
1

CS216 1

Describing
Semantics of Programming

Languages

CS216 2

Two Semantics of Languages

• Static semantics
– Meanings that can be determined statically (at

compile time)
• Dynamic semantics

– Meanings that can be determined dynamically

CS216 3

Example: Static Semantics

• Context-free but cumbersome
– Type checking

• Noncontext-free
– Variables must be declared before they are used.

CS216 4

How to Describe Static Semantics
Formally?

• CFGs cannot describe all of the static
semantics of programming languages.

• Need additions to CFGs to carry some
semantic info. along through parse trees.

– Attribute Grammars (AG)

CS216 5

Attribute Grammars (AG)

• Attribute Grammars (AGs)
= CFG + Additional features

• Primary value of AGs:
– Static semantics specification
– Static semantics checking

CS216 6

Attribute Grammar

• An attribute grammar (AG) is a CFG G = (T,
N, S, P) with the following additions:
– Each grammar symbol X has

• A set A(X) of attributes

– Each rule has
• A set of semantic functions that define certain

attributes of the non-terminals in the rule.
• A (possibly empty) set of predicates to check for

attribute consistency.

2

CS216 7

Attributes

• Each grammar symbol X has a set A(X) of
attributes.

• Two kinds of attributes:
– S(X): Synthesized attributes

• To pass semantic info up a parse tree.

– I(X): Inherited attributes
• To pass semantic info down a parse tree.

CS216 8

Attributes

• Intrinsic attributes
– Synthesized attributes of leaf nodes in a parse tree
– Whose values are determined outside the parse tree

and given.
– Initially, there are intrinsic attributes on the leaves

CS216 9

Semantic Functions

• Let X0 → X1 ... Xn be a rule & S(X0) = The
synthesized attributes of X0.

• The synthesized attributes of X0 are computed
by a semantic function of the form:
– S(X0) = f(A(X1), ... A(Xn))
– Depends only on the attributes of the node’s

children nodes!

CS216 10

Synthesized Attributes

X0

X1 X2 … Xn

CS216 11

Semantic Functions

• Let X0 → X1 ... Xn be a rule & I(Xj) = The
inherited attributes of Xj.where 1<=j<=n.

• The inherited attributes of Xj are computed by
a semantic function of the form:
– I(Xj) = f(A(X0), ... , A(Xn))
– Depends on the attributes of the node’s parent and

sibling nodes!

CS216 12

Inherited Attributes

X0

X1 X2 … Xj … Xn

3

CS216 13

L-Inherited Attributes

• The inherited attributes of Xj are computed by
a semantic function of the form:
– I(Xj) = f(A(X0), ... , A(Xj-1))
– Depends on the attributes of the node’s parent and

left sibling nodes!
– L-attributed attribute

CS216 14

L-Inherited Attributes

X0

X1 X2 … Xj … Xn

CS216 15

Predicates

• A predicate has the form of a Boolean
expression on the attribute set {A(X0), …,
A(Xn) }.

• Derivations are allowed:
– Every predicate associated with every non-

terminal is true.

CS216 16

Example: CFG of Ada Procedures

• The name on the end of an Ada procedure
must match the procedure’s name.

CFG:
<proc_def> → procedure <proc_name> <proc_body>

end <proc_name>

CS216 17

Example: Attribute Grammar of Ada
Procedures

• The name on the end of an Ada procedure
must match the procedure’s name.

AG:
<proc_def> → procedure <proc_name> <proc_body>

end <proc_name>
Attribute:
string

Semantic function:
<proc_name>.string = <proc_name>.string

CS216 18

Example: Attribute Grammar of Ada
Procedures

• The name on the end of an Ada procedure
must match the procedure’s name.

AG:
<proc_def> → procedure <proc_name>[1] <proc_body>

end <proc_name>[2]
Attribute:
string

Semantic function:
<proc_name>[1].string = <proc_name>[2].string

4

CS216 19

Example: Assignment Statements

• A simple assignment statement.

CFG:
<assign> → <var> := <expr>
<expr> → <var> + <var>

| <var>
<var> → A | B | C

CS216 20

Example: Type Rules

• The type rules of a simple assignment
statement:
– The variables can be one of two types: int or real.
– The type of the expression is that of its operands if

the same. Otherwise real.
– The type of LHS of an assignment must match the

type of RHS.

