
1

CS216 1

Data Types
in Programming Languages

CS216 2

A Programming Language –
Universal: All Solvable Computations

• integer values and arithmetic operators
(arithmetic expressions)

• variables
• assignment statement
• selection statement
• loop statement/go to statement

CS216 3

Evolution of Data Types

• Built-in data types
• User-defined data types
• Abstract data types (ADT)

CS216 4

Data Types

• Primitive types
– Indivisible values

• Structured types
– Composed values

CS216 5

Kinds of Data Types in
Programming Languages …

• Numeric types
– Integer type, Floating –point type, Decimal type

• Boolean type
• Character type
• String type
• Ordinal types

– Enumeration type, Subrange type

CS216 6

… Kinds of Data Types in
Programming Languages

• Array type
• Associative array type
• Record type
• Union type
• Set type
• Pointer type

2

CS216 7

Primitive Data Types

• A data type that is not defined in terms of other data
types.

• A programming languages provides a set of primitive
built-in data types.
– Numeric type

• Integer numbers
• Floating-point numbers
• Decimal numbers

– Boolean type
– Character type

CS216 8

String Type

• Values are sequences of characters.
• Design issues:

– Is it a primitive type or just a structured type (e.g.
special kind of character array)?

– Is the length of a string static or dynamic?

CS216 9

Ordinal Types (User Defined)

• A type in which the range of possible values
can be easily associated with the set of positive
integers.
– Integer type, character type, boolean type

• User-defined ordinal types
– Enumeration Type
– Subrange Type

CS216 10

Enumeration Type

• Values are the values (symbolic constants) that
are enumerated in the definition.
– type DAYS is (Mon, Tue, Wed, Thu, Fri,
Sat, Sun);

• Aid to readability
– No need to code a color as a number.

• Aid to reliability
– Compiler can check operations and ranges of

values.

CS216 11

Subrange Type

• Values are ordered contiguous subsequences
of values of an ordinal type.
– 1..31

• All of the operations defined for the parent
type are also defined for the subrange type.
– Subtypes inherit operations from their parent

types.

CS216 12

Subrange Type - Examples

• Pascal
– Subrange types behave as their parent types;
– type index = 1..100;

• Ada
– Subtypes are not new types, just constrained

existing types (so they are compatible);
– subtype INDEX is INTEGER range 1..100;
– type INDEX is new INTEGER range 1..100;

3

CS216 13

Ordinal Types - Implementation

• Enumeration types
– As nonnegative integers.

• Subrange types
– As the parent types with code inserted (by the

compiler) to restrict assignments to subrange
variables.

CS216 14

Type Constructors for Building
Constructed (Structured) Types

• Operations to construct new types out of
existing types.

• In a programming language, all types are
constructed out of primitive/non-primitive
types using type constructors.

CS216 15

Constructed (Structured) Types

• Array type
• Associative array type
• Record type
• Union type
• Set type
• Pointer/Reference type

CS216 16

Array Type

• Values are aggregates of homogeneous data
elements s.t.
– An individual element is identified by its position

in the aggregate relative to the first element.
– Introduced by FORTRAN.

CS216 17

Array Type – Design Issues

1. What types are legal for subscripts?
2. Are subscripting expressions in element

references range checked?
3. When are subscript ranges bound?
4. When does allocation take place?
5. What is the maximum number of subscripts?
6. Can array objects be initialized?
7. Are any kind of slices allowed?

CS216 18

Array Type – Implementation

• The code to access array elements must be
generated at compile-time.

• The code is executed to produce array element
addresses.

4

CS216 19

Array Type – Access Function

• Access function maps a subscript expression to
an address in the array.

• One dimensional arrays: A[k] with lower=1
address(A[k]) =

address(A[1]) +
(k - 1) * element_size

address(A[k]) =
(address(A[1]) - element_size) +

k * element_size
CS216 20

Associative Array Type

• Values are unordered collections of data elements
– Indexed by an equal number of values called keys.
– (A key + A value)
– Set mapping (→)
– Hash

• Perl:
– Hash variable names begin with %

%hi_temps = ("Monday" => 77, "Tuesday" => 79,…);

– Subscripting is done using braces and keys
$hi_temps{"Wednesday"} = 83;

CS216 21

Record Type

• Values are possibly heterogeneous aggregates of
data elements
– The individual elements are identified by names.
– Introduced by COBOL.

– Set Cartesian product (×)
– To model collections of heterogeneous data elements.

• Design Issues:
– What is the form of references?
– What unit operations are defined?

CS216 22

Record Type – Record Field
Reference

• Fully qualified references
– must include all record names.

• Elliptical references
– allow leaving out record names as long as the

reference is unambiguous.

CS216 23

Record Type – Operations &
Implementation

• Operations:
– Assignment

• Pascal, Ada, and C allow it if the types are identical.
• In Ada, the RHS can be an aggregate constant.

