
1

CS216 1

Basic Concepts:
Variables, Bindings, Storage &

Lifetime, Scoping and Types & Type
Checking

CS216 2

Variables

CS216 3

A Programming Language –
Universal: All Solvable Computations

• integer values and arithmetic operators
(arithmetic expressions)

• variables
• assignment statement
• selection statement
• loop statement/go to statement

CS216 4

Variables

• An abstraction of a memory cell or collection
of cells.

• Variables are more than just names for memory
locations.

CS216 5

Attributes of Variables

• Name
• Address
• Value
• Type
• Lifetime
• Scope

CS216 6

Attributes of Variables

ValueAddress
(Location)

Variable
Name

Type

Scope Lifetime

PROGRAM STORAGE

2

CS216 7

Variable Attribute - Name

• Names for variables are the most common
names in a program.

CS216 8

Names/Identifiers

• A fundamental abstraction mechanism in a PL
to denote entities or constructs.

• A string of characters used to identify some
entity in a program.
– Variables
– Subprograms
– Formal parameters
– Others

CS216 9

Names/Identifiers – Design Issues

• Maximum length?
• Are connector characters allowed?
• Are names case sensitive?
• Are special words reserved words or

keywords?

CS216 10

Names/Identifiers – Case
Sensitivity

• Case sensitivity
– C, C++, Java, and Modula-2 names are case

sensitive
– The names in other languages are not.

• Disadvantage?
– Readability (names that look alike are different)

• Advantage?
– ?

CS216 11

Names/Identifiers – Special
Words

• A keyword is a word that is special only in
certain contexts.

• A reserved word is a special word that cannot
be used as a user-defined name.

• A predefined word has predefined meaning
but can be redefined.

CS216 12

Variable Attribute – Address
(Storage Location)

• The address of a variable is
– The address of the memory location with which it

is associated.
– Called l-value

• The same name variable may have different
addresses
– At different places in a program.
– At different times during execution.

3

CS216 13

Aliases

• Multiple names can reference the same
address.

• If two variable names can be used to access the
same memory location, they are called aliases.

• Aliases are harmful to readability!
– Pointers, Pascal variant records, C and C++ unions,

and FORTRAN EQUIVALENCE and through
parameters.

CS216 14

Variable Attribute - Type

• The type of a variable is
– (1) The range of values the variable can have.
– (2) The set of operations that are defined for values

of the type.

CS216 15

Variable Attribute - Value

• The value of a variable is
– The contents of the location (memory cell) with

which the variable is associated.
– Called r-value.

• To access the r-value, the l-value is needed.
– The l-value of a variable is its address.
– The r-value of a variable is its value.

CS216 16

Variable Attribute – Lifetime

• The lifetime of a variable is
– The time during which the variable is bound to a

specific memory location.

CS216 17

Variable Attribute – Scope

• The scope of a variable is
– The range of statements in which the variable can

be referenced in the statements.

CS216 18

Binding

4

CS216 19

Binding

• An association between an attribute and an
entity or between an operation and a symbol.

• Binding time is
– The time at which a binding takes place.

CS216 20

Possible Binding Times

• Language design time
• Language implementation time
• Compile time
• Link time
• Load time
• Run (execution) time

CS216 21

Possible Binding Times

• Language design time
– bind operator symbols to operations

• Language implementation time
– bind floating point type to a representation

• Compile time
– bind a variable to a type in C/C++ or Java

• Load time
– bind a FORTRAN 77 variable to a memory cell (or a C

static variable)
• Run (execution) time

– bind a nonstatic local variable to a memory cell
CS216 22

Example: Possible Binding Times

• Possible types for count?
– At language design time

• Type of count?
– At compile time

• Possible values of count?
– At compile time

• Value of count?
– At run time

int count;
count = count + 5;

CS216 23

Example: Possible Binding Times

• Possible meanings of + ?
– At language design time

• Meaning of +?
– At compile time

• Internal representation of 5?
– At language implementation (compiler design) time

int count;
count = count + 5;

CS216 24

Static and Dynamic Binding

• Static Binding
– Language design time
– Language implementation time
– Compile time
– Link time
– Load time

• Dynamic Binding
– Run (execution) time

5

CS216 25

Binding Times

• Early binding times are associated with
greater efficiency!

• Later binding times are associated with
greater flexibility!

CS216 26

Storage (Location) & Lifetime

CS216 27

Storage Binding

• A memory cell to which a variable is bound is
taken from a pool of available memory.
– Allocation

• Getting a memory cell from some pool of available cells.

