
1

CS216 1

Object-Oriented Programming &
Java vs C++

CS216 2

Imperative Programming

• Based on statements (commands) that
update variables held in storage.
– variable, statements (command), procedures

• Close to machine architecture
– can be implemented very efficiently

• A long history

CS216 3

Fundamental Problems with IP

• Variables can be potentially accessed and
updated by every part of the program!

Global
store

P/F

CS216 4

Idea!

• Encapsulate
each global variable in a module with a group
of operations that alone have direct access to
the variable.

• Other modules can access the variable only
indirectly by calling these operations.
– Called Objects
– Similar to Variables of abstract data type (ADT)

CS216 5

Object-Based Programming
(OBP)

CS216 6

Object-Based Programming
(OBP)

• Based on Encapsulation
– Instead of variable, use an encapsulated variable

+ operations that have the exclusive right to access
it.

– Object = An encapsulated variable + Ops

Grouping

2

CS216 7

Objects

• An encapsulation of a hidden variable (local
data, state) and operations operating on that
state.

• The data in the object may only be
accessed/updated by the operations in the
object.

CS216 8

Classes

• A description of a set of similar objects.
• A template for objects.

– Descriptions of the actions an object can perform
– Definition of the structure of an object’s internal

state.
– Grouping similar objects into a class

• Each object is an instance of some class.

CS216 9

Messages

• A request sent from one object to another for
the receiving object to produce some desired
result.
– Subprogram call
– A message = a selector that uniquely identifies

the desired operation + a set of arguments
• Send requests (message) to object, rather than

calling subprograms.

CS216 10

Methods

• An operation that an object performs when it
receives a message.
– Subprograms

CS216 11

Computation with Objects

• Interacting objects:
– Send requests (message) to object.
– When an object receives a message (receiver), it

determines whether it has an appropriate operation
(methods).

– The object reacts according to the definition of
method.

• Message Passing

CS216 12

Binding Messages to Methods

• When an object receives a message, it
determines whether it has an appropriate
operation (methods).
– How to determine?

• Match messages with methods

– When to determine?
• At compile time (Static binding)
• At run time (dynamic binding)

3

CS216 13

OBP with IPL?

• Questions: OOP can be practiced in an
Imperative Language?
– Yes, if the language supports the concept of

encapsulation.
• Ada -> packages
• Modula ->modules

CS216 14

Object-Oriented Programming
(OOP)

CS216 15

Object-Oriented Programming
(OOP)

• OBP + More:
– Subclassing and Inheritance
– Dynamic Binding and Inclusion Polymorphism

CS216 16

Subclassing

• An ability to organize object classes into a
hierarchy of subclasses & superclasses and for
operations of a given class to be applicable to
objects of its subclasses.
– Grouping objects into class hierarchy

Basic class

Derived
class

CS216 17

Subclasses and Superclasses

• A class that inherits is a derived class or a
subclass.

• The class from which another class inherits is a
parent class or superclass.

CS216 18

Inheritance

• Variables (state) and methods are inherited.
• Why?

– Software reuse!

4

CS216 19

When Subclassing?

• Expansion
• Specialization (overriding/overridden)

CS216 20

Expansion and Specialization

• Add new additional data & operation
– expansion

• Redefine existing operations supported by the
superclass
– specialization (overriding/overridden)

Person

Teacher Student

Expansion+specialization

CS216 21

Example: Subclassing and
Inheritance in Java

public class shape {
public void draw(){ …}
…

}
public class circle extends shape {
public void draw() { …}
…

}
public class rectangle extends shape {
public void draw() { …}
…

}
public class square extends rectangle
{
public void draw() { …}
…

}

shape

circle rectangle

square

CS216 22

Example: Subclassing and
Inheritance in C++

class shape {
public: virtual void draw(){ …}
…

}
class circle : public shape {
public: virtual void draw() { …}
…

}
class rectangle : public shape {
public: virtual void draw() { …}
…

}
class square : public rectangle {
public: virtual void draw() { …}
…

}

shape

circle rectangle

square

CS216 23

Single vs. Multiple Inheritance

• Single inheritance
– Only one parent
– Tree

• Multiple inheritance
– More than one parent
– Graph

Basic class

Derived
class

CS216 24

Inheritance

• Any disadvantage of inheritance for reuse:
– Creates interdependencies among classes that

complicate maintenance.

