
1

CS216 1

Logic Programming & Prolog
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IP, OOP & FP

• All based on the notion that a program 
implements a mapping (function) M from 
input to output.

• Given a, determine the value of M(a)?

u
v

a
b
c

Mapping: many to one relationship
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Logic Programming

• Based on the notion that a program implements 
a relation R.

u
v

a
b
c

Relation : many to many relationship
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Logic Programming

• Given u, find all y s.t. R(u, y) is true?

– y=a, y=c

u
v

a
b
c

R:
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Logic Programming

• Given u and a whether R(u, a) is true ?
– Yes

• Given c, find all x s.t. R(x,c) is true?
– x=u, x=v

• Find all x and y s.t. R(x, y) is true.
– x=u, y=a; x=u, y=c; x=v, y=b; x=v, y=c

u
v

a
b
c

R:
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Relations

• Relations:
– Like a table.
– Unary relation R (a)
– Binary relation R(a, b)
– Ternary relation R(a, b, c)
– ……

• Relations treat arguments and results uniformly.
– No distinction between input and output.

• Relations are specified by rules and facts.
– Based on formal symbolic logic (Predicate calculus)
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Describing Relations - Rules

• A rule 
– R0 if R1 and R2 and … and Rn.
– R0 :- R1, R2, …, Rn.

– Called Horn clauses
• If R1, …, Rn are all true, then we can infer that 

R0 is also true.
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Horn Clauses

• Why use Horn clauses for rules?
– Most (not all) logical statements can be described 

by Horn clauses.
– The program can be implementable.
– The program can be tolerably efficient.
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Describing Relations - Facts

• A fact is a special rule.
– R0.

– R0 is unconditionally true.
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Example: Rules and Facts

link(fortran, algol60).
link(algol60, cpl).
link(cpl, bcpl).
link(bcpl, c).
link(c, C++).
link(algol60, simula).
link(simula, c++).
link(simula, smalltalk). 

path (L, L).

path (L, M) :- link (L, X), path (X, M). 
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Computing with Relations

• Use queries (goals) about relations – a 
database.
– A goal with multiple subgoals

• The language system explore all possible
solutions to the query (goal).
– Uses backtracking
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Facts and Queries

?- link (cpl, bcpl).
yes
?- link (cpl, bcpl), link (bcpl, c).    
yes
?- link (simula, L).
L= c++; 
L= Smalltalk;        
?- link (L, c++).
L= c;
L= simula;

link(fortran, algol60).
link(algol60, cpl).
link(cpl, bcpl).
Link(bcpl, c).
link(c, c++).
link(algol60, simula).
link(simula, c++).
link(simula, smalltalk). 
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Facts and Queries

?- link (L1, L2).
L1 = fortan;
L2 = algol60;      
...
?- link (algol60, L), link (L, M).    
L = cpl, M=bcpl;
L= simula, M=c++;
L= simula, M=smalltalk;
?- link (lisp, simula).
no

link(fortran, algol60).
link(algol60, cpl).
link(cpl, bcpl).
Link(bcpl, c).
link(c, c++).
link(algol60, simula).
link(simula, c++).
link(simula, smalltalk). 
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Closed World Assumption

• no means 
– I can't prove it.
– It can not be inferred to be true.
– Unknown.
– If we extend the fact later, it could be yes!

?- link (simula, java).    
no
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Example: Facts, Rules and Queries

?- path (cpl, cpl).

yes

?- path (cpl, c).

yes

?- path (cpl, L)

L= cpl;

L=bcpl;

L= c;

L= c++;

link(fortran, algol60).
link(algol60, cpl).
link(cpl, bcpl).
Link(bcpl, c).
link(c, c++).
link(algol60, simula).
link(simula, c++).
link(simula, smalltalk). 

path (L, L).

path (L, M) :- link (L, X), path (X, M).   
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Example: Rules and Queries with 
Lists

append ( [], Y, Y).
append ( [H|X], Y, [H|Z] ) :- append (X, Y, Z). 

