Describing
Semantics of Programming
Languages
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Example: Static Semantics

» Context-free but cumbersome
— Type checking
* Noncontext-free
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— Variables must be declared before they are used.

Two Semantics of Languages

 Static semantics

— Meanings that can be determined statically (at
compile time)

e Dynamic semantics

— Meanings that can be determined dynamically
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How to Describe Static Semantics
Formally?

CFGs cannot describe all of the static
semantics of programming languages.
Need additions to CFGs to carry some

semantic info. along through parse trees.
— Attribute Grammars (AG)
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Attribute Grammars (AG)

* Attribute Grammars (AGs)
= CFG + Additional features
* Primary value of AGs:

— Static semantics specification
— Static semantics checking
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Attribute Grammar

« An attribute grammar (AG) isa CFG G = (T,
N, S, P) with the following additions:
— Each grammar symbol X has
* Aset A(X) of attributes
— Each rule has
« A set of semantic functions that define certain
attributes of the non-terminals in the rule.

« A (possibly empty) set of predicates to check for
attribute consistency.
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Attributes

Attributes

» Each grammar symbol X has a set A(X) of
attributes.
» Two kinds of attributes:

— S(X): Synthesized attributes
« To pass semantic info up a parse tree.

— 1(X): Inherited attributes
« To pass semantic info down a parse tree.
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« Intrinsic attributes
— Synthesized attributes of leaf nodes in a parse tree

— Whose values are determined outside the parse tree
and given.
— Initially, there are intrinsic attributes on the leaves
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Semantic Functions

Synthesized Attributes

o Let X, X; ... X, bearule & S(X,) =The
synthesized attributes of X,
* The synthesized attributes of X, are computed
by a semantic function of the form:
= S(Xo) = f(A(Xy), ... A(Xy))
— Depends only on the attributes of the node’s
children nodes!
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Semantic Functions

Inherited Attributes

s Let Xy X;... X, bearule &I(X;) =The
inherited attributes of X; where 1<=j<=n.
* The inherited attributes of X;are computed by
a semantic function of the form:
= 10X) = f(AXo), ., ACX,)
— Depends on the attributes of the node’s parent and
sibling nodes!

CS216 11

Xo

X, Xy X X
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L-Inherited Attributes

L-Inherited Attributes

* The inherited attributes of X;are computed by
a semantic function of the form:
= 104) = FARKG), .. AX;.0)
— Depends on the attributes of the node’s parent and
left sibling nodes!
— L-attributed attribute

Cs216 13

Xo
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Predicates

Example: CFG of Ada Procedures

A predicate has the form of a Boolean
expression on the attribute set {A(X), ...,
A(X) }

Derivations are allowed:

— Every predicate associated with every non-
terminal is true.
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The name on the end of an Ada procedure
must match the procedure’s name.

CFG:
<proc_def> — procedure <proc_name> <proc_body>
end <proc_name>
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Example: Attribute Grammar of Ada
Procedures

Example: Attribute Grammar of Ada
Procedures

The name on the end of an Ada procedure
must match the procedure’s name.

AG:

<proc_def> — procedure <proc_name> <proc_body>
end <proc_name>

Attribute:

string

Semantic function:
<proc_name>.string = <proc_name>.string
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The name on the end of an Ada procedure
must match the procedure’s name.

AG:

<proc_def> — procedure <proc_name>[1] <proc_body>
end <proc_name>[2]

Attribute:

string

Semantic function:
<proc_name>[1].string = <proc_name>[2].string

CS216 1




Example: Assignment Statements

Example: Type Rules

» A simple assignment statement.

CFG:
<assign> — <var> := <expr>
<expr> — <var> + <var>

| <var>
<var>—A|B|C
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 The type rules of a simple assignment
statement:
— The variables can be one of two types: int or real.
— The type of the expression is that of its operands if
the same. Otherwise real.
— The type of LHS of an assignment must match the
type of RHS.

