in X∗. By (3.27) and definition
(1.2) of the topological Painlevé-Kuratowski outer limit, each subnet of this type generated
by any strict subderivate (ϑ, v) ∈ Ds(ϕ, f)(w̄) weak∗ converges to u∗.

Since (λk, αk) ∈ [0, 1]2 in (3.11), assume with no loss of generality that the whole
sequence of (λk, αk) converges to some (λ, α) ∈ [0, 1]2 as k → ∞. Since (λi

k)
2 + (αi

k)
2 = 1

for all k ∈ IN by the construction in (3.11), we have

λ2 + α2 = 1, i.e., α =
√

1− λ2. (3.28)
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Passing now to the limit in (3.26) as k →∞ along a weak∗ convergent subnet of {u∗k} from
the discussions above and taking into account that σk ↓ 0 as k → ∞ by definition (3.25),
we arrive at the inequality

λϑ+ α〈u∗, v〉 ≥ 0 for all (ϑ, v) ∈ Ds(ϕ, f)(w̄). (3.29)

It follows from the construction of u∗ in (3.27) in the case (A) under consideration that
u∗ ∈ D′dΘ(x̄) for the outer limit D′dΘ defined in (2.2). Thus u∗ 6= 0 due to assumption
(3.1) of the theorem. This implies that (λ, αu∗) 6= (0, 0) by (3.28). Denoting

x∗ := αu∗ =
√

1− λ2u∗,

we get conditions (3.2) and (3.3) and thus complete the proof of the “topological” part of
the theorem in the typical case (A).

Step 5: completing the proof of the topological optimality conditions in the
mixed case (B). In this case we have

ϕk(wk) = dΘ

(
f(wk)

)
, k ∈ IN,

for the penalized function (3.4) by (3.13). Furthermore, formula (3.16) continues to hold
in case (3.13) with (λk, αk) = (0, 1) for all k ∈ IN . Since the function x+ := max{x, 0} is
obviously Lipschitz continuous, we get the estimate and convergence

λi
k

tik

∣∣∣ [ϕ(wi
k) + εk

]+ − [ϕ(wk) + εk]
+
∣∣∣ ≤ λi

k

tik

∣∣∣ϕ(wi
k)− ϕ(wk)

∣∣∣
≤ λi

k

[
|Eϕ(i, k)|+ |ϑ|

]
→ 0 as i→∞, k ∈ IN,

with λi
k and Eϕ(i, k) defined in (3.11) and (3.9), respectively. Taking into account that

f(wk) /∈ Θ for all k ∈ IN in case (B), we repeat the arguments of case (A) to arrive at all
the “topological” conclusions of the theorem with (λ, α) = (0, 1) in the mixed sign case (B).

Step 6: completing the proof of the topological optimality conditions in the zero
case (C). Considering the case (C), we observe that f(wk) ∈ Θ for all k ∈ IN sufficiently
large in (3.14), since the set Θ is assumed to be locally closed around x̄ = f(w̄) and since
f(wk) → x̄ as k →∞. Without loss of generality, conclude that wk is a feasible solution to
(1.1) for all k ∈ IN , and hence ϕk(wk) ≥ ϕ(w̄) as k ∈ IN due the local optimality of w̄ in
the original constrained problem. Thus

ϕk(wk) = ϕ(wk) + εk ≥ εk, k ∈ IN,

for the perturbed function (3.4) in this case, and we have counterparts of relations (3.16)
and (3.26) with (λk, αk) = (1, 0) for all k ∈ IN . Repeating further the arguments of case
(A) with no actual use of the subdifferential properties of dΘ, we arrive at the necessary
optimality conditions (3.2) and (3.3) with (λ, x∗) = (1, 0).

Step 7: proof of the necessary optimality conditions for the sequential outer-
regular subdifferential. It remains to show that the necessary optimality conditions
of the theorem hold with the replacement of the topological outer-regular subdifferential
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and its outer limit in (3.1)–(3.3) by their sequential counterparts from Definition 2.5 and
Definition 2.2 provided that dual unit ball IB∗ ⊂ X∗ is sequentially weak∗ compact. This
follows directly from the arguments above, where the latter assumption and property (P1)
allow us to use subsequences instead of subnets in the corresponding limiting procedures.
Thus we complete the proof of the theorem. 4

It is not hard to show that the necessary optimality conditions obtained in Theorem 3.1
imply the classical Lagrange multiplier rule in the case of problems with finitely many
equality and inequality constraints given by strictly differentiable functions on Banach spaces
W . They are also consistent with some extended versions of multiplier rules for problems
with nonsmooth data on Banach spaces obtained in terms of the afore-mentioned specific
subdifferentials; cf. [4, 5, 19, 23, 24] and the references therein.

