Basic Concepts:
Variables, Bindings, Storage &
Lifetime, Scoping and Types & Type
Checking

Cs216 1

Variables

CS216 2

A Programming Language —
Universal: All Solvable Computations

Variables

integer values and arithmetic operators
(arithmetic expressions)

variables

assignment statement
selection statement

loop statement/go to statement

Cs216 3

« An abstraction of a memory cell or collection
of cells.

* Variables are more than just names for memory
locations.

Cs216 4

Attributes of VVariables

Attributes of VVariables

Name
Address
Value
Type
Lifetime
Scope

CS216 5

PROGRAM STORAGE
Type
Variable — Address v
Name (Location) Value

‘ Scope ‘ Lifetime

CS216 6

Variable Attribute - Name

Names/ldentifiers

» Names for variables are the most common
names in a program.

Cs216 7

» A fundamental abstraction mechanism in a PL
to denote entities or constructs.

« A string of characters used to identify some
entity in a program.
— Variables
— Subprograms
— Formal parameters
— Others

CS216 8

Names/ldentifiers — Design Issues

Names/ldentifiers — Case
Sensitivity

* Maximum length?
» Are connector characters allowed?
* Are names case sensitive?

« Are special words reserved words or
keywords?

Cs216 9

« Case sensitivity

— C, C++, Java, and Modula-2 names are case
sensitive

— The names in other languages are not.
 Disadvantage?

— Readability (names that look alike are different)
 Advantage?

-2

Cs216 10

Names/ldentifiers — Special
Words

Variable Attribute — Address
(Storage Location)

» A keyword is a word that is special only in
certain contexts.

» A reserved word is a special word that cannot
be used as a user-defined name.

A predefined word has predefined meaning
but can be redefined.

CS216 11

» The address of a variable is

— The address of the memory location with which it
is associated.

— Called I-value
» The same name variable may have different
addresses
— At different places in a program.
— At different times during execution.

CS216 12

Aliases

Variable Attribute - Type

» Multiple names can reference the same
address.

« If two variable names can be used to access the
same memory location, they are called aliases.

« Aliases are harmful to readability!

— Pointers, Pascal variant records, C and C++ unions,
and FORTRAN EQUIVALENCE and through
parameters.

Cs216

» The type of a variable is
— (1) The range of values the variable can have.
— (2) The set of operations that are defined for values
of the type.

CS216

Variable Attribute - Value

Variable Attribute — Lifetime

* The value of a variable is

— The contents of the location (memory cell) with
which the variable is associated.

— Called r-value.

» To access the r-value, the I-value is needed.
— The I-value of a variable is its address.
— The r-value of a variable is its value.

Cs216

* The lifetime of a variable is
— The time during which the variable is bound to a
specific memory location.

Cs216

Variable Attribute — Scope

 The scope of a variable is

— The range of statements in which the variable can
be referenced in the statements.

CS216

Binding

CS216

Binding

Possible Binding Times

 An association between an attribute and an
entity or between an operation and a symbol.

* Binding time is
— The time at which a binding takes place.

Cs216 19

 Language design time
 Language implementation time
» Compile time

* Link time

Load time

Run (execution) time

CS216 20

Possible Binding Times

Example: Possible Binding Times

 Language design time
— bind operator symbols to operations
 Language implementation time
— bind floating point type to a representation
» Compile time
— bind a variable to a type in C/C++ or Java
» Load time
— bind a FORTRAN 77 variable to a memory cell (ora C
static variable)
* Run (execution) time

bind a nonstatic local variable to a memory cell

cs21 2

int count;
count = count + 5;

Possible types for count?

— At language design time

Type of count?

— At compile time

Possible values of count?

— At compile time

Value of count?

cszAt run time 2

Example: Possible Binding Times

Static and Dynamic Binding

int count;
count = count + 5;

« Possible meanings of + ?
— At language design time
* Meaning of +?
— At compile time
* Internal representation of 5?
— At language implementation (compiler design) time

CS216 23

« Static Binding
— Language design time
— Language implementation time
— Compile time
— Link time
— Load time
» Dynamic Binding
— Run (execution) time

CS216 24

Binding Times

 Early binding times are associated with
greater efficiency!

« Later binding times are associated with
greater flexibility!

Cs216 25

Storage (Location) & Lifetime

CS216 26

Storage Binding

» A memory cell to which a variable is bound is
taken from a pool of available memory.
— Allocation
 Getting a memory cell from some pool of available cells.
— Deallocation
« Putting a memory cell back into the pool.

