
1

CS216 1

Logic Programming & Prolog

CS216 2

IP, OOP & FP

• All based on the notion that a program
implements a mapping (function) M from
input to output.

• Given a, determine the value of M(a)?

u
v

a
b
c

Mapping: many to one relationship

CS216 3

Logic Programming

• Based on the notion that a program implements
a relation R.

u
v

a
b
c

Relation : many to many relationship

CS216 4

Logic Programming

• Given u, find all y s.t. R(u, y) is true?

– y=a, y=c

u
v

a
b
c

R:

CS216 5

Logic Programming

• Given u and a whether R(u, a) is true ?
– Yes

• Given c, find all x s.t. R(x,c) is true?
– x=u, x=v

• Find all x and y s.t. R(x, y) is true.
– x=u, y=a; x=u, y=c; x=v, y=b; x=v, y=c

u
v

a
b
c

R:

CS216 6

Relations

• Relations:
– Like a table.
– Unary relation R (a)
– Binary relation R(a, b)
– Ternary relation R(a, b, c)
– ……

• Relations treat arguments and results uniformly.
– No distinction between input and output.

• Relations are specified by rules and facts.
– Based on formal symbolic logic (Predicate calculus)

2

CS216 7

Describing Relations - Rules

• A rule
– R0 if R1 and R2 and … and Rn.
– R0 :- R1, R2, …, Rn.

– Called Horn clauses
• If R1, …, Rn are all true, then we can infer that

R0 is also true.

CS216 8

Horn Clauses

• Why use Horn clauses for rules?
– Most (not all) logical statements can be described

by Horn clauses.
– The program can be implementable.
– The program can be tolerably efficient.

CS216 9

Describing Relations - Facts

• A fact is a special rule.
– R0.

– R0 is unconditionally true.

CS216 10

Example: Rules and Facts

link(fortran, algol60).
link(algol60, cpl).
link(cpl, bcpl).
link(bcpl, c).
link(c, C++).
link(algol60, simula).
link(simula, c++).
link(simula, smalltalk).

path (L, L).

path (L, M) :- link (L, X), path (X, M).

CS216 11

Computing with Relations

• Use queries (goals) about relations – a
database.
– A goal with multiple subgoals

• The language system explore all possible
solutions to the query (goal).
– Uses backtracking

CS216 12

Facts and Queries

?- link (cpl, bcpl).
yes
?- link (cpl, bcpl), link (bcpl, c).
yes
?- link (simula, L).
L= c++;
L= Smalltalk;
?- link (L, c++).
L= c;
L= simula;

link(fortran, algol60).
link(algol60, cpl).
link(cpl, bcpl).
Link(bcpl, c).
link(c, c++).
link(algol60, simula).
link(simula, c++).
link(simula, smalltalk).

3

CS216 13

Facts and Queries

?- link (L1, L2).
L1 = fortan;
L2 = algol60;
...
?- link (algol60, L), link (L, M).
L = cpl, M=bcpl;
L= simula, M=c++;
L= simula, M=smalltalk;
?- link (lisp, simula).
no

link(fortran, algol60).
link(algol60, cpl).
link(cpl, bcpl).
Link(bcpl, c).
link(c, c++).
link(algol60, simula).
link(simula, c++).
link(simula, smalltalk).

CS216 14

Closed World Assumption

• no means
– I can't prove it.
– It can not be inferred to be true.
– Unknown.
– If we extend the fact later, it could be yes!

?- link (simula, java).
no

CS216 15

Example: Facts, Rules and Queries

?- path (cpl, cpl).

yes

?- path (cpl, c).

yes

?- path (cpl, L)

L= cpl;

L=bcpl;

L= c;

L= c++;

link(fortran, algol60).
link(algol60, cpl).
link(cpl, bcpl).
Link(bcpl, c).
link(c, c++).
link(algol60, simula).
link(simula, c++).
link(simula, smalltalk).

path (L, L).

path (L, M) :- link (L, X), path (X, M).

CS216 16

Example: Rules and Queries with
Lists

append ([], Y, Y).
append ([H|X], Y, [H|Z]) :- append (X, Y, Z).