In the next section we consider a remarkable class of generally nonconvex constraint sets
Θ in Banach spaces for which the necessary optimality conditions of Theorem 3.1 can be
constructively expressed via the major subdifferential constructions of variational analysis
that agree with each other and satisfy all the requirements imposed in Theorem 3.1.

4 Approximately Convex Functions and Sets

The main notion studied in this section is approximate convexity for extended-real-valued
functions on Banach spaces introduced by Ngai, Luc and Théra in [21] and and its realization
for the case of sets via the distance functions, which is needed in what follows. The concept
of approximate convexity has been proved to be very useful for many aspects of variational
analysis and optimization being closely related to (while generally different from) other
important notions of generalized convexity for functions and sets. We refer the reader to
[2, 19, 21, 22, 23, 27] and the bibliographies therein for various properties of approximately
convex functions and sets, their relations with other notions of generalized convexity, and
a number of applications to variational analysis and generalized differentiation.

In this section we recall some facts on approximate convexity and derive several proper-
ties of approximately convex functions and sets needed for the implementation in Section 5
of our general necessary optimality conditions from Theorem 3.1 in the case of approxi-
mately convex constraint sets. Together with the approximate convexity of functions and
sets at the reference point as in [21], we define and study in this section and then apply
in Section 5 a version of approximate convexity around the reference point involving all
the points in the neighborhood of the reference one. Note that the latter modification is
generally different from the original one in [21] as well well from the uniform approximate
convexity introduced recently in [22]. Let us start with the basic definitions.

Definition 4.1 (approximately convex functions and sets). Let ψ : X → IR be a
proper extended-real-valued function on a Banach space X, and let Θ ⊂ X be a nonempty
subset of X. Then:

(i) The function ψ is approximately convex at x̄ ∈ domψ if for each number γ > 0
there is η > 0 such that for all x, y ∈ B(x̄; η) and t ∈ (0, 1) we have

ψ
(
(1− t)x+ ty

)
≤ (1− t)ψ(x) + tψ(y) + γt(1− t)‖x− y‖. (4.1)
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(ii) The function ψ is approximately convex around x̄ ∈ domψ if there is a
neighborhood of x̄ such that ψ is approximately convex at every point of this neighborhood.

(iii) The set Θ is approximately convex at (respectively, around) x̄ if the distance
function dΘ : X → IR is approximately convex at (respectively, around) this point.

Observe that the approximate convexity around x̄ from Definition 4.1(ii) is generally
a weaker assumption in comparison with the “uniform approximate convexity” around the
reference point defined in [22], where (4.1) is required to hold for all points (x, y) close to
each other uniformly in a fixed neighborhood of x̄. In finite dimensions, the approximate
convexity around x̄ from Definition 4.1(ii) is equivalent to the uniform convexity due to the
compactness of the unit ball; it is easy to show this by standard compactness arguments.
Note also that the approximate convexity at the point in question does not imply the one
around this point even for strict differentiable functions on the real line as in the following
case taken from [18, p. 19].

Example 4.2 (difference between approximate convexity at and around the point).
Consider the function ψ : IR→ IR given by

ψ(x) :=


−x2 if x = 1/k, k ∈ IN,
0 if x = 0,
linear otherwise.

(4.2)

It is easy to check that this functions is strictly differentiable at x̄ = 0 (although it is
not Fréchet differentiable at points nearby) and that strict differentiability always implies
approximate convexity at the point in question. However, this function is not approximately
convex around x̄. Indeed, we get directly from the above construction (4.2) that the function
ψ(x) admits the following representation on (0, 1):

ψ(x) =


− 1
k2

+m1

(
x− 1

k

)
if

1
k + 1

< x <
1
k
,

− 1
k2

+m2

(
x− 1

k

)
if

1
k
< x <

1
k − 1

,
k ∈ IN,

where m2 < m1 < 0 are the corresponding slopes to the graph of ψ(x). Pick zk ∈
(
0, 1

k(k+1)

)
and let xk := 1

k − zk and yk := 1
k + zk. Then

ψ(xk) = − 1
k2

−m1zk and ψ(yk) = − 1
k2

+m2zk, k ∈ IN,

which implies the following equalities for all k ∈ IN :

ψ(k−1)− ψ(xk) + ψ(yk)
2

=
(m1 −m2)zk

2
=
|yk − xk|

4
=
zk
2
.

