Describing
Semantics of Programming
Languages

Cs216

Example: Static Semantics

» Context-free but cumbersome
— Type checking
* Noncontext-free

Cs216

— Variables must be declared before they are used.

Two Semantics of Languages

 Static semantics

— Meanings that can be determined statically (at
compile time)

e Dynamic semantics

— Meanings that can be determined dynamically

CS216

How to Describe Static Semantics
Formally?

CFGs cannot describe all of the static
semantics of programming languages.
Need additions to CFGs to carry some

semantic info. along through parse trees.
— Attribute Grammars (AG)

Cs216

Attribute Grammars (AG)

* Attribute Grammars (AGs)
= CFG + Additional features
* Primary value of AGs:

— Static semantics specification
— Static semantics checking

CS216

Attribute Grammar

« An attribute grammar (AG) isa CFG G = (T,
N, S, P) with the following additions:
— Each grammar symbol X has
* Aset A(X) of attributes
— Each rule has
« A set of semantic functions that define certain
attributes of the non-terminals in the rule.

« A (possibly empty) set of predicates to check for
attribute consistency.

CS216

Attributes

Attributes

» Each grammar symbol X has a set A(X) of
attributes.
» Two kinds of attributes:

— S(X): Synthesized attributes
« To pass semantic info up a parse tree.

— 1(X): Inherited attributes
« To pass semantic info down a parse tree.

Cs216 7

« Intrinsic attributes
— Synthesized attributes of leaf nodes in a parse tree

— Whose values are determined outside the parse tree
and given.
— Initially, there are intrinsic attributes on the leaves

CS216 8

Semantic Functions

Synthesized Attributes

o Let X, X; ... X, bearule & S(X,) =The
synthesized attributes of X,
* The synthesized attributes of X, are computed
by a semantic function of the form:
= S(Xo) = f(A(Xy), ... A(Xy))
— Depends only on the attributes of the node’s
children nodes!

Cs216 9

Cs216 10

Semantic Functions

Inherited Attributes

s Let Xy X;... X, bearule &I(X;) =The
inherited attributes of X; where 1<=j<=n.
* The inherited attributes of X;are computed by
a semantic function of the form:
= 10X) = f(AXo), ., ACX,)
— Depends on the attributes of the node’s parent and
sibling nodes!

CS216 11

Xo

X, Xy X X

CS216 12

L-Inherited Attributes

L-Inherited Attributes

* The inherited attributes of X;are computed by
a semantic function of the form:
= 104) = FARKG), .. AX;.0)
— Depends on the attributes of the node’s parent and
left sibling nodes!
— L-attributed attribute

Cs216 13

Xo

CS216 14

Predicates

Example: CFG of Ada Procedures

A predicate has the form of a Boolean
expression on the attribute set {A(X), ...,
A(X) }

Derivations are allowed:

— Every predicate associated with every non-
terminal is true.

Cs216 15

The name on the end of an Ada procedure
must match the procedure’s name.

CFG:
<proc_def> — procedure <proc_name> <proc_body>
end <proc_name>

Cs216 16

Example: Attribute Grammar of Ada
Procedures

Example: Attribute Grammar of Ada
Procedures

The name on the end of an Ada procedure
must match the procedure’s name.

AG:

<proc_def> — procedure <proc_name> <proc_body>
end <proc_name>

Attribute:

string

Semantic function:
<proc_name>.string = <proc_name>.string

£S216, 17

The name on the end of an Ada procedure
must match the procedure’s name.

AG:

<proc_def> — procedure <proc_name>[1] <proc_body>
end <proc_name>[2]

Attribute:

string

Semantic function:
<proc_name>[1].string = <proc_name>[2].string

CS216 1

Example: Assignment Statements

Example: Type Rules

» A simple assignment statement.

CFG:
<assign> — <var> := <expr>
<expr> — <var> + <var>

| <var>
<var>—A|B|C

Cs216

 The type rules of a simple assignment
statement:
— The variables can be one of two types: int or real.
— The type of the expression is that of its operands if
the same. Otherwise real.
— The type of LHS of an assignment must match the
type of RHS.