?- append([a,b], [c,d], [a,b,c,d]).
yes
?- append([a,b], [c,d], Z).
Z= [a,b,c,d]
?- append([a,b], Y, [a,b,c,d]).
Y = [c,d]
?- append(X, [c,d], [a,b,c,d]).
X= [a,b]
?- append(X, [d,c], [a,b,c,d]).
no

CS216 17

The Structure of Logic Programs

• A logic program consists of
– A collection of relations defined by rules and facts

(Horn clauses)
– A query

• Use facts and rules to represent information
– Provided by the programmer

• Use deduction to answer queries
– Provided by the programming language

CS216 18

Answering A Query
(Satisfying a Goal)

• How a language computes a response to a
query?

• To prove that a goal is true:
– Must find a chain of inference rules and facts in the

database that connect the goal to one or more facts
in the database.

4

CS216 19

Control in LP

• How a language computes a response to a
query?
– Computation (answering to the queries) is based

on
• Resolution
• Unification.

– Can be expressed through a sequence of resolutions
and unifications.

CS216 20

Resolution

• Given two rules
– C1 if a1 and a2 and … and am.
– C2 if C1 and b1 and b2 and … and bn.

• A new rule can be derived:
– C2 if a1 and a2 and … and am and b1 and b2

and … and bn.

CS216 21

Unification

• The derivation of a new rule from a given rule
through the binding of variables to values.
– The process of making two terms “the same”.
– A pattern matching process
– Instantiation

f(a, X) unifies with f(Y, b) by instantiating X to b and Y to a.

CS216 22

Substitutions

• A function that maps variables to terms
– σ = {X→a, Y→f(a,b)}

• The result of applying a substitution to a term
is an instance of the term
– σ(g(X,Y)) = g(a,f(a,b))
– g(a,f(a,b)) is an instance of g(X,Y)

CS216 23

Unification

• Two terms t1 and t2 unify if there is some
substitution σ that makes them identical:
– σ(t1) = σ(t2)

CS216 24

Unification Examples

• a and b do not unify
• f(X,b) and f(a,Y) unify: a unifier is {X→a,

Y→b}
• f(X,b) and g(X,b) do not unify
• a(X,X,b) and a(b,X,X) unify: a unifier is

{X→b}
• a(X,X,b) and a(c,X,X) do not unify
• a(X,f) and a(X,f) do unify: a unifier is {}

5

CS216 25

Multiple Unifiers

• parent(X,Y) and parent(fred,Y):
– σ1 = {X→fred}
– σ2 = {X→fred, Y→mary}

• Prolog chooses unifiers like σ1 that do just
enough substitution to unify, and no more.
– Most General Unifier (MGU)

CS216 26

Most General Unifier

• Term x1 is more general than x2 if x2 is an
instance of x1 but x1 is not an instance of x2
– parent(fred,Y) is more general than
parent(fred,mary)

• A unifier σ1 of two terms t1 and t2 is an MGU if
there is no other unifier σ2 such that σ2(t1) is
more general than σ1(t1).

CS216 27

Two Search Strategies

• Forward Chaining
– Start with existing rules attempting to derive the

goal.
• Backward Chaining

– Start with the goal attempting to unresolve it into a
set of existing rules.

– Prolog!

CS216 28

Example: Search Strategies

• Forward Chaining
– Start with existing rules attempting to derive the

goal.
• Backward Chaining

– Start with the goal attempting to unresolve it into a
set of existing rules.

father(bob).

man(X) :- father(X).

?- man(bob).

CS216 29

Backtracking

• The process of returning back to a previously
proven subgoal.
– In order to pursue a different path through the

search tree.
– The unification (instantiation) is undone.

• Backtracking is very time & space
consuming!

CS216 30

Example: Backtracking
female(shelley).

female(mary).

male(mike).

male(bill).

male(jake).

father(bill, jake).

father(bill, shelley).

mother(mary, jake).

mother(mary, shelley).

parent(X, Y) :- mother(X, Y).

parent(X, Y) :- father(X, Y).

?- male(X), parent(X, shelley).

6

CS216 31

Control in LP

• In principle,
– The order of goals within a query and the order of

rules and facts should not matter.
• In practice,

– The response to a query is affected by
• The goal order within the query
• The rule order within the facts and rules..

CS216 32

Control in Prolog

• Prolog applies resolution in a linear fashion:
– Goal order

• Choose the leftmost subgoal. (from left to right)
– Rule order

• Choose the first rule. (from first(top) to last (bottom))

• Every Prolog program is deterministic.