The latter shows that inequality (4.1) cannot be satisfied for x = xk, y = yk, and t = 1/2
if γ > 0 is chosen to be sufficiently small (say γ < 1/2) however small η is. Thus function
(4.2) is not approximately convex at x̄k = 1/k for any large k ∈ IN .
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An important fact established in [21, Theorem 3.6] shows that for every l.s.c. function
ψ : X → IR on an arbitrary Banach spaceX the major subdifferentials of variational analysis
(Clarke-Rockafellar, Fréchet, Ioffe, Mordukhovich) coincide at a point x̄ ∈ domψ where ψ
is approximately convex and they agree with the convex-type subdifferential

∂ψ(x̄) :=
{
x∗ ∈ X∗∣∣ 〈x∗, v〉 ≤ ψ′(x̄; v) for all v ∈ X

}
(4.3)

defined via the classical directional derivative

ψ′(x̄; v) := lim
t↓0

ψ(x̄+ tv)− ψ(x̄)
t

(4.4)

of ψ at x̄ in the direction v, which exists and is sublinear on X. If ψ is convex, the
subdifferential (4.3) reduces to the classical subdifferential of convex analysis. Thus we
keep the notation ∂ψ(x̄) for the subdifferential of the approximately convex function ψ at x̄
that encompasses all the afore-mentioned subdifferentials.

The next proposition contains some useful properties of approximately convex functions
ψ : X → IR around the reference point employed, in particular, in the proof of necessary
optimality conditions of Section 5. Observe that we assume the “around” approximate
convexity of ψ to make sure that ∂ψ(·) in (4.3) is the subdifferential of the function ψ not
only in x̄ but also at all the points x ∈ domψ sufficiently close to x̄. In fact, certain modifi-
cations of the proofs below allow us to justify the necessary optimality conditions obtained
in Section 5 in the more general case when the constraint set Θ in (1.1) is approximately
convex only at the optimal point; see Remark 5.7.

Proposition 4.3 (properties of approximately convex functions). Let ψ : X → IR

be approximately convex around x̄ on a Banach space X. Then there is an upper semicon-
tinuous function θ : (0,∞) → [0,∞) such that θ(τ) ↓ 0 as τ ↓ 0 and the following hold:

(i) For all x, y ∈ X sufficiently close to x̄ and all t ∈ (0, 1) we have
ψ(xt) ≤ (1− t)ψ(x) + tψ(y) + θ

(
r[x,y](x̄)

)
t(1− t)‖x− y‖,

ψ(xt)− ψ(x)
‖xt − x̄‖

≤ ψ(y)− ψ(x)
‖y − x‖

+ θ
(
r[x,y](x̄)

)
(1− t),

(4.5)

where r[x,y](x̄) := max{‖x− x̄‖, ‖y − x̄‖} and where xt := x+ t(y − x).
(ii) Let x∗ ∈ ∂ψ(x), where x ∈ X is sufficiently close to x̄. Then for all y ∈ X we have

〈x∗, y − x〉 ≤ ψ(y)− ψ(x) + θ
(
r[x,y](x̄)

)
‖y − x‖. (4.6)

(iii) If (4.6) holds for some x ∈ X close to x̄ and all y ∈ X close to x, then

〈x∗, v〉 ≤ ψ′(x; v) + θ
(
‖x− x̄‖

)
‖v‖ whenever v ∈ X. (4.7)

Proof. Define the function θ : (0,∞) → [0,∞) by

θ(τ) := lim sup
η→τ

ω(η), τ ∈ (0,∞), (4.8)
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where ω(η) := inf{γ > 0| (4.1) holds for all (x, y) ∈ B(x̄; η)}. It is easy to check that
function (4.8) satisfies all the requirements asserted in the theorem. Let us justify the three
properties (i)–(iii) with this function θ(τ).

To proceed with (i), observe that the first inequality in (4.5) follows directly from (4.1)
and (4.8). Subtracting ψ(x) from both sides of the first inequality in (4.5) and dividing
then each term by ‖xt− x‖ = t‖y− x‖, we arrive at the second inequality in (4.5) and thus
justify property (i) of the proposition.