– Initialization
– Comparison

• Implementation:
– See Fig. 6.8 (p. 268)

CS216 24

Comparing Records and Arrays

• Component type:
– Array – Homogeneous
– Record – Heterogeneous

• Component selector:
– Array – Expressions evaluated at run-time
– Record – Names known at compile-time
– Access to array elements is much slower than

access to record fields.

5

CS216 25

Union Type

• A type whose variables are allowed to store different
type values at different times during execution.
– Set union (∪)

• Values are the set union of different type values. Two
union types:
– Undiscriminated unions (Free unions)
– Discriminated unions

• A tag or discriminator is added to each element field to distinguish
the type.

CS216 26

Union Type – Evaluation

• Potentially unsafe
– FORTRAN, Pascal, C, C++ and Modula-2 (not

Ada)
– Java, Modula-3 – No union.

• Flexibility

CS216 27

Set Type

• Values are unordered collections of distinct
values from some ordinal type.
– Powerset
– Introduced by Pascal.

• Design Issue:
– What is the maximum number of elements in any

set base type?

CS216 28

Pointer Type

• Values are memory addresses and a special
value nil (or null).
– First introduced in PL/I.

• Pointing to
– Heap memory cells
– Non-heap memory cells

• Type operators
– *, access, ^

CS216 29

Pointer Type – Design Issues

• What is the scope and lifetime of a pointer variable?
• What is the lifetime of a heap-dynamic variable?
• Are pointers restricted to pointing at a

particular type?
• Are pointers used for dynamic storage management,

indirect addressing, or both?
• Should a language support pointer types, reference

types, or both?

CS216 30

Pointer Type - Operations

• Allocation
– new, new, malloc

• Deallocation
– dispose, delete, free

• Assignment of an address to a pointer
• Dereferencing (explicit versus implicit)

– my_ptr^, (*my_ptr)

6

CS216 31

Pointer Type - Problems

1. Dangling pointers (references)
2. Lost heap-dynamic variables (garbage)

• Why?
– Explicit heap storage deallocation (reclamation)

CS216 32

1. Dangling Pointers

• A pointer to storage that has been reclaimed
(deallocated) and perhaps reallocated for another
purpose.

• How?
– Allocate a heap-dynamic variable and set a pointer to point

at it.
– Set a second pointer to the value of the first pointer.
– Deallocate the heap-dynamic variable using the first

pointer.
• A dangling pointer is undesirable (dangerous).

CS216 33

2. Lost Heap-Dynamic Variables

• A heap-dynamic variable that is no longer
referenced by any program pointer.

• How?
– Pointer p1 is set to point to a newly created heap-

dynamic variable.
– p1 is later set to point to another newly created

heap-dynamic variable.
• It is undesirable (wasteful).

CS216 34

Memory Leak

• A situation in which memory continues to be
used even though it is no longer needed by the
program.
– When a program fails to reclaim the heap memory

cells that are allocated but no longer referenced
and thus needed.

– Run out of memory & crash!

CS216 35

Pointer Types

• Pascal:
– Allocation - new
– Explicit deallocation - dispose
– Dangling pointers are possible

• C and C++:
– Explicit dereferencing (*) and address-of operator (&)
– Pointer arithmetic is possible.
– new & delete

– Dangling pointers are possible

CS216 36

Reference Types

• A special kind of pointer type.
• C++ Reference Types

– Constant pointers that are implicitly dereferenced.
– Used for parameters.
– Advantages of both pass-by-reference and pass-

by-value.

7

CS216 37

Reference Types

• Java Reference Types
– Only references.
– No pointer arithmetic.
– Can only point at objects (which are all on the

heap).
– No explicit deallocator (garbage collection is used)

- no dangling references.
– Dereferencing is always implicit.

CS216 38

Automatic Reclamation of
Garbage

• Implicit & automatic deallocation/reclamation
• Garbage Collection:

– Eager approach
• Reference counting

– Lazy approach
• Mark-and-Sweep Garbage collection

CS216 39

Abstract Data Type (ADT)

CS216 40

Data Abstraction

• The separation of a data type’s logical
properties from its implementation.

• The separation of the representation of data
from the applications that use the data at a
logical level.

• Data abstraction: Applying abstraction to data
types!

CS216 41

Data Encapsulation

• The physical representation of the data is
surrounded.

• The user of the data does not see the
implementation.

• The user deals with the data ONLY in terms of
its logical picture - its abstraction.

• Data encapsulation: Applying information
hiding to data types!

CS216 42

Abstract Data Type

• Applying Abstraction & Information Hiding
to Data Types!

• Built-in data types are ADT!

8

CS216 43

ADT

• A data type defined solely in terms of a
collection of data (values) + a set of operations
on the data (set of values)
– independently of any particular implementation!
– How the data type is implemented is hidden from

the user of the ADT.
– ADT defines the logical form of the data type!

CS216 44

ADT

• Ada:
– Packages

• C++:
– Classes

CS216 45

Parameterized ADT

• Ada:
– Generic Packages

• C++:
– Templated Classes