CS216 33

Control in Prolog

• Prolog uses a depth-first search on a tree of
possible choices!

• Can be implemented in a stack-based or
recursive fashion.

• Solutions may not be found if the search tree
has branches that have infinite depth.

CS216 34

Example: Control in Prolog

ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).
ancestor(X, X).
parent(amy, bob).

?- ancestor(X, bob).
X = amy;
X = bob

CS216 35

Example: Control in Prolog

CS216 36

Example: Control in Prolog

ancestor(X, Y) :- ancestor(Z, Y), parent(X, Z).
ancestor(X, X).
parent(amy, bob).

?- ancestor(X, bob).
[infinite loop]

Left-recursive

7

CS216 37

Example: Control in Prolog

CS216 38

Example: Control in Prolog

edge(a, b).
edge(b, c).
edge(c, d).
edge(d, e).
edge(b, e).
edge(d, f).

path(X, X).
path(X, Y) :- edge(Z, Y), path(X, Z).

?- path(a, a).
yes

CS216 39

Example: Control in Prolog

CS216 40

Example: Control in Prolog

edge(a, b).
edge(b, c).
edge(c, d).
edge(d, e).
edge(b, e).
edge(d, f).

path(X, Y) :- path(X, Z), edge(Z, Y).
path(X, X).

?- path(a, a).
[infinite loop]

CS216 41

Example: Control in Prolog

CS216 42

Cuts – Explicit Control of
Backtracking

• The cut operator !
– Cuts out an unexplored part of the search

tree.
– Imperative control

• A :- C1, C2, …, Ci, !, Ci+1, …, Cn
– Backtrack past Ci, …, C2, C1, A without

considering any remaining rules for them.

8

CS216 43

Cuts A0 :- A1, !, A2.
A0 :- …
A0 :- …
?- A0.

• If A1 fails, then backtrack & try to find another
rule for A0.

• If A1 succeeds, then accept the first answer
yielded by A1, pass the cut, go on to test A2.
– If A2 subsequently fails, then we immediately

conclude that A fails!
Make no attempt to find any further answer from A1.

Make no attempt to find any further rule for A0.

CS216 44

Example: No Cut

a(1) :- b.
a(2) :- e.
b :- c.
b :- d.
c.
d.
e.

?- a(X).
X = 1;
X = 1;
X = 2;
no

CS216 45

Example: No Cut

CS216 46

Example: Cut

a(1) :- b.
a(2) :- e.
b :- !, c.
b :- d.
c.
d.
e.

?- a(X).
X = 1;
X = 2;
no

CS216 47

Example: Cut

CS216 48

Cut vs No Cut

a(1) :- b.
a(2) :- e.
b :- c.
b :- d.
c.
d.
e.

?- a(X).
X = 1;
X = 1;
X = 2;
no

a(1) :- b.
a(2) :- e.
b :- !, c.
b :- d.
c.
d.
e.

?- a(X).
X = 1;
X = 2;
no

9

CS216 49

Negation

not1(X) :- X, !, fail.
not1(X).

CS216 50

Negation

CS216 51

Negation

not2(X) :- X, fail.
not2(X).

CS216 52

Negation

CS216 53

Negation and Cut

not1(X) :- X, !, fail.
not1(X).

not2(X) :- X, fail.
not2(X).

CS216 54

Input and Output

?- write('Hello world').

Hello world

Yes
?- read(X).
| hello.

X = hello

Yes

10

CS216 55

Debugging With write

append ([], Y, Y).
append ([H|X], Y, [H|Z]) :- append (X, Y, Z).
p :-

append(X,Y,[1,2]),
write(X), write(' '), write(Y), write('\n'),
X=Y.

?- p.
[] [1, 2]
[1] [2]
[1, 2] []

No

CS216 56

The assert Predicate

• Adds a fact to the database (at the end).

?- parent(joe,mary).

No
?- assert(parent(joe,mary)).

Yes
?- parent(joe,mary).

Yes

CS216 57

The retract Predicate

• Removes the first clause in the database that
unifies with the parameter.

?- parent(joe,mary).

Yes
?- retract(parent(joe,mary)).

Yes
?- parent(joe,mary).

No