To prove (ii), fix x ∈ X sufficiently close to x̄ and take any y ∈ X. Then the second
inequality in (4.5) implies that

ψ(x+ tv)− ψ(x)
t

≤ ψ(x+ v)− ψ(x) + θ
(
r[x,y](x̄)

)
(1− t)‖v‖ (4.9)

with v := y − x for all t > 0 sufficiently small. By passing to the limit in (4.9) as t ↓ 0 and
taking into account the existence of the directional derivative in (4.4), we conclude that

ψ′(x; v) ≤ ψ(x+ v)− ψ(x) + θ
(
r[x,x+v](x̄)

)
‖v‖ with v = y − x. (4.10)

Since 〈x∗, y − x〉 ≤ ψ′(x; y − x) for any x∗ ∈ ∂ψ(x) by (4.3), it follows from (4.10) that
estimate (4.6) is satisfied, which justifies property (ii).

Finally, let x∗ satisfy (4.6) for some fixed x close to x̄ and any y close to x. Taking an
arbitrary direction v ∈ X and setting y := x+ tv for small t > 0, we get from (4.6) that

〈x∗, v〉 ≤ ψ(x+ tv)− ψ(x)
t

+ θ
(
r[x,x+tv](x̄)

)
‖v‖,

which gives (4.7) by passing to the limit as t ↓ 0 by (4.4) due to the upper semicontinuity
of θ(·). This justifies (iii) and completes the proof of the proposition. 4

5 Case Study for Approximately Convex Constraints

The concluding section of the paper is devoted to the implementation and specification of
the general necessary optimality conditions for problem (1.1) defined on complete metric
spaces in the case of approximately convex constraint sets Θ that belong to a broad class of
Banach spaces admitting uniformly Gâteaux differential renorms.

Recall that a norm ‖ · ‖ on a Banach space X is uniformly Gâteaux differentiable if for
every h ∈ X with ‖h‖ = 1 the limit

lim
t→0

‖x+ th‖ − ‖x‖
t

exists and the convergence is uniform in x ∈ X with ‖x‖ = 1. We say that a Banach
space X is uniformly Gâteaux smooth if it admits a uniformly Gâteaux renorming, i.e., an
equivalent uniformly Gâteaux differentiable norm. The class of Gâteaux smooth Banach
space is sufficiently broad containing, in particular, all weakly compactly generated Banach
spaces and thus every separable and every reflexive space. We refer the reader to [6] and the
bibliographies therein for a variety of results on Gâteaux smooth spaces including equivalent
descriptions, sufficient conditions, examples, and more discussions. In our proof below we
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need the following equivalent descriptions from [6, Proposition 6.2(ii) and Theorem 6.7] of
the uniformly Gâteaux norm ‖ · ‖ on X via the dual norm on X∗; for simplicity we keep the
same norm notation ‖x∗‖ for dual elements x∗ ∈ X∗.

Proposition 5.1 (equivalent dual descriptions of uniformly Gâteaux differentiable
norms). The norm ‖ · ‖ on X is uniformly Gâteaux differentiable if and only if the dual
norm on X∗ is w∗-uniformly rotund in the sense that for any sequences of dual elements
x∗k ∈ X∗ and y∗k ∈ X∗ as k ∈ IN satisfying the relations

‖x∗k‖ = ‖y∗k‖ = 1 for all k ∈ IN and ‖x∗k + y∗k‖ → 2 as k →∞ (5.1)

we have the weak∗ convergence (x∗k−y∗k)
w∗
→ 0 as k →∞ in X∗. Furthermore, the conditions

‖x∗k‖ = ‖y∗k‖ = 1 as k ∈ IN in (5.1) can be equivalently replaced by those of ‖x∗k‖ → 1 and
‖y∗k‖ → 1 as k →∞ in the characterization of uniform Gâteaux differentiable norms.

For the main result of this section we need also the following property for the constraint
set Θ at the reference optimal solution x̄ = f(w̄) to (1.1), which ensures the nontriviality
of multiplies in the corresponding necessary optimality conditions.

Definition 5.2 (tangential relative interior points). We say that a subset Θ of a
Banach space X has a tangential relative interior point at x̄ ∈ Θ if there exist
x0 ∈ X, numbers η > 0, γ > 0 and a compact set C ⊂ X such that

B(x0; η) ⊂
[
t−1(Θ− x̄)

]
∩ IB + C for all t ∈ (0, γ). (5.2)

Note that condition (5.2) automatically holds with x0 = 0 for every closed and convex
set Θ ⊂ X such that the linear subspace spanned by Θ is closed and finite-codimensional in
X and its relative interior, ri Θ, is nonempty. Indeed, it follows from [3, Theorem 2.5] that
in this case there is a convex compact set C ⊂ X such that 0 ∈ int [(Θ− x̄) ∩ IB + C], i.e.,

B(0; η) ⊂ (Θ− x̄) ∩ IB + C for some η > 0. (5.3)

Since Θ convex and 0 ∈ (Θ− x̄), we have Θ− x̄ ⊂ t−1(Θ− x̄), and hence (5.3) implies (5.2).