?- append([a,b], [c,d], [a,b,c,d]).
yes
?- append([a,b], [c,d], Z).
Z= [a,b,c,d]
?- append( [a,b], Y, [a,b,c,d]).
Y = [c,d]
?- append( X, [c,d], [a,b,c,d]).
X= [a,b]
?- append( X, [d,c], [a,b,c,d]).
no
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The Structure of Logic Programs

• A logic program consists of 
– A collection of relations defined by rules and facts 

(Horn clauses)
– A query

• Use facts and rules to represent information
– Provided by the programmer

• Use deduction to answer queries
– Provided by the programming language
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Answering A Query 
(Satisfying a Goal)

• How a language computes a response to a 
query?

• To prove that a goal is true:
– Must find a chain of inference rules and facts in the 

database that connect the goal to one or more facts 
in the database.
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Control in LP

• How a language computes a response to a 
query?
– Computation (answering to the queries)  is based 

on 
• Resolution
• Unification.

– Can be expressed through a sequence of resolutions 
and unifications.
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Resolution

• Given two rules
– C1 if a1 and a2 and … and am.
– C2 if C1 and b1 and b2 and … and bn.

• A new rule can be derived:
– C2 if a1 and a2 and … and am and b1 and b2 

and … and bn.
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Unification

• The derivation of a new rule from a given rule 
through the binding of variables to values.
– The process of making two terms “the same”.
– A pattern matching process
– Instantiation

f(a, X) unifies with f(Y, b) by instantiating X to b and Y to a.
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Substitutions

• A function that maps variables to terms
– σ = {X→a, Y→f(a,b)}

• The result of applying a substitution to a term 
is an instance of the term
– σ(g(X,Y)) = g(a,f(a,b))
– g(a,f(a,b)) is an instance of g(X,Y)
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Unification

• Two terms t1 and t2 unify if there is some 
substitution σ that makes them identical: 
– σ(t1) = σ(t2)
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Unification Examples

• a and b do not unify
• f(X,b) and f(a,Y) unify: a unifier is {X→a, 

Y→b}
• f(X,b) and g(X,b) do not unify
• a(X,X,b) and a(b,X,X) unify: a unifier is 

{X→b}
• a(X,X,b) and a(c,X,X) do not unify
• a(X,f) and a(X,f) do unify: a unifier is {}
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Multiple Unifiers

• parent(X,Y) and parent(fred,Y):
– σ1 = {X→fred} 
– σ2 = {X→fred, Y→mary}

• Prolog chooses unifiers like σ1 that do just 
enough substitution to unify, and no more.
– Most General Unifier (MGU )
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Most General Unifier

• Term x1 is more general than x2 if x2 is an 
instance of x1 but x1 is not an instance of x2
– parent(fred,Y) is more general than 
parent(fred,mary)

• A unifier σ1 of two terms t1 and t2 is an MGU if 
there is no other unifier σ2 such that σ2(t1) is 
more general than σ1(t1).
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Two Search Strategies

• Forward Chaining
– Start with existing rules attempting to derive the 

goal.
• Backward Chaining

– Start with the goal attempting to unresolve it into a 
set of existing rules.

– Prolog!
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Example: Search Strategies

• Forward Chaining
– Start with existing rules attempting to derive the 

goal.
• Backward Chaining

– Start with the goal attempting to unresolve it into a 
set of existing rules.

father(bob).

man(X) :- father(X).   

?- man(bob).
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Backtracking

• The process of returning back to a previously 
proven subgoal.
– In order to pursue a different path through the 

search tree.
– The unification (instantiation) is undone.

• Backtracking is very time & space 
consuming!
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Example: Backtracking
female(shelley).

female(mary).

male(mike).

male(bill).

male(jake).

father(bill, jake).

father(bill, shelley).

mother(mary, jake).

mother(mary, shelley).

parent(X, Y) :- mother(X, Y).

parent(X, Y) :- father( X, Y).

?- male(X), parent(X, shelley).
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Control in LP

• In principle, 
– The order of goals within a query and the order of 

rules and facts should not matter.
• In practice, 

– The response to a query is affected by
• The goal order within the query
• The rule order within the facts and rules..
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Control in Prolog

• Prolog applies resolution in a linear fashion:
– Goal order

• Choose the leftmost subgoal. (from left to right )
– Rule order

• Choose the first rule. (from first(top) to last (bottom) )

• Every Prolog program is deterministic.
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Control in Prolog

• Prolog uses a depth-first search on a tree of 
possible choices!