– Deallocation
• Putting a memory cell back into the pool.

CS216 28

Lifetimes of Variables

• The lifetime of a variable is
– The time during which it is bound to a particular

memory cell.
– From the allocation time to the deallocation time

CS216 29

Three Kinds of Storage

• Static storage
– Allocated and retained throughout the program’s

execution.
• Stack storage

– Allocated and deallocated in last-in first-out order.
• Heap storage

– Allocated and deallocated at arbitrary times.

CS216 30

Three Kinds of Storage

Static

Stack

Heap

allocate

deallocate

lifetime

6

CS216 31

Categories of Variables

• Static storage
– Static Variables

• Stack storage
– Stack-Dynamic Variables

• Heap storage
– Heap-Dynamic Variables

CS216 32

1. Static Variables

• Bound to a memory cell before the program’s
execution begins.

• Remains bound to the same memory cell
throughout the program’s execution.
– All FORTRAN 77 variables, C static variables

CS216 33

Static Variables

• Advantage:
– Efficiency (direct addressing)
– History-sensitive subprogram support

• Disadvantage:
– Lack of flexibility (no recursion)

CS216 34

2. Stack-dynamic Variables

• Storage bindings are created for variables when
their declaration statements are elaborated.
– Local variables in most languages

CS216 35

Stack-dynamic Variables

• Advantage:
– Allows recursion
– Conserves storage

• Disadvantages:
– Overhead of allocation and deallocation
– Subprograms cannot be history sensitive
– Inefficient references (indirect addressing)

CS216 36

3. Heap-dynamic Variables

• Allocated and deallocated by explicit
directives, specified by the programmer, which
take effect during execution.

• Referenced only through pointers or references
– Dynamic objects in C++ (via new and delete), all

objects in Java

7

CS216 37

Heap-dynamic Variables

• Advantage:
– Provides for dynamic storage management

• Disadvantage:
– Inefficient and unreliable

CS216 38

Scoping

CS216 39

Scopes of Variables

• A variable is visible in a statement
– If it can be referenced in that statement.

• The scope of a variable is
– The range of statements over which it is visible.

CS216 40

Two Occurrences of Variables

• Variables occur in two different contexts in a
program
– Binding (defining, declaration) occurrence
– Applied (use, reference) occurrence

int x;

x = x+3

CS216 41

The Scope Rule

• The scope rule of a programming language
determines
– How a particular occurrence of a name (variable) is

associated with a variable.
• Given an applied (use, reference) occurrence

of a variable x, what is the binding (defining,
declaration) occurrence of the variable x?

CS216 42

Blocks - Program Building Blocks

• Blocks
– Subprograms

• functions and procedures

– Non-subprogram blocks
• begin … end
• { … }

8

CS216 43

Program Structures

1. Monolithic block structured
2. Flat block structured
3. Nested block structured

CS216 44

1. Monolithic Block Structure

• Monolithic block structured
– The entire program is a single block.

Declaration of x
Declaration of y

CS216 45

Monolithic Block Structure

• All global variables.
• The scope of every declaration is the whole

program.
– All declared variables must have distinct names.
– All declarations must be grouped even if they are

used in different parts of the program.
– Not suitable for writing large programs.

CS216 46

2. Flat Block Structure

• Flat block structured
– The program is partitioned into two disjoint blocks.

x

y

z

CS216 47

Flat Block Structure

• Global or local variables.
• All subprograms and global variables must

have distinct names.
• All variables that cannot be local to a particular

subprogram is forced to be global even if it is
accessed in a couple of subprograms.

CS216 48

3. Nested Block Structure

• Nested block structured
– Each block may be nested inside any block.

x

y

z

ba

c

9

CS216 49

Kinds of Variables

• Local variables
– The local variables of a program unit or block are those that

are declared there.

• Non-local variables
– The nonlocal variables of a program unit or block are those

that are visible but not declared there.

• Global variables
– The global variables of a program unit or block are nonlocal

variables that are declared in the outmost block.

CS216 50

Scope Binding

• Static binding
– Static scoping rule (Lexical scoping rule)

• Dynamic binding
– Dynamic scoping rule

CS216 51

1. Static Scoping

• Based on program text.
• Just by examining the program text, we can

determine which binding occurrence
correspond to a given applied occurrence.

• The binding between applied occurrences and
binding occurrences is FIXED, not changing
throughout the program’s execution.

CS216 52

Static Scoping

• Search declarations, first locally, then in
increasingly larger enclosing scopes, until one
is found for the given name.