In what follows we pay the main attention to approximately convex sets admitting tan-
gential relative interior points in uniformly Gâteaux smooth Banach spaces. The next the-
orem shows that the subdifferential (4.3) of the distance functions dΘ for such sets, which
encompasses the major subdifferentials of variational analysis, is an outer-regular subdiffer-
ential in the sense of Definition 2.5 satisfying furthermore the nontriviality condition (3.1)
of Theorem 3.1. Note that, since the dual unit ball IB∗ ⊂ X∗ is sequentially weak∗ com-
pact for any uniformly Gâteaux smooth space X by the discussion in Section 2, there is no
difference between topological and sequential outer-regular subdifferentials in the setting
under consideration in the next theorem.

Theorem 5.3 (outer-regular subdifferential for the distance functions of approx-
imately convex sets ). Let X be a uniformly Gâteaux smooth Banach space, and let
Ω ⊂ X be an nonempty subset locally closed around x̄ ∈ Ω. The following assertions hold:
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(i) If Θ is approximately convex around x̄, then the subdifferential ∂dΘ in (4.3) of the
distance function dΘ encompassing the major subdifferentials of variational analysis is an
outer-regular subdifferential around x̄.

(ii) If in addition Θ has a tangential relative interior point at x̄, then the nontriviality
condition 0 /∈ ∂′dΘ(x̄) holds for the subdifferential ∂dΘ.

Proof. To justify (i), observe first that, as discussed in Section 4, the approximate convexity
around x̄ ensures the existence of a neighborhood of x̄ on which the subdifferential ∂dΘ(x)
in (4.3) of the distance function dΘ encompasses the major subdifferentials of variational
analysis. Property (P1) in Definition 2.5 follows for the subdifferential (4.3) of dΘ directly
from its definition. The outer robustness property (P2) and EMVI property (P4) with
ω ≡ 0 in (2.4) hold for ∂dΘ due to, e.g., their validity for Clarke’s generalized gradient of
Lipschitz continuous functions; see [5, Proposition 2.1.5 and Theorem 2.3.7].

To complete the proof of (i), it remains to justify the outer regularity property (P3)
of ∂dΘ from Definition 2.5. The case of x̄ ∈ intΘ is trivial, since in this case there is no
sequence of xk ∈ Θ′ converging to x̄. Thus we consider the boundary case x̄ ∈ bd Θ, fix
an arbitrary sequence xk

Θ′
→ x̄ as k → ∞, and with no loss of generality select a uniformly

Gâteaux differentiable norm ‖·‖ on X. Take now any sequence of subgradients x∗k ∈ ∂dΘ(xk)
from (4.3) and establish first the norm convergence

‖x∗k‖ → 1 as k →∞. (5.4)

To proceed, let εk := 1/k for all k ∈ IN and choose yk ∈ Θ such that

dΘ(xk) ≥ (1− εk)‖xk − yk‖, k ∈ IN.

Apply now property (4.6) of the approximately convex function ψ(x) = dΘ(x) with x∗ = x∗k
and (x, y) = (xk, yk) therein to get the estimate

〈x∗k, yk − xk〉 ≤ −(1− εk)‖xk − yk‖+ θ
(
r[xk,yk](x̄)

)
‖yk − xk‖, k ∈ IN,

since dΘ(yk) = 0. Dividing then each term of the above inequality by −‖xk − yk‖ 6= 0 for
all k ∈ IN , we conclude that〈

x∗k,
xk − yk

‖xk − yk‖

〉
≥ 1− εk − θ

(
r[xk,yk](x̄)

)
,

which gives 1 ≥ ‖x∗k‖ ≥ 1 − εk − θ(r[xk,yk](x̄)). Passing to the limit in the latter estimates
as k →∞ and taking into account that xk, yk → x̄ and r[xk,yk](x̄) → 0, we arrive at (5.4).