• Can be implemented in a stack-based or 
recursive fashion.

• Solutions may not be found if the search tree 
has branches that have infinite depth.
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Example: Control in Prolog 

ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).
ancestor(X, X).
parent(amy, bob).

?- ancestor(X, bob).
X = amy;
X = bob

CS216 35

Example: Control in Prolog 
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Example: Control in Prolog 

ancestor(X, Y) :- ancestor(Z, Y), parent(X, Z). 
ancestor(X, X).
parent(amy, bob).

?- ancestor(X, bob).
[infinite loop]

Left-recursive
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Example: Control in Prolog 
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Example: Control in Prolog 

edge(a, b).
edge(b, c).
edge(c, d).
edge(d, e).
edge(b, e).
edge(d, f).

path(X, X).
path(X, Y) :- edge(Z, Y), path(X, Z).

?- path(a, a).
yes
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Example: Control in Prolog 
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Example: Control in Prolog 

edge(a, b).
edge(b, c).
edge(c, d).
edge(d, e).
edge(b, e).
edge(d, f).

path(X, Y) :- path(X, Z), edge(Z, Y).
path(X, X).

?- path(a, a).
[infinite loop]
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Example: Control in Prolog 
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Cuts – Explicit Control of 
Backtracking

• The cut operator !
– Cuts out an unexplored part of the search 

tree.
– Imperative control

• A :- C1, C2, …, Ci, !, Ci+1, …, Cn
– Backtrack past Ci, …, C2, C1, A without 

considering any remaining rules for them.
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Cuts A0 :- A1, !, A2.
A0 :- …
A0 :- …
?- A0.

• If A1 fails, then backtrack & try to find another 
rule for A0.

• If A1 succeeds, then accept the first answer 
yielded by A1, pass the cut, go on to test A2.
– If A2 subsequently fails, then we immediately 

conclude that A fails!
Make no attempt to find any further answer from A1.

Make no attempt to find any further rule for A0.

CS216 44

Example: No Cut

a(1) :- b.
a(2) :- e.
b :- c.
b :- d.
c.
d.
e.

?- a(X).
X = 1;
X = 1;
X = 2;
no
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Example: No Cut

CS216 46

Example: Cut

a(1) :- b.
a(2) :- e.
b :- !, c.
b :- d.
c.
d.
e.

?- a(X).
X = 1;
X = 2;
no
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Example: Cut
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Cut vs No Cut

a(1) :- b.
a(2) :- e.
b :- c.
b :- d.
c.
d.
e.

?- a(X).
X = 1;
X = 1;
X = 2;
no

a(1) :- b.
a(2) :- e.
b :- !, c.
b :- d.
c.
d.
e.

?- a(X).
X = 1;
X = 2;
no
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Negation

not1(X) :- X, !, fail.  
not1(X).
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Negation
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Negation

not2(X) :- X, fail.  
not2(X).
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Negation

CS216 53

Negation and Cut

not1(X) :- X, !, fail.  
not1(X).

not2(X) :- X, fail.  
not2(X).
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Input and Output

?- write('Hello world').

Hello world

Yes
?- read(X).
|    hello.

X = hello 

Yes
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Debugging With write

append ( [], Y, Y).
append ( [H|X], Y, [H|Z] ) :- append (X, Y, Z).
p :-

append(X,Y,[1,2]),
write(X), write(' '), write(Y), write('\n'),
X=Y.

?- p.
[] [1, 2]
[1] [2]
[1, 2] []

No
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The assert Predicate

• Adds a fact to the database (at the end).

?- parent(joe,mary).

No
?- assert(parent(joe,mary)).

Yes
?- parent(joe,mary).

Yes
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The retract Predicate

• Removes the first clause in the database that 
unifies with the parameter.

?- parent(joe,mary).

Yes
?- retract(parent(joe,mary)).

Yes
?- parent(joe,mary).

No


