Expressions
in Programming Languages

Cs216 1

A Programming Language —
Universal: All Solvable Computations

« integer values and arithmetic operators
(arithmetic expressions)

« variables

« assignment statement

» selection statement

« loop statement/go to statement

CS216 2

Expressions

« An expression is
— To be evaluated to yield a value of a type.
— To compute a new value from an old value.

[Eion] e [52] 4 [0

Cs216 3

Expressions

« An expression:

— Operators, operands, parentheses and function calls.
» Expressions:

— Literals

— Aggregates

— Constant and variable access

- Function calls

— Arithmetic expression

— Relational expression

— Boolean expression

- Conditional expression
Cs216 4

1. Arithmetic Expressions — Design
Issues

What are the operator precedence rules?
What are the operator associativity rules?
What is the order of operand evaluation?

Avre there restrictions on operand evaluation
side effects?

Does the language allow user-defined operator
overloading?

What mode mixing is allowed in expressions?

CS216 5

Operator Precedence

 The operator precedence rule:
— Defines the order in which “adjacent” operators are

evaluated.
— Highest
— Lowest

» See p. 295.

CS216 6

Operator Associativity

 The operator associativity rule:

— Defines the order in which adjacent operators with
the same precedence level are evaluated.

— Left to right
— Right-to-left

e See p. 297.

Cs216 7

Operator: Precedence and
Associativity

 Precedence and associativity rules can be
overridden with parentheses.

CS216 8

Operand Evaluation Order

« Irrelevant if neither of the operands of an
operator has side effects.

* Crucial when the evaluation of an operand has
side effects!

» A side effect of a function call

— When a function changes either a two-way
parameter or a nonlocal variable.

Cs216 9

Example: Functions with Side
Effects

int a = 5;
int funlQ {
a=17;

return 3;

¥

void fun2(){
a=a+ funlQ;

}

void main(Q) {
fun2Q);
}

Cs216 10

Left-to-right: 8

Right-to-left: 20

Possible Solution 1

 Write the language definition to disallow
functional side effects:
— No two-way parameters in functions
— No nonlocal references in functions
» Advantage:
— It works!
« Disadvantage:
— Programmers want the flexibility.

CS216 11

Possible Solution2

 Write the language definition to demand that
the operand evaluation order be fixed.

« Disadvantage:
— Limits some compiler optimizations

CS216 12

Conditional Expressions

Expl ? Exp2 : Exp3
— C, C++, and Java:

if (count = 0) then average := 0
else average := sum/count;

average = (count == 0)? 0 : sum / count;

Cs216 13

Operator Overloading

« Multiple use of the same operator name.
» Advantage:

— Flexibility
« Disadvantage:

— Users can define nonsense operations.
— Readability may suffer.

CS216

Mixed-Mode Expression

« An expression that has operands of different
types.
— Need a type conversion.

 Type conversion:
— Explicit type conversion

— Implicit type conversion
« Type coercion

Cs216 15

Type Conversion

< A narrowing conversion

— Converted to a type that cannot include all of the
values of the original type.

« A widening conversion

— Converted to a type that can include at least
approximations to all of the values of the original
type.

Cs216 16

Type Coercion — Implicit Type
Conversion

« Disadvantages:

— They decrease in the type error detection ability of
the compiler.

— In most languages, all numeric types are coerced in
expressions, using widening conversions.

— In Modula-2 and Ada, there are virtually no
coercions in expressions.

CS216 17

Explicit Type Conversion - Casts

« Doing type conversions explicitly — widening
or narrowing.
- Ada:
FLOAT(INDEX) -- INDEX is INTEGER type
-C:
(int) speed /* speed is float type */

CS216 18

Errors in Expressions

2. Relational Expressions

« Caused by:
— Type mismatch
— Inherent limitations of arithmetic
« division by zero
— Limitations of computer arithmetic
« overflow, underflow

Cs216 19

 Use relational operators and operands of
various types.

» Evaluate to some boolean value.
¢ See p. 306.

CS216 20

3. Boolean Expressions

Short-Circuit Evaluation

 Operands are boolean and the result is boolean
value.
» See p. 307.

Cs216 21

 The result (value) of an expression is
determined without evaluating all of the
operands and/or operators.

[(a>=0) and (b < 10)

Cs216 22

Example: Short-Circuit
Evaluation

Short-Circuit Evaluation

list[1.._listlen]

index := 1;
while (index <= length) and
(list[index] <> value) do
index := index + 1

?

CS216 23

Pascal:
- No short-circuit evaluation
¢ C, C++, and Java:

— Use short-circuit evaluation for the usual Boolean operators
(&& and ||)

* Ada:

— Programmer can specify either (short-circuit is specified
with and thenand or else)

¢ FORTRAN 77:
— Use short-circuit evaluation

CS216 24