Cs216 27

Lifetimes of Variables

¢ The lifetime of a variable is

— The time during which it is bound to a particular
memory cell.

— From the allocation time to the deallocation time

Cs216 28

Three Kinds of Storage

« Static storage

— Allocated and retained throughout the program’s
execution.

« Stack storage

— Allocated and deallocated in last-in first-out order.
» Heap storage

— Allocated and deallocated at arbitrary times.

CS216 29

Three Kinds of Storage

Static
allocate
e]
I:] I lifetime Stack
>
deallocate v
t
Heap

CS216 30

Categories of Variables

1. Static Variables

« Static storage

— Static Variables
« Stack storage

— Stack-Dynamic Variables
e Heap storage

— Heap-Dynamic Variables

Cs216

« Bound to a memory cell before the program’s
execution begins.

» Remains bound to the same memory cell
throughout the program’s execution.
— All FORTRAN 77 variables, C static variables

CS216 32

Static Variables

2. Stack-dynamic Variables

» Advantage:

— Efficiency (direct addressing)

— History-sensitive subprogram support
« Disadvantage:

— Lack of flexibility (no recursion)

Cs216

« Storage bindings are created for variables when
their declaration statements are elaborated.
— Local variables in most languages

Cs216 34

Stack-dynamic Variables

3. Heap-dynamic Variables

» Advantage:
— Allows recursion
— Conserves storage
« Disadvantages:
— Overhead of allocation and deallocation
— Subprograms cannot be history sensitive
— Inefficient references (indirect addressing)

CS216

« Allocated and deallocated by explicit
directives, specified by the programmer, which
take effect during execution.

« Referenced only through pointers or references

— Dynamic objects in C++ (via new and delete), all
objects in Java

CS216 36

Heap-dynamic Variables

» Advantage:
— Provides for dynamic storage management

« Disadvantage:
— Inefficient and unreliable

Cs216

Scoping

CS216

Scopes of Variables

Two Occurrences of Variables

« A variable is visible in a statement
— If it can be referenced in that statement.

 The scope of a variable is
— The range of statements over which it is visible.

Cs216

* Variables occur in two different contexts in a
program
— Binding (defining, declaration) occurrence
— Applied (use, reference) occurrence

int x;

X = X+3

Cs216

The Scope Rule

Blocks - Program Building Blocks

 The scope rule of a programming language
determines
— How a particular occurrence of a name (variable) is
associated with a variable.
» Given an applied (use, reference) occurrence
of a variable x, what is the binding (defining,
declaration) occurrence of the variable x?

CS216

 Blocks
— Subprograms
« functions and procedures
— Non-subprogram blocks
* begin ... end
«{..}

CS216

Program Structures

1. Monolithic block structured
2. Flat block structured
3. Nested block structured

Cs216 43

1. Monolithic Block Structure

« Monolithic block structured
— The entire program is a single block.

Declaration of x
Declaration of y

CS216 44

Monolithic Block Structure

« All global variables.

» The scope of every declaration is the whole
program.
— All declared variables must have distinct names.

— All declarations must be grouped even if they are
used in different parts of the program.

— Not suitable for writing large programs.

Cs216 45

2. Flat Block Structure

* Flat block structured
— The program is partitioned into two disjoint blocks.

X

Cs216 46

Flat Block Structure

» Global or local variables.

* All subprograms and global variables must
have distinct names.

« All variables that cannot be local to a particular
subprogram is forced to be global even if it is
accessed in a couple of subprograms.

CS216 47

3. Nested Block Structure

 Nested block structured
— Each block may be nested inside any block.

X

y

z

Kinds of Variables

* Local variables

— The local variables of a program unit or block are those that
are declared there.

* Non-local variables

— The nonlocal variables of a program unit or block are those
that are visible but not declared there.

» Global variables

— The global variables of a program unit or block are nonlocal
variables that are declared in the outmost block.

Cs216 49

Scope Binding

« Static binding

— Static scoping rule (Lexical scoping rule)
* Dynamic binding

— Dynamic scoping rule

CS216 50

1. Static Scoping

* Based on program text.

« Just by examining the program text, we can
determine which binding occurrence
correspond to a given applied occurrence.

« The binding between applied occurrences and
binding occurrences is FIXED, not changing
throughout the program’s execution.

Cs216 51

Static Scoping

« Search declarations, first locally, then in
increasingly larger enclosing scopes, until one
is found for the given name.

e Find the innermost enclosing block
containing the applied occurrence and a
binding occurrence.