Since x∗k ∈ IB∗ for all k ∈ IN and the dual ball IB∗ ⊂ X∗ is sequentially weak∗ compact
in X∗ (by the Gâteaux smoothness of X), the sequence {x∗k} contains a subsequence that
weak∗ converges to some x∗ ∈ X∗. Without loss of generality, assume that the sequence
{x∗k} itself converges to x∗ as k → ∞. To justify the outer regularity property (2.3), we
thus need to show that any weak∗ convergent sequence of y∗k ∈ ∂dΘ(xk), k ∈ IN , has the
same weak∗ limit x∗, i.e.,

x∗k − y∗k
w∗
→ 0 as k →∞ whenever y∗k ∈ ∂dΘ(xk), k ∈ IN, (5.5)
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and the sequence {y∗k} weak∗ converges in X∗. Indeed, by the obvious convexity of the set
∂dΘ(xk) in (4.3), we have the inclusion (x∗k + y∗k)/2 ∈ ∂dΘ(xk) for all k ∈ IN . Therefore,
the above relation (5.4) implies the norm convergence

‖y∗k‖ → 1 and ‖x∗k + y∗k‖ → 2 as k →∞. (5.6)

It easily follows from (5.6) and the equivalent dual description of the uniformly Gâteaux
differentiable norm ‖ · ‖ from Proposition 5.1 that x∗k − y∗k

w∗
→ 0 as k → ∞. This justifies

(5.5) and thus completes the proof of the outer regularity assertion (i) of the theorem.

Next we justify assertion (ii) of the theorem ensuring the validity of the nontriviality
condition 0 6∈ ∂′dΘ(x̄) for the outer limit (2.2) of the subdifferential (4.3) for the distance
function dΘ under the tangential relative interiority property (5.2) of the approximately con-
vex set Θ under consideration. Take any x∗ ∈ ∂′dΘ(x̄) and by the (sequential) construction

in (2.2) find sequences xk
Θ′
→ x̄ and x∗k ∈ ∂dΘ(xk) such that x∗k

w∗
→ x∗ as k →∞. We need to

show that x∗ 6= 0. To proceed, employ the tangentially relative interiority property of Θ at
x̄ from Definition 5.2 assuming without loss of generality that x0 = 0 therein. In this way,
using the function θ(·) from Proposition 4.3 and the constants from Definition 5.2, select
t ∈ (0, γ) so small that θ(t) ≤ η/4 and suppose in what follows that k ∈ IN is so large that
‖xk − x̄‖ ≤ t. Applying inequality (4.6) from Proposition 4.3 to dΘ with x = xk and taking
into account that dΘ(xk) ≥ 0 and dΘ(y) = 0, we get

〈x∗k, y − xk〉 ≤ θ
(
r[xk,y](x̄)

)
‖y − xk‖ for all y ∈ Θ ∩B(x̄; t). (5.7)

Since r[xk,y](x̄) ≤ max{‖xk − x̄‖, ‖y − x̄|} ≤ t, ‖y − xk‖ ≤ 2t, and θ(t) ≤ η/4 in (5.7), this
estimate yields that

〈x∗k, y − xk〉 ≤ ηt/2 for large k ∈ IN. (5.8)

Take further any point u ∈ B(0; η) and represent it by the tangential relative interiority
condition (5.2) in Definition 5.2 as

u = x/t+ z for some x ∈ (Θ− x̄) ∩B(0; t) and z ∈ C.

Letting y := x+ x̄ = t(u− z) + x̄ ∈ Θ ∩B(x̄; t), we get from (5.8) that

〈x∗k, t(u− z) + x̄− xk〉 ≤ ηt/2,

which immediately implies the estimate

〈x∗k, u〉 ≤
〈x∗k, xk − x̄〉

t
+ 〈x∗k, z〉+

η

2
≤
|〈x∗k, x̄− xk〉|

t
+ max

z∈C
|〈x∗k, z〉|+

η

2
.

Since the latter also holds with u replaced by −u ∈ B(0; η), we arrive at

η‖x∗k‖ = sup
u∈B(0;η)

|〈x∗k, u〉| ≤ max
z∈C

|〈x∗k, z〉|+
|〈x∗k, x̄− xk〉|

t
+
η

2
(5.9)

for all large k ∈ IN . Let us finally show that estimate (5.9) ensures that x∗ 6= 0 for the
weak∗ limit of x∗k

w∗
→ x∗ as k →∞.
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Assuming the contrary and taking into account the compactness of C in X, we get

max
z∈C

|〈x∗, z〉| → 0 as k →∞

from the weak∗ convergence x∗k
w∗
→ 0. Furthermore, it follows from the norm convergence

xk → x̄ and from the boundedness of {x∗k} in X∗ by the uniform boundedness principle that

|〈x∗k, x− x̄〉| → 0 as k →∞

The latter two relations allow us to conclude from (5.9) that ‖x∗k‖ ≤ 2/3 for all large k ∈ IN
that clearly contradicts the norm convergence (5.4) derived above. Thus x∗ 6= 0, which
completes the proof of assertion (ii) and of the whole theorem. 4

Now we are ready to establish the main result of this section providing verifiable nec-
essary optimality conditions for the original problem (1.1) on metric spaces with operator
constraints given by general nonsmooth mappings and approximately convex sets in uni-
formly Gâteaux smooth Banach spaces. This result is an efficient specification in the setting
under consideration of the general necessary optimality conditions of Section 3 obtained via
abstract outer-regular subdifferentials. To formulate the new result, we recall the following
well-known constructions of variational analysis; see, e.g., [18, Chapter 1].

