
1

CS216 1

Expressions
in Programming Languages

CS216 2

A Programming Language –
Universal: All Solvable Computations

• integer values and arithmetic operators
(arithmetic expressions)

• variables
• assignment statement
• selection statement
• loop statement/go to statement

CS216 3

Expressions

• An expression is
– To be evaluated to yield a value of a type.
– To compute a new value from an old value.

Expression Value Type

CS216 4

Expressions

• An expression:
– Operators, operands, parentheses and function calls.

• Expressions:
– Literals
– Aggregates
– Constant and variable access
– Function calls
– Arithmetic expression
– Relational expression
– Boolean expression
– Conditional expression

CS216 5

1. Arithmetic Expressions – Design
Issues

• What are the operator precedence rules?
• What are the operator associativity rules?
• What is the order of operand evaluation?
• Are there restrictions on operand evaluation

side effects?
• Does the language allow user-defined operator

overloading?
• What mode mixing is allowed in expressions?

CS216 6

Operator Precedence

• The operator precedence rule:
– Defines the order in which “adjacent” operators are

evaluated.
– Highest
– Lowest

a + b * c

• See p. 295.

2

CS216 7

Operator Associativity

• The operator associativity rule:
– Defines the order in which adjacent operators with

the same precedence level are evaluated.
– Left to right
– Right-to-left

a – b + c – d

• See p. 297.

CS216 8

Operator: Precedence and
Associativity

• Precedence and associativity rules can be
overridden with parentheses.

(a + b) * c

a * b + c

CS216 9

Operand Evaluation Order

• Irrelevant if neither of the operands of an
operator has side effects.

• Crucial when the evaluation of an operand has
side effects!

• A side effect of a function call
– When a function changes either a two-way

parameter or a nonlocal variable.

CS216 10

Example: Functions with Side
Effects

int a = 5;
int fun1() {

a = 17;
return 3;

}
void fun2(){

a = a + fun1();
}

void main() {
fun2();

}

Left-to-right: 8

Right-to-left: 20

CS216 11

Possible Solution 1

• Write the language definition to disallow
functional side effects:
– No two-way parameters in functions
– No nonlocal references in functions

• Advantage:
– It works!

• Disadvantage:
– Programmers want the flexibility.

CS216 12

Possible Solution2

• Write the language definition to demand that
the operand evaluation order be fixed.

• Disadvantage:
– Limits some compiler optimizations

3

CS216 13

Conditional Expressions

• Exp1 ? Exp2 : Exp3
– C, C++, and Java:

if (count = 0) then average := 0
else average := sum/count;

average = (count == 0)? 0 : sum / count;

CS216 14

Operator Overloading

• Multiple use of the same operator name.
• Advantage:

– Flexibility
• Disadvantage:

– Users can define nonsense operations.
– Readability may suffer.

CS216 15

Mixed-Mode Expression

• An expression that has operands of different
types.
– Need a type conversion.

• Type conversion:
– Explicit type conversion
– Implicit type conversion

• Type coercion

CS216 16

Type Conversion

• A narrowing conversion
– Converted to a type that cannot include all of the

values of the original type.
• A widening conversion

– Converted to a type that can include at least
approximations to all of the values of the original
type.

CS216 17

Type Coercion – Implicit Type
Conversion

• Disadvantages:
– They decrease in the type error detection ability of

the compiler.
– In most languages, all numeric types are coerced in

expressions, using widening conversions.
– In Modula-2 and Ada, there are virtually no

coercions in expressions.

CS216 18

Explicit Type Conversion - Casts

• Doing type conversions explicitly – widening
or narrowing.
– Ada:
FLOAT(INDEX) -- INDEX is INTEGER type

– C:
(int) speed /* speed is float type */

4

CS216 19

Errors in Expressions

• Caused by:
– Type mismatch
– Inherent limitations of arithmetic

• division by zero

– Limitations of computer arithmetic
• overflow, underflow

CS216 20

2. Relational Expressions

• Use relational operators and operands of
various types.

• Evaluate to some boolean value.
• See p. 306.

CS216 21

3. Boolean Expressions

• Operands are boolean and the result is boolean
value.

• See p. 307.

CS216 22

Short-Circuit Evaluation

• The result (value) of an expression is
determined without evaluating all of the
operands and/or operators.

(a >= 0) and (b < 10)

CS216 23

Example: Short-Circuit
Evaluation

list[1..listlen]

index := 1;
while (index <= length) and

(list[index] <> value) do
index := index + 1

?
CS216 24

Short-Circuit Evaluation

• Pascal:
– No short-circuit evaluation

• C, C++, and Java:
– Use short-circuit evaluation for the usual Boolean operators

(&& and ||)
• Ada:

– Programmer can specify either (short-circuit is specified
with and then and or else)

• FORTRAN 77:
– Use short-circuit evaluation