Cs216 52

Example: Static Scoping

o Example:
— See the example (p. 212)
— See the example (p. 213)

CS216 53

2. Dynamic Scoping

« Based on calling sequences of program units.
(The program’s dynamic flow of control)

« Not based on their textual layout (temporal
versus spatial).

 The binding between applied occurrences and
binding occurrences is changing throughout the
program’s execution.

CS216 54

Dynamic Scoping

Example: Dynamic Scoping

* References to variables are connected to
declarations by searching back through the
chain of subprogram calls that forced execution
to this point.

 Find the most recently active block
containing the applied occurrence and a
binding occurrence.

Cs216 55

« Example:
— See the example (p. 217)

CS216 56

Static vs. Dynamic Scoping

Example: Static vs. Dynamic Scoping

Programs in static scoped languages are

— Easier to read

— More reliable

— Execute faster

than equivalent programs in dynamic scoped
languages.

Cs216 57

MAIN

- declaration of x

SUB1 MAIN calls SUB1
- declaration of x - SUB1 calls SUB2
- SUB2 uses x
call suB2

SuB2

- reference to x -

call SUBL Static scoping - reference to x is to MAIN's x

Dynamic scoping - reference to x is to SUB1's x

Cs216 58

QUIZ: Static vs. Dynamic Scoping

Scopes vs. Lifetimes of Variables?

Program example;

const s = 2;

var h: int;

function scaled(d:int); . .

return (d*s)(> Static Dynamic

Scoping Scoping
procedure p;

const s = 3;

écaled(h); e 2*h 3*h

begin
scaled(h); 2%h 2*h

p;
cgﬁﬂj 59

 Scope and lifetime are sometimes closely
related.

« But, scope and lifetime are not the same and
are different concepts!!

CS216 60

10

Referencing Environment

 The referencing environment of a statement
is

— The collection of all names that are visible in the
statement.

Cs216 61

Types & Type Checking

CS216 62

Values and Types

* The value of a variable is

— The contents of the location (memory cell) with
which the variable is associated.

» The type of a variable is
— (1) The range of values the variable can have.

— (2) The set of operations that are defined for the
values the variable can have.

Cs216 63

Expressions and Types

* An expression is
— A program phrase that will be evaluated to yield a value.

» An expression is used to compute a new value from an
old value.

* The type of an expression is
— (1) The range of values the expression can compute.

— (2) The set of operations that are defined for the values the
expression can compute.

Cs216 64

Type Binding

» How is the type specified?
— Type declaration

» When does the type binding take place?
— Static binding
— Dynamic binding

CS216 65

Type Declarations

 Explicit type declaration
* Implicit type declaration
— No requirement for explicit type declaration

CS216 66

11

Type Inference

» The programmer does not need to specify the
types of the variables.

* The types can be determined (inferred) from
the context.
— Type Inferencing
— ML, Miranda, and Haskell

Cs216 67

Example: Type Inference

fun circumf(r) = 3.14159 * r * r;
fun timesl10(x) = 10 * x;

fun square(xX) = x * Xx;

fun square(x):int X * X;

fun square(x:int) X * X;

fun square(x) = (x :int) * x;
fun square(x) = x * (x :int);

CS216 68

1. Static Type Binding

 Type declaration creates static type binding.

Cs216 69

2. Dynamic Type Binding

« A type is not specified by a type declaration.
» The variable is bound to a type when a value is
assigned in an assignment statement.

A type is specified through an assignment
statement.

Cs216 70

Dynamic Type Binding

» Advantage:
— Flexibility (generic program units)
« Disadvantages:

— High cost (dynamic type checking and
interpretation)

— Type error detection by the compiler is difficult

CS216 71

Type Binding and Implementation

Languages with static type binding for
variables are usually implemented by
compilation.

Languages with dynamic type binding for

variables are usually implemented by
interpretation.

CS216 72

12

Type Binding — Static vs. Dynamic
Typing

Type System

» When does the type binding take place?
— At compile time
« Early type binding
« Static typing
« Statically typed programming languages
— Atruntime
« Late type binding
« Dynamic typing
« Dynamically typed programming languages

Cs216 73

« A type system for a programming language is
— A set of rules for associating a type with
expressions in the language.
— The rule of a type system specify the proper usage
of each operator in the language.
A type system rejects an expression if it does
not associate a type with the expression.