A := A + B A: real
B: int

CS216 21

Example: Attributes

• Attributes:
– actual_type = A synthesized attribute for <var>

and <expr>
– expected_type = An inherited attribute for <expr>

CS216 22

Example: Attribute Grammar of
Assignment Statements Types

AG:
Syntax rule:
<assign> → <var> := <expr>

Semantic rule:

<expr>.expected_type ← <var>.actual_type

CS216 23

Example: Attribute Grammar
Assignment Statements Types
AG:
Syntax rule:
<expr> → <var>[1] + <var>[2]

Semantic rule:

<expr>.actual_type ← if
(<var>[1].actual_type = int) and
(<var>[2].actual_type = int) then int
else real

Predicate:
<expr>.actual_type = <expr>.expected_type

CS216 24

Example: Attribute Grammar
Assignment Statements Types
AG:
Syntax rule:
<expr> → <var>

Semantic rule:

<expr>.actual_type ← <var>.actual_type

Predicate:

<expr>.actual_type = <expr>.expected_type

5

CS216 25

Example: Attribute Grammar
Assignment Statements Types

AG:
Syntax rule:
<var> → A | B | C

Semantic rule:

<var>.actual_type ← look-up(<var>.string
)

CS216 26

Example: Attribute Grammar
Assignment Statements Types

A := A + B

<assign>

<var> := <expr>

A <var> + <var>

A B

CFG:
<assign> → <var> := <expr>
<expr> → <var> + <var>

| <var>
<var> → A | B | C

A Parse Tree

CS216 27

Example: Flow of Attributes

A := A + B

<assign>

<var> := <expr>

A <var>[1] + <var>[2]

A B

actual_type

actual_type

actual_type

actual_type

expected_type

CS216 28

Example: Computing Attributes

A := A + B

<assign>

<var> := <expr>

A <var>[1] + <var>[2]

A B

actual_type

actual_type

actual_type

actual_type

expected_type

A: real
B: int

real

real

real

real

int

A Fully Attributed Parse Tree

real

real int

CS216 29

Computing Attribute Values

• If all attributes were inherited, the tree could
be decorated in top-down order.

• If all attributes were synthesized, the tree
could be decorated in bottom-up order.

• In many cases, both kinds of attributes are
used, and it is some combination of top-down
and bottom-up that must be used.

CS216 30

Dynamic Semantics of Languages

• Dynamic Semantics
– cannot be determined statically (at compile time)
– can only be determined by executing dynamically

6

CS216 31

How to Describe Dynamic
Semantics?

• Three methods to describe semantics formally:
– Operational Semantics
– Axiomatic Semantics
– Denotational Semantics

• No single widely acceptable notation or
formalism for describing semantics

CS216 32

Three Formal Methods

• Operational Semantics
– By using operations of an actual or hypothetical

machine.
• Axiomatic Semantics

– By using mathematical logic.
• Denotational Semantics

– By using mathematical functions.

CS216 33

Three Formal Methods

• All these methods are syntax-directed.
– The semantic definitions are based on a CFG or

BNF rule.

CS216 34

1. Operational Semantics

• Based on machines.
• Describe the meaning of a program by

specifying how the program is to be executed
on a machine whose operations are completely
known.

CS216 35

Operational Semantics

• To use operational semantics for a high-level
language, a defining machine in needed.

• Focuses on the individual steps by which each
program is executed.

• The change in the state of the machine
(memory, registers & etc.) defines the meaning
of the program.

CS216 36

Operational Semantics:
Evaluation

• Give useful insight into the way the program is
implemented.

• Too much details – hard to understand the net
effect of executing a program.

• Good if used informally
– Extremely complex if used formally.

7

CS216 37

2. Axiomatic Semantics

• Based on formal logic (first order predicate
calculus).

• Describe the meaning of a program by
describing the effect its execution has on
assertions about the data manipulated by the
program.

CS216 38

Axiomatic Semantics

• Precondition:
– An assertion before a statement (the relationships

and constraints among variables that are true at
that point in execution).

• Postcondition:
– An assertion following a statement.

• Pre-post form: {P} statement {Q}

CS216 39

Example: Axiomatic Semantics

{P} a = b + 1 {a > 1}

• One possible precondition: {b > 10}
• Weakest precondition:

– The least restrictive precondition that will
guarantee the postcondition.

• Weakest precondition: {b > 0}

CS216 40

Proof of Program Correctness

• Using Axiomatic Semantics:
– The postcondition for the whole program is the

desired results.
– Work back through the program to the first

statement and find the weakest preconditions.
– If the precondition on the first statement is the

same as the program spec, then the program is
correct.

CS216 41

Axiomatic Semantics: Evaluation

• Developing axioms or inference rules for all of
the statements in a language is difficult.