B:int

CS216

Example: Attributes

Example: Attribute Grammar of
Assignment Statements Types

* Attributes:
— actual_type = A synthesized attribute for <var>
and <expr>
— expected_type = An inherited attribute for <expr>

Cs216

AG:
Syntax rule:
<assign> — <var> := <expr>

Semantic rule:

<expr>.expected_type « <var>.actual_type

Cs216

Example: Attribute Grammar
Assignment Statements Types

Example: Attribute Grammar
Assignment Statements Types

AG:
Syntax rule:
<expr> — <var>[1] + <var>[2]

Semantic rule:

<expr>.actual_type « if
(<var>[1].actual_type = int) and
(<var>[2].actual_type = int) then int
else real

Predicate:
<expr>.actual_type = <expr>.expected_type

CS216

AG:

Syntax rule:

<expr> — <var>

Semantic rule:

<expr>.actual_type « <var>.actual_type

Predicate:

<expr>.actual_type = <expr>.expected_type

CS216

Example: Attribute Grammar
Assignment Statements Types

Example: Attribute Grammar
Assignment Statements Types

AG:
Syntax rule:
<var>—>A|B|C

Semantic rule:

<var>.actual_type « look-up(<var>.string

)

Cs216 25

CFG:
<assign> — <var> := <expr>
<expr> — <var> + <var>

| <var> A Parse Tree

<var>—>A|B|C <assign>

<var> = ?R
A

B

CS216 26

Example: Flow of Attributes

Example: Computing Attributes

A Fully Attributed Parse Tree

<assign>
/!\ : expected_type
<var> = <expr>
actual_type actual_type
NN
A <var>[1] + <var>[2]
actual_type acnialitype
«
A B
Cs216 .

<assign>
/’\ * expected_type real
<var> = <expr>
actual_type actual_type real
A: real A <var>[1] + <var>[2]
B: int real actual_type actual _type
real int
A B
real int
CS216 s

Computing Attribute Values

Dynamic Semantics of Languages

« If all attributes were inherited, the tree could
be decorated in top-down order.

« If all attributes were synthesized, the tree
could be decorated in bottom-up order.

« In many cases, both kinds of attributes are
used, and it is some combination of top-down
and bottom-up that must be used.

CS216 29

» Dynamic Semantics
— cannot be determined statically (at compile time)
— can only be determined by executing dynamically

CS216 30

How to Describe Dynamic
Semantics?

Three Formal Methods

» Three methods to describe semantics formally:
— Operational Semantics
— Axiomatic Semantics
— Denotational Semantics

« No single widely acceptable notation or
formalism for describing semantics

Cs216 31

« Operational Semantics

— By using operations of an actual or hypothetical
machine.

» Axiomatic Semantics
— By using mathematical logic.
» Denotational Semantics
— By using mathematical functions.

CS216 32

Three Formal Methods

1. Operational Semantics

« All these methods are syntax-directed.

— The semantic definitions are based on a CFG or
BNF rule.

Cs216 33

* Based on machines.

« Describe the meaning of a program by
specifying how the program is to be executed
on a machine whose operations are completely
known.

Cs216 34

Operational Semantics

Operational Semantics:
Evaluation

 To use operational semantics for a high-level
language, a defining machine in needed.

 Focuses on the individual steps by which each
program is executed.

 The change in the state of the machine
(memory, registers & etc.) defines the meaning
of the program.

CS216 35

* Give useful insight into the way the program is
implemented.

» Too much details — hard to understand the net
effect of executing a program.

» Good if used informally
— Extremely complex if used formally.

CS216 36

2. Axiomatic Semantics

Axiomatic Semantics

« Based on formal logic (first order predicate
calculus).

« Describe the meaning of a program by
describing the effect its execution has on
assertions about the data manipulated by the
program.

Cs216 37

* Precondition:

— An assertion before a statement (the relationships
and constraints among variables that are true at
that point in execution).

* Postcondition:
— An assertion following a statement.

 Pre-post form: {P} statement {Q}

CS216 38

Example: Axiomatic Semantics

Proof of Program Correctness

{P} a=b+1 {a>1}

 One possible precondition: {b > 10}
» Weakest precondition:

— The least restrictive precondition that will
guarantee the postcondition.

» Weakest precondition: {b > 0}

Cs216 39

« Using Axiomatic Semantics:

— The postcondition for the whole program is the
desired results.

— Work back through the program to the first
statement and find the weakest preconditions.

— If the precondition on the first statement is the
same as the program spec, then the program is
correct.

Cs216 40

Axiomatic Semantics: Evaluation

3. Denotational Semantics

« Developing axioms or inference rules for all of
the statements in a language is difficult.