Given a nonempty set Θ ⊂ X in a Banach space X and a point x̄ ∈ Θ, the Fréchet
normal cone to Θ at x̄ is defined by

N(x̄; Θ) :=
{
x∗ ∈ X∗

∣∣∣ lim sup
x

Θ→x̄

〈x∗, x− x̄〉
‖x− x̄‖

≤ 0
}

(5.10)

via the standard upper limit of scalar functions. The weak contingent cone to Θ at x̄ is
defined via the weak convergence “ w→” on X by

Tw(x̄; Θ) :=
{
v ∈ X

∣∣∣ ∃ sequences xk
Θ→ x̄ and αk ≥ 0

such that αk(xk − x̄) w→ v as k →∞
}
.

(5.11)

If the weak convergence in (5.11) is replaced by the norm convergence on X, construction
(5.11) reduces to the classical Bouligand-Severi contingent cone T (x̄; Θ); see [18, Subsec-
tion 1.1.2] for more details, discussions, and references. We obviously have the inclusion

T (x̄; Θ) ⊂ Tw(x̄; Θ),

where the equality holds if X is finite-dimensional. Furthermore, the polarity inclusion

N(x̄; Θ) ⊂
{
x∗ ∈ X∗∣∣ 〈x∗, v〉 ≤ 0 for all v ∈ Tw(x̄; Θ)

}
(5.12)

is satisfied in arbitrary Banach spaces, where the equality holds in (5.12) if X is reflexive;
see [18, Theorem 1.10]. Observe that the Fréchet normal cone (5.10) is always convex while
neither Tw(x̄; Θ) nor T (x̄; Θ) is even in finite dimensions.

Theorem 5.4 (necessary optimality conditions for operator-constrained prob-
lems on metric spaces with approximately convex constraint sets). Let w̄ be a
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local minimizer for problem (1.1) in the framework of Theorem 3.1. Assume in addition
that X is a Gâteaux smooth Banach space, that the constraint set Θ ⊂ X is approximately
convex around x̄ := f(w̄), and that Θ admits a tangential relative interior point at x̄. Then
there are multipliers (λ, x∗) ∈ IR×X∗ such that

(λ, x∗) 6= (0, 0), λ ≥ 0, x∗ ∈ N(x̄; Θ), (5.13)

and the strict derivate relation

λϑ+ 〈x∗, v〉 ≥ 0 for all (ϑ, v) ∈ Ds(ϕ, f)(w̄) (5.14)

is satisfied. Furthermore, the normal cone inclusion x∗ ∈ N(x̄; Θ) in (5.13) implies that

〈x∗, v〉 ≤ 0 for all v ∈ Tw(x̄; Θ) (5.15)

via the weak contingent cone (5.11), where the equivalence between x∗ ∈ N(x̄; Θ) and (5.15)
holds if the Banach space X is reflexive.

Proof. Theorem 5.3 tells us that the subdifferential ∂dΘ in (4.3) of the approximately
convex distance function dΘ, which encompasses the major subdifferentials of variational
analysis, is an outer-regular subdifferential of dΘ around x̄ under the assumptions made.
Thus we can apply the sequential version of Theorem 3.1 (equivalent to the topological one)
to the case under consideration in the uniformly Gâteaux smooth space X. By assertion (ii)
of Theorem 5.3 the nontriviality condition (3.1) with D′dΘ(x̄) = ∂′dΘ(x̄) holds, and thus
Theorem 3.1 ensures the existence of multipliers (λ, x∗) ∈ IR×X∗ such that

(λ, x∗) 6= (0, 0), λ ≥ 0, x∗ ∈ cone ∂′dΘ(x̄), (5.16)

and the strict derivate relation (3.3)=(5.14) is satisfied. To complete the proof of the
theorem, it remans to show that the inclusion x∗ ∈ cone ∂′dΘ(x̄) in (5.16) implies that
x∗ ∈ N(x̄; Ω), which in turn yields (5.15).