B:int
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Example: Attributes

Example: Attribute Grammar of
Assignment Statements Types

* Attributes:
— actual_type = A synthesized attribute for <var>
and <expr>
— expected_type = An inherited attribute for <expr>
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AG:
Syntax rule:
<assign> — <var> := <expr>

Semantic rule:

<expr>.expected_type « <var>.actual_type
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Example: Attribute Grammar
Assignment Statements Types

Example: Attribute Grammar
Assignment Statements Types

AG:
Syntax rule:
<expr> — <var>[1] + <var>[2]

Semantic rule:

<expr>.actual_type « if
(<var>[1].actual_type = int) and
(<var>[2].actual_type = int) then int
else real

Predicate:
<expr>.actual_type = <expr>.expected_type
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AG:

Syntax rule:

<expr> — <var>

Semantic rule:

<expr>.actual_type « <var>.actual_type

Predicate:

<expr>.actual_type = <expr>.expected_type
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Example: Attribute Grammar
Assignment Statements Types

Example: Attribute Grammar
Assignment Statements Types

AG:
Syntax rule:
<var>—>A|B|C

Semantic rule:

<var>.actual_type « look-up( <var>.string

)
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CFG:
<assign> — <var> := <expr>
<expr> — <var> + <var>

| <var> A Parse Tree

<var>—>A|B|C <assign>

<var> = ?R
A

B
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Example: Flow of Attributes

Example: Computing Attributes

A Fully Attributed Parse Tree

<assign>
/!\ : expected_type
<var> = <expr>
actual_type actual_type
NN
A <var>[1] + <var>[2]
actual_type acnialitype
«
A B
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<assign>
/’\ * expected_type real
<var> = <expr>
actual_type actual_type real
A: real A <var>[1] + <var>[2]
B: int real actual_type actual _type
real int
A B
real int
CS216 s

Computing Attribute Values

Dynamic Semantics of Languages

« If all attributes were inherited, the tree could
be decorated in top-down order.

« If all attributes were synthesized, the tree
could be decorated in bottom-up order.

« In many cases, both kinds of attributes are
used, and it is some combination of top-down
and bottom-up that must be used.
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» Dynamic Semantics
— cannot be determined statically (at compile time)
— can only be determined by executing dynamically
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How to Describe Dynamic
Semantics?

Three Formal Methods

» Three methods to describe semantics formally:
— Operational Semantics
— Axiomatic Semantics
— Denotational Semantics

« No single widely acceptable notation or
formalism for describing semantics
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« Operational Semantics

— By using operations of an actual or hypothetical
machine.

» Axiomatic Semantics
— By using mathematical logic.
» Denotational Semantics
— By using mathematical functions.
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Three Formal Methods

1. Operational Semantics

« All these methods are syntax-directed.

— The semantic definitions are based on a CFG or
BNF rule.
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* Based on machines.

« Describe the meaning of a program by
specifying how the program is to be executed
on a machine whose operations are completely
known.
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Operational Semantics

Operational Semantics:
Evaluation

 To use operational semantics for a high-level
language, a defining machine in needed.

 Focuses on the individual steps by which each
program is executed.

 The change in the state of the machine
(memory, registers & etc.) defines the meaning
of the program.
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* Give useful insight into the way the program is
implemented.

» Too much details — hard to understand the net
effect of executing a program.

» Good if used informally
— Extremely complex if used formally.

CS216 36




2. Axiomatic Semantics

Axiomatic Semantics

« Based on formal logic (first order predicate
calculus).

« Describe the meaning of a program by
describing the effect its execution has on
assertions about the data manipulated by the
program.
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* Precondition:

— An assertion before a statement (the relationships
and constraints among variables that are true at
that point in execution).

* Postcondition:
— An assertion following a statement.

 Pre-post form: {P} statement {Q}

CS216 38

Example: Axiomatic Semantics

Proof of Program Correctness

{P} a=b+1 {a>1}

 One possible precondition: {b > 10}
» Weakest precondition:

— The least restrictive precondition that will
guarantee the postcondition.

» Weakest precondition: {b > 0}
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« Using Axiomatic Semantics:

— The postcondition for the whole program is the
desired results.

— Work back through the program to the first
statement and find the weakest preconditions.

— If the precondition on the first statement is the
same as the program spec, then the program is
correct.
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Axiomatic Semantics: Evaluation

3. Denotational Semantics

« Developing axioms or inference rules for all of
the statements in a language is difficult.