« Itis a good tool for correctness proofs, and an
excellent framework for reasoning about
programs.

* It is not as useful for language users and
compiler writers.

CS216 41

» Based on mathematics (recursive function
theory).

« Describe the meaning of a program by using
mathematical functions.

« The most abstract semantics description
method.

CS216 42

Denotational Semantics

Example: Binary numbers

« Define syntactic domains.
 Define semantic domains.

« Define semantic functions from a syntactic
domain to a semantic domain.

—— Semantic
i domain
Semantic
function
CS216 43

 The syntax of binary numbers:

<bin_num>— 0
| 1
| <bin_num>0
| <bin_num> 1

CS216 44

Example: Binary numbers

Example: Denotational Semantics of
Binary numbers

» The semantics of binary numbers:
— The domain of syntactic values = The syntax

— The domain of semantic values = The set of
nonnegative decimal integer values.

— The semantic function = maps the syntactic objects
to the objects in the semantic domain.

Cs216 45

<bin_num> — 0
|1 0,1,2,3,4,.........
| <bin_num> 0 (Non-negative integer values)
| <bin_num> 1
Mp(07) =0
M, (‘1) =1

M, (<bin_num> “0’) = 2 * M, (<bin_num>)
M, (<bin_num> ‘1") =2 * M, (<bin_num>) + 1

Cs216 46

Example: Denotational Semantics of
Decimal Numbers

Denotational vs. Operational
Semantics

<dec_num>— 0]1]2|3|4|5|6|7|8]9

| <dec_num>(0|1(2]3[4[5]6|7]8]9)

0,1,2,34,.........
(Non-negative integer values)

Mgec(0) =0, Mgee (1) =1, .., Myec (9) =9

Mg (<dec_num>'0") = 10 * My, (<dec_num>)
Mg (<dec_num>'1") = 10 * M, (<dec_num>) + 1

My, (<dec_num>'9") = 10 * M, (<dec_num>) + 9

CS216 47

» The difference between denotational and
operational semantics:

— In operational semantics, the state changes are
defined by coded algorithms.

— in denotational semantics, they are defined by
rigorous mathematical functions.

CS216 48

The State of a Program

Denotational Semantics of Expressions

» S = The state of a program, i.e. the values of
all its current variables:

s = {<iy, vy>, <ip, V>, ..., <ip, v}

* VARMAP = a function that, when given a
variable name and a state, returns the current
value of the variable:

VARMARP(i; 5) =V

Cs216

<expr> — <dec_num> | <var> | <binary_expr>
<binary_expr> — <left_expr> <operator> <right_expr>
<operator> — + | *

M,(<expr>,s) =
case <expr> of
<dec_num> => M (<dec_num>, s)

CS216

Denotational Semantics of Expressions

Denotational Semantics of Expressions

M, (<expr>,s) =
case <expr> of
<var> =>
if VARMAP(<var>, s) = undef
then error
else VARMAP(<var>, s)

Cs216

M,(<expr>, s) =
case <expr> of
<binary_expr> =>
if (M (<binary_expr>.<left_expr>, s) = undef
OR M,(<binary_expr>.<right_expr>, s) =
undef)
then error
else if (<binary_expr>.<operator> = ‘+’
then M(<binary_expr>.<left_expr>, s) +
M,(<binary_expr>.<right_expr>, s)
else M (<binary_expr>.<left_expr>, s) *
M,(<binary_expr>.<right_expr>, s)

Cs216 52

Denotational Semantics of Assignment

Denotational Semantics of Loops

Statements
Ma(X = E,s) =
if Me(E, s) = error
then error
else

s’ = {<i1,V1’>,<i2,V2’>,...,<in,Vn’>},
where forj=1,2, ..., n,
vi" = VARMAP(ij, s) if ij <> X
= Me(E, s) if ij = x

T2

Mb(B, s): maps boolean exp to boolean values.
Mai(L, s): maps statement lists to states.

Mi(whileBdo L, s) =
if My(B, s) = undef
then error
else if My(B, s) = false
then's
else if Mg(L, S) = error
then error
else M(while B do L, Mg(L, S))

CS216

Denotational Semantics:
Evaluation

Can be used to prove the correctness of
programs.

Provides a rigorous way to think about
programs.

Can be an aid to language design.

Has been used in compiler generation systems.

Cs216 55

10