Indeed, it follows directly from the outer robustness property (2.2) of the subdifferential
(4.3) at x = x̄ that ∂′dΘ(x̄) ⊂ ∂dΘ(x̄). Since the subdifferential (4.3) for the approximate
convex function ψ = dΘ reduces to the Fréchet subdifferential of dΘ at x̄, we get from [18,
Corollary 1.96] that x∗ ∈ N(x̄; Θ) for the Fréchet normal cone defined in (5.10). Further-
more, inequality (5.15) in arbitrary Banach spaces X and its equivalence to x∗ ∈ N(x̄; Θ) in
(5.13) if X is reflexive follow from the polarity inclusion (5.12) and from the case of equality
therein mentioned above. This completes the proof of the theorem. 4

We conclude this section with several remarks discussing some specifications and exten-
sions of the major results obtained in the paper.

Remark 5.5 (multiplier rule in the case of convex constraint sets). If the con-
straint set Θ in (1.1) is convex, then condition x∗ ∈ N(x̄; Ω) in (5.13) reduces to

〈x∗, x− x̄〉 ≤ 0 for all x ∈ Θ.

This follows from the fact that in the convex case the normal cone (5.10) agrees with the
classical normal cone of convex analysis. This version of Theorem 5.4 significantly extends
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the main result of [15] obtained in the case when the cost function ϕ is continuous and
the space X has a strictly convex/norm-rotund dual (instead of weak∗ rotundedness as
in Theorem 5.4) and the set Θ is convex and finite-codimensional with closed span and
nonempty relative interior. The latter assumptions imply the tangential relative interior
condition (5.2) as discussed after Definition 5.2. Note that the proof of the nontriviality
condition (λ, x∗) 6= (0, 0) in [15] is based on Lemma 3.6 from Chapter 4 in [14], which cannot
be applied in the setting of Theorem 5.3.

Remark 5.6 (nontriviality condition under sequential normal compactness). The
nontriviality condition (λ, x∗) 6= (0, 0) in Theorem 5.4 based on assertion (ii) of Theorem 5.3
holds in fact under the replacement of the tangential relative interiority assumption (5.2)
by generally less restrictive sequential normal compactness (SNC) property of Θ at x̄ ∈ Θ
formulated via the normal cone (5.10) as follows:[

x∗k ∈ N(xk; Θ) with xk → x̄, x∗k
w∗
→ 0

]
=⇒ ‖x∗k‖ → 0 as k →∞. (5.17)

This property is automatic in finite dimensions while playing a crucial role in variational
analysis and its applications in infinite-dimensional spaces; see [18, 19] for a comprehensive
theory and numerous applications. It has been well recognized that the SNC property (5.17)
is implied in arbitrary Banach spaces by certain Lipschitzian requirements imposed on the
set in question, in particular, by the compactly epi-Lipschitzian (CEL) property of Θ around
x̄ in the sense of Borwein and Strójwas that follows from (5.2); see [18, Subsection 1.1.4]
and [9] for more details and references.

Remark 5.7 (case of approximately convex constraint sets at versus around the
reference point). Some modifications of the proofs given in Proposition 4.3, Theorem 5.3,
and Theorem 5.4 allow us to justify the necessary optimality conditions of Theorem 5.4 un-
der the assumption that the constraint set Θ is approximately convex only at (versus around)
the reference point x̄. The main idea behind these changes is to keep the subdifferential
construction (4.3) via the classical directional derivative ψ′(x̄; v) at x̄ for a locally Lips-
chitzian function ψ while replacing ψ′(x; v) by the robust Clarke’s generalized directional
derivative ψ◦(x; v) of ψ at points nearby. This robust approximation allows us to conduct
the limiting procedure in the proof of Theorem 5.3 and consequently in Theorem 5.4.

Remark 5.8 (extensions to other classes of regular functions and sets). Approx-
imate convexity is not the only type of nice/regular behavior of functions and sets. Other
classes of functions and sets exhibiting locally nice convex-like properties have been exten-
sively studied and applied in variational analysis and optimization; see, e.g., [2, 4, 19, 22, 23]
and the references therein. Recently many of such notions have been unified in [22] under
the name of ϕ-regularity. The latter notion postulates a property of type (4.6) from Propo-
sition 4.3(ii) with respect to Fréchet subgradients. The class of ϕ-regular functions contains,
in particular, all prox-regular functions that are highly important in many aspects of vari-
ational analysis and its applications. As the reader can observe from the proofs presented
above, the methods developed in this paper allow us to modify and extend the major results
obtained to the case of ϕ-regularity.
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