« Itis a good tool for correctness proofs, and an
excellent framework for reasoning about
programs.

* It is not as useful for language users and
compiler writers.
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» Based on mathematics (recursive function
theory).

« Describe the meaning of a program by using
mathematical functions.

« The most abstract semantics description
method.
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Denotational Semantics

Example: Binary numbers

« Define syntactic domains.
 Define semantic domains.

« Define semantic functions from a syntactic
domain to a semantic domain.

—— Semantic
i domain
Semantic
function
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 The syntax of binary numbers:

<bin_num>— 0
| 1
| <bin_num>0
| <bin_num> 1
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Example: Binary numbers

Example: Denotational Semantics of
Binary numbers

» The semantics of binary numbers:
— The domain of syntactic values = The syntax

— The domain of semantic values = The set of
nonnegative decimal integer values.

— The semantic function = maps the syntactic objects
to the objects in the semantic domain.
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<bin_num> — 0
|1 0,1,2,3,4,.........
| <bin_num> 0 (Non-negative integer values)
| <bin_num> 1
Mp(07) =0
M, (‘1) =1

M, (<bin_num> “0’) = 2 * M, (<bin_num>)
M, (<bin_num> ‘1") =2 * M, (<bin_num>) + 1
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Example: Denotational Semantics of
Decimal Numbers

Denotational vs. Operational
Semantics

<dec_num>— 0]1]2|3|4|5|6|7|8]9

| <dec_num>(0|1(2]3[4[5]6|7]8]9)

0,1,2,34,.........
(Non-negative integer values)

Mgec(0) =0, Mgee (1) =1, .., Myec (9) =9

Mg (<dec_num>'0") = 10 * My, (<dec_num>)
Mg (<dec_num>'1") = 10 * M, (<dec_num>) + 1

My, (<dec_num>'9") = 10 * M, (<dec_num>) + 9
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» The difference between denotational and
operational semantics:

— In operational semantics, the state changes are
defined by coded algorithms.

— in denotational semantics, they are defined by
rigorous mathematical functions.
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The State of a Program

Denotational Semantics of Expressions

» S = The state of a program, i.e. the values of
all its current variables:

s = {<iy, vy>, <ip, V>, ..., <ip, v}

* VARMAP = a function that, when given a
variable name and a state, returns the current
value of the variable:

VARMARP(i; 5) =V
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<expr> — <dec_num> | <var> | <binary_expr>
<binary_expr> — <left_expr> <operator> <right_expr>
<operator> — + | *

M,(<expr>,s) =
case <expr> of
<dec_num> => M (<dec_num>, s)
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Denotational Semantics of Expressions

Denotational Semantics of Expressions

M, (<expr>,s) =
case <expr> of
<var> =>
if VARMAP(<var>, s) = undef
then error
else VARMAP(<var>, s)
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M,(<expr>, s) =
case <expr> of
<binary_expr> =>
if (M (<binary_expr>.<left_expr>, s) = undef
OR M,(<binary_expr>.<right_expr>, s) =
undef)
then error
else if (<binary_expr>.<operator> = ‘+’
then M(<binary_expr>.<left_expr>, s) +
M,(<binary_expr>.<right_expr>, s)
else M (<binary_expr>.<left_expr>, s) *
M,(<binary_expr>.<right_expr>, s)
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Denotational Semantics of Assignment

Denotational Semantics of Loops

Statements
Ma(X = E,s) =
if Me(E, s) = error
then error
else

s’ = {<i1,V1’>,<i2,V2’>,...,<in,Vn’>},
where forj=1,2, ..., n,
vi" = VARMAP(ij, s) if ij <> X
= Me(E, s) if ij = x

T2

Mb(B, s): maps boolean exp to boolean values.
Mai(L, s): maps statement lists to states.

Mi(whileBdo L, s) =
if My(B, s) = undef
then error
else if My(B, s) = false
then's
else if Mg(L, S) = error
then error
else M(while B do L, Mg(L, S))
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Denotational Semantics:
Evaluation

Can be used to prove the correctness of
programs.

Provides a rigorous way to think about
programs.

Can be an aid to language design.

Has been used in compiler generation systems.
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