CS216 74

Type Checking

Type Compatibility

» Type checking is
— The activity of ensuring that the operands of an
operator are of compatible types.

* Operator and its operands
— Subprogram and its parameters

— Assignment statement and its LHS (variable) &
RHS (expression)

‘ |Operandl Oprand? ... Operandnl

Cs216 75

« A compatible type is one that is
— either legal for the operator

— or is allowed under language rules to be implicitly
converted by compiler- generated code to a legal

type.
« Type coercion.

Cs216 76

Type Error

Why Type Checking?

« During execution, an error occurs if an
operation is applied inappropriately.
* Atypeerroris
— The application of an operator to an operand of an
inappropriate type.
» A program is type safe if it executes without
any type errors.

CS216 77

 Type errors account for a significant proportion
of all program errors!

+ To prevent type errors.

CS216 78

13

When Type Checking?

 Given an operator and its operands, the type
checking must be performed before the
operation is performed.
 Before when?
— At compile time
« Static type checking

— At run time (immediately before performing an
operation)

« Dynamic type checking

Cs216

Static vs. Dynamic Type Checking

« Static type checking
— No time and space overhead - fast
— More secure programs

* Dynamic type checking
— Time and space overhead - slow
— Flexible programs

CS216

Type Binding and Checking Time

« If all type bindings are static, nearly all type
checking can be done statically.

— Static typing and static type checking?
— Static typing and dynamic type checking?

« If type bindings are dynamic, type checking
must be done dynamically.

— Dynamic typing and static type checking?
— Dynamic typing and dynamic type checking?

Cs216

How Much Type Checking?

All syntactically-correct programs

Type safe programs

Type unsafe programs

Cs216

Strong Typing

» A programming language is strongly typed
— If type errors are always detected.

— If the type checking accepts only type safe
programs.

All syntactically-

Type Type safe
correct programs - Checking - programs

CS216

Weak Typing

A programming language is weakly typed
— If it is not strongly typed.

Type safe
programs
All syntactically- Type +
correct programs — Checking - Some type
unsafe
programs
CS216

i

Strong Typing

« Strong typing ensures freedom from type errors!
» Languages:
— FORTRAN 77 is not: parameters, EQUIVALENCE
— Pascal is nearly strongly typed: variant records
— Modula-2 is not: variant records.

— C and C++ are not: parameter type checking can be
avoided; unions

— Ada and Java are nearly strongly typed.
— ML is strongly typed.

Cs216 85

Type Equivalence/Compatibility
Rule

« What does it mean for two types are equal?
— Type Equivalence/Compatibility Rule
* Rules:
— Name equivalence rule
— Structural equivalence rule
— Declaration equivalence rule

CS216 86

1. Name Equivalence

» The two variables have compatible types if
they are in

— either the same type declaration
— or in declarations that use the same type name.

« Easy to implement but highly restrictive.

Cs216 87

Example: Name Equivalence

type

tl = array [1..10] of integer;
12 = t1;

t3 = t2;

t4 = array [1..10] of integer;

age = integer;
e t1#t2+13

* age # integer

. t1#t4

Cs216 88

2. Structural Equivalence

» Two variables have compatible types if
— their types have identical structures.
» More flexible, but harder to implement.

CS216 89

Example: Structural Equivalence

type

tl = array [1..10] of integer;
t2 = tl;

13 = t2;

t4 = array [1..10] of integer;

age = integer;

e t1=1t2=13
* age = integer
o t1=t4

CS216 90

15

Structural Equivalence Issues

« Are two record types compatible if they are
structurally the same but use different field
names?

 Are two array types compatible if they are the
same except that the subscripts are different?
(e.g. [1..10] and [-5..4])

« Are two enumeration types compatible if their
components are spelled differently?

Cs216 91

3. Declaration Equivalence

» Type names that lead back to the same original
structure declaration by a series of type
redeclarations are considered to be equivalent

types.

CS216 92

Example: Declaration Equivalence

type
tl = array [1..10] of integer;
2 = t1;
t3 = t2;
t4 = array [1..10] of integer;
age = integer;

e tl=t2=13

* age = integer

e t1#t4

Cs216 93

QUIZ: Type Equivalence

type Structural equivalence:
range = -5 .. 5; X=y=z=w

tl = array [range] of char; =)

t©2 = tl;

var Name equivalence:
x,y: array [-5..5] of char; X=y

z: tl;

w: t2; Declaration equivalence:
i: range; xX=y

J: -5..5; z=w

Cs216 94

16