• Find the innermost enclosing block
containing the applied occurrence and a
binding occurrence.

CS216 53

Example: Static Scoping

• Example:
– See the example (p. 212)
– See the example (p. 213)

CS216 54

2. Dynamic Scoping

• Based on calling sequences of program units.
(The program’s dynamic flow of control)

• Not based on their textual layout (temporal
versus spatial).

• The binding between applied occurrences and
binding occurrences is changing throughout the
program’s execution.

10

CS216 55

Dynamic Scoping

• References to variables are connected to
declarations by searching back through the
chain of subprogram calls that forced execution
to this point.

• Find the most recently active block
containing the applied occurrence and a
binding occurrence.

CS216 56

Example: Dynamic Scoping

• Example:
– See the example (p. 217)

CS216 57

Static vs. Dynamic Scoping

• Programs in static scoped languages are
– Easier to read
– More reliable
– Execute faster

• than equivalent programs in dynamic scoped
languages.

CS216 58

MAIN
- declaration of x
SUB1

- declaration of x -
...
call SUB2

SUB2
...
- reference to x -
...

...
call SUB1
...

MAIN calls SUB1
SUB1 calls SUB2
SUB2 uses x

Example: Static vs. Dynamic Scoping

Static scoping - reference to x is to MAIN's x

Dynamic scoping - reference to x is to SUB1's x

CS216 59

QUIZ: Static vs. Dynamic Scoping

Program example;
const s = 2;
var h: int;
function scaled(d:int);

return (d*s)

procedure p;
const s = 3;
…
scaled(h);
…

begin
…
scaled(h);
p;
…

end.

Static
Scoping

2*h

2*h

Dynamic
Scoping

3*h

2*h

CS216 60

Scopes vs. Lifetimes of Variables?

• Scope and lifetime are sometimes closely
related.

• But, scope and lifetime are not the same and
are different concepts!!

11

CS216 61

Referencing Environment

• The referencing environment of a statement
is
– The collection of all names that are visible in the

statement.

CS216 62

Types & Type Checking

CS216 63

Values and Types

• The value of a variable is
– The contents of the location (memory cell) with

which the variable is associated.
• The type of a variable is

– (1) The range of values the variable can have.
– (2) The set of operations that are defined for the

values the variable can have.

CS216 64

Expressions and Types

• An expression is
– A program phrase that will be evaluated to yield a value.

• An expression is used to compute a new value from an
old value.

• The type of an expression is
– (1) The range of values the expression can compute.
– (2) The set of operations that are defined for the values the

expression can compute.

CS216 65

Type Binding

• How is the type specified?
– Type declaration

• When does the type binding take place?
– Static binding
– Dynamic binding

CS216 66

Type Declarations

• Explicit type declaration
• Implicit type declaration

– No requirement for explicit type declaration

12

CS216 67

Type Inference

• The programmer does not need to specify the
types of the variables.

• The types can be determined (inferred) from
the context.
– Type Inferencing
– ML, Miranda, and Haskell

CS216 68

Example: Type Inference

fun circumf(r) = 3.14159 * r * r;

fun times10(x) = 10 * x;

fun square(x) = x * x;

fun square(x):int = x * x;
fun square(x:int) = x * x;
fun square(x) = (x :int) * x;
fun square(x) = x * (x :int);

CS216 69

1. Static Type Binding

• Type declaration creates static type binding.

CS216 70

2. Dynamic Type Binding

• A type is not specified by a type declaration.
• The variable is bound to a type when a value is

assigned in an assignment statement.
• A type is specified through an assignment

statement.

CS216 71

Dynamic Type Binding

• Advantage:
– Flexibility (generic program units)

• Disadvantages:
– High cost (dynamic type checking and

interpretation)
– Type error detection by the compiler is difficult

CS216 72

Type Binding and Implementation

• Languages with static type binding for
variables are usually implemented by
compilation.

• Languages with dynamic type binding for
variables are usually implemented by
interpretation.

13

CS216 73

Type Binding – Static vs. Dynamic
Typing

• When does the type binding take place?
– At compile time

• Early type binding
• Static typing
• Statically typed programming languages

– At run time
• Late type binding
• Dynamic typing
• Dynamically typed programming languages

CS216 74

Type System

• A type system for a programming language is
– A set of rules for associating a type with

expressions in the language.
– The rule of a type system specify the proper usage

of each operator in the language.
• A type system rejects an expression if it does

not associate a type with the expression.