• It is a good tool for correctness proofs, and an
excellent framework for reasoning about
programs.

• It is not as useful for language users and
compiler writers.

CS216 42

3. Denotational Semantics

• Based on mathematics (recursive function
theory).

• Describe the meaning of a program by using
mathematical functions.

• The most abstract semantics description
method.

8

CS216 43

Denotational Semantics

• Define syntactic domains.
• Define semantic domains.
• Define semantic functions from a syntactic

domain to a semantic domain.

Syntactic
domain

Semantic
domain

Semantic
function

CS216 44

Example: Binary numbers

• The syntax of binary numbers:

<bin_num> → 0
| 1
| <bin_num> 0
| <bin_num> 1

CS216 45

Example: Binary numbers

• The semantics of binary numbers:
– The domain of syntactic values = The syntax
– The domain of semantic values = The set of

nonnegative decimal integer values.
– The semantic function = maps the syntactic objects

to the objects in the semantic domain.

CS216 46

Example: Denotational Semantics of
Binary numbers

Mb(‘0’) = 0
Mb (‘1’) = 1
Mb (<bin_num> ‘0’) = 2 * Mb (<bin_num>)
Mb (<bin_num> ‘1’) = 2 * Mb (<bin_num>) + 1

<bin_num> → 0
| 1
| <bin_num> 0
| <bin_num> 1

0, 1, 2, 3, 4, ………
(Non-negative integer values)

CS216 47

Mdec('0') = 0, Mdec ('1') = 1, …, Mdec ('9') = 9

Mdec (<dec_num> '0') = 10 * Mdec (<dec_num>)
Mdec (<dec_num> '1’) = 10 * Mdec (<dec_num>) + 1

…
Mdec (<dec_num> '9') = 10 * Mdec (<dec_num>) + 9

Example: Denotational Semantics of
Decimal Numbers

<dec_num> → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
| <dec_num> (0 | 1 | 2 | 3 | 4 |5 | 6 | 7 | 8 | 9)

0, 1, 2, 3, 4, ………
(Non-negative integer values)

CS216 48

Denotational vs. Operational
Semantics

• The difference between denotational and
operational semantics:
– In operational semantics, the state changes are

defined by coded algorithms.
– in denotational semantics, they are defined by

rigorous mathematical functions.

9

CS216 49

The State of a Program

• S = The state of a program, i.e. the values of
all its current variables:

s = {<i1, v1>, <i2, v2>, …, <in, vn>}
• VARMAP = a function that, when given a

variable name and a state, returns the current
value of the variable:

VARMAP(ij, s) = vj

CS216 50

Denotational Semantics of Expressions

Me(<expr>, s) =
case <expr> of
<dec_num> => Mdec(<dec_num>, s)

<expr> → <dec_num> | <var> | <binary_expr>
<binary_expr> → <left_expr> <operator> <right_expr>
<operator> → + | *

CS216 51

Denotational Semantics of Expressions

Me(<expr>, s) =
case <expr> of
<var> =>

if VARMAP(<var>, s) = undef
then error
else VARMAP(<var>, s)

CS216 52

Denotational Semantics of Expressions

Me(<expr>, s) =
case <expr> of
<binary_expr> =>

if (Me(<binary_expr>.<left_expr>, s) = undef
OR Me(<binary_expr>.<right_expr>, s) =

undef)
then error
else if (<binary_expr>.<operator> = ‘+’

then Me(<binary_expr>.<left_expr>, s) +
Me(<binary_expr>.<right_expr>, s)

else Me(<binary_expr>.<left_expr>, s) *
Me(<binary_expr>.<right_expr>, s)

CS216 53

Denotational Semantics of Assignment
Statements

Ma(x := E, s) =
if Me(E, s) = error
then error
else

s’ = {<i1,v1’>,<i2,v2’>,...,<in,vn’>},
where for j = 1, 2, ..., n,

vj’ = VARMAP(ij, s) if ij <> x
= Me(E, s) if ij = x

CS216 54

Denotational Semantics of Loops

Mb(B, s): maps boolean exp to boolean values.
Msl(L, s): maps statement lists to states.

Ml(while B do L, s) =
if Mb(B, s) = undef
then error
else if Mb(B, s) = false

then s
else if Msl(L, s) = error

then error
else Ml(while B do L, Msl(L, s))

10

CS216 55

Denotational Semantics:
Evaluation

• Can be used to prove the correctness of
programs.

• Provides a rigorous way to think about
programs.

• Can be an aid to language design.
• Has been used in compiler generation systems.