CS216 75

Type Checking

• Type checking is
– The activity of ensuring that the operands of an

operator are of compatible types.
• Operator and its operands

– Subprogram and its parameters
– Assignment statement and its LHS (variable) &

RHS (expression)

Operator Operand1 Oprand2 … Operandn
CS216 76

Type Compatibility

• A compatible type is one that is
– either legal for the operator
– or is allowed under language rules to be implicitly

converted by compiler- generated code to a legal
type.

• Type coercion.

CS216 77

Type Error

• During execution, an error occurs if an
operation is applied inappropriately.

• A type error is
– The application of an operator to an operand of an

inappropriate type.
• A program is type safe if it executes without

any type errors.

CS216 78

Why Type Checking?

• Type errors account for a significant proportion
of all program errors!

• To prevent type errors.

14

CS216 79

When Type Checking?

• Given an operator and its operands, the type
checking must be performed before the
operation is performed.

• Before when?
– At compile time

• Static type checking
– At run time (immediately before performing an

operation)
• Dynamic type checking

CS216 80

Static vs. Dynamic Type Checking

• Static type checking
– No time and space overhead - fast
– More secure programs

• Dynamic type checking
– Time and space overhead - slow
– Flexible programs

CS216 81

Type Binding and Checking Time

• If all type bindings are static, nearly all type
checking can be done statically.
– Static typing and static type checking?
– Static typing and dynamic type checking?

• If type bindings are dynamic, type checking
must be done dynamically.
– Dynamic typing and static type checking?
– Dynamic typing and dynamic type checking?

CS216 82

How Much Type Checking?

Type unsafe programs

Type safe programs

All syntactically-correct programs

CS216 83

Strong Typing

• A programming language is strongly typed
– If type errors are always detected.
– If the type checking accepts only type safe

programs.

All syntactically-
correct programs

Type
Checking

Type safe
programs

CS216 84

Weak Typing

• A programming language is weakly typed
– If it is not strongly typed.

All syntactically-
correct programs

Type
Checking

Type safe
programs

+

Some type
unsafe

programs

15

CS216 85

Strong Typing

• Strong typing ensures freedom from type errors!
• Languages:

– FORTRAN 77 is not: parameters, EQUIVALENCE
– Pascal is nearly strongly typed: variant records
– Modula-2 is not: variant records.
– C and C++ are not: parameter type checking can be

avoided; unions
– Ada and Java are nearly strongly typed.
– ML is strongly typed.

CS216 86

Type Equivalence/Compatibility
Rule

• What does it mean for two types are equal?
– Type Equivalence/Compatibility Rule

• Rules:
– Name equivalence rule
– Structural equivalence rule
– Declaration equivalence rule

CS216 87

1. Name Equivalence

• The two variables have compatible types if
they are in
– either the same type declaration
– or in declarations that use the same type name.

• Easy to implement but highly restrictive.

CS216 88

Example: Name Equivalence

• t1 = t2 = t3
• age = integer
• t1= t4

type
t1 = array [1..10] of integer;
t2 = t1;
t3 = t2;
t4 = array [1..10] of integer;
age = integer;

CS216 89

2. Structural Equivalence

• Two variables have compatible types if
– their types have identical structures.

• More flexible, but harder to implement.

CS216 90

Example: Structural Equivalence

• t1 = t2 = t3
• age = integer
• t1= t4

type
t1 = array [1..10] of integer;
t2 = t1;
t3 = t2;
t4 = array [1..10] of integer;
age = integer;

16

CS216 91

Structural Equivalence Issues

• Are two record types compatible if they are
structurally the same but use different field
names?

• Are two array types compatible if they are the
same except that the subscripts are different?
(e.g. [1..10] and [-5..4])

• Are two enumeration types compatible if their
components are spelled differently?

CS216 92

3. Declaration Equivalence

• Type names that lead back to the same original
structure declaration by a series of type
redeclarations are considered to be equivalent
types.

CS216 93

Example: Declaration Equivalence

• t1 = t2 = t3
• age = integer
• t1= t4

type
t1 = array [1..10] of integer;
t2 = t1;
t3 = t2;
t4 = array [1..10] of integer;
age = integer;

CS216 94

QUIZ: Type Equivalence

type
range = -5 .. 5;
t1 = array [range] of char;
t2 = t1;
var
x,y: array [-5..5] of char;
z: t1;
w: t2;
i: range;
j: -5..5;

Structural equivalence:
x = y = z = w
i = j

Name equivalence:
x = y

Declaration equivalence:
x = y
z = w