5

CS216 25

Polymorphism

• A polymorphic variable of the type of the
parent class is able to reference (or point to)
objects of any of the subclasses of that class.
– Inclusion polymorphism

• Why?
– Software reuse!

CS216 26

Example: Polymorphism in Java
public class shape {
public void draw(){ …}
…

}
public class circle extends shape {
public void draw() { …}
…

}
public class rectangle extends shape
{
public void draw() { …}
…

}
public class square extends
rectangle {
public void draw() { …}
…

}

shape sh=new shape();
circle c=new circle();
rectangle r=new
rectangle();
square sq=new square();

sh.draw();
c.draw();
sh = c;
sh.draw();
r.draw();
sq.draw();
r=sq;
r.draw();

CS216 27

Example: Polymorphism in Java

CS216 28

Example: Polymorphism in Java

CS216 29

Example: Polymorphism in Java

Draw Shape!
Draw Circle!
Draw Circle!
Draw Rectangle!
Draw Square!
Draw Square!

shape sh=new shape();
circle c=new circle();
rectangle r=new
rectangle();
square sq=new square();

sh.draw();
c.draw();
sh = c;
sh.draw();
r.draw();
sq.draw();
r=sq;
r.draw();

CS216 30

Example: Polymorphism in C++

class shape {
public: virtual void draw(){…}
…

}
class circle : public shape {
public: virtual void draw() { …}
…

}
class rectangle : public shape {
public: virtual void draw() { …}
…

}
class square : public rectangle {
public: virtual void draw() { …}
…

}

shape sh;
circle c;
rectangle r;
square sq;

sh.draw();
c.draw();
sh = c;
sh.draw();
r.draw();
sq.draw();
r=sq;
r.draw();

6

CS216 31

Example: Polymorphism in C++

CS216 32

Example: Polymorphism in C++

shape sh;
circle c;
rectangle r;
square sq;
sh.draw();
c.draw();
sh = c;
sh.draw();
r.draw();
sq.draw();
r=sq;
r.draw();

Draw Shape!
Draw Circle!
Draw Shape!
Draw Rectangle!
Draw Square!
Draw Rectangle!

CS216 33

Example: Polymorphism in C++

class shape {
public: virtual void draw(){…}
…

}
class circle : public shape {
public: virtual void draw() { …}
…

}
class rectangle : public shape {
public: virtual void draw() { …}
…

}
class square : public rectangle {
public: virtual void draw() { …}
…

}

shape *sh;
circle *c;
rectangle *r;
square *sq;
sh = new shape;
Sh->draw();
c = new circle;
C->draw();
sh = c;
sh->draw();
r =new rectangle;
r->draw();
sq = new square;
sq->draw();
r=sq;
r->draw();

CS216 34

Example: Polymorphism in C++

shape *sh;
circle *c;
rectangle *r;
square *sq;
sh = new shape;
sh->draw();
c = new circle;
c->draw();
sh = c;
sh->draw();
r =new rectangle;
r->draw();
sq = new square;
sq->draw();
r=sq;
r->draw();

Draw Shape!
Draw Circle!
Draw Circle!
Draw Rectangle!
Draw Square!
Draw Square!

CS216 35

Example: Polymorphism in C++

shape *sh;
circle *c;
rectangle *r;
square *sq;
sh = new shape;
sh->draw();
c = new circle;
c->draw();
sh = c;
sh->draw();
r =new rectangle;
r->draw();
sq = new square;
sq->draw();
r=sq;
r->draw();

Draw Shape!
Draw Circle!
Draw Circle!
Draw Rectangle!
Draw Square!
Draw Square!

shape sh;
circle c;
rectangle r;
square sq;
sh.draw();
c.draw();
sh = c;
sh.draw();
r.draw();
sq.draw();
r=sq;
r.draw();

Draw Shape!
Draw Circle!
Draw Shape!
Draw Rectangle!
Draw Square!
Draw Rectangle!

CS216 36

C++ vs Java

• A C++ variable can hold an object or a pointer
to an object. There are two selectors:
– a->x selects method or field x when a is a pointer

to an object
– a.x selects x when a is an object

• A Java variable cannot hold an object, only a
reference to an object. Only one selector:
– a.x selects x when a is a reference to an object

7

CS216 37

Method Binding

• Binding of messages to methods
– Static binding
– Dynamic binding

CS216 38

Dynamic Binding

• When a class hierarchy includes classes that
override methods and such methods are called
through a polymorphic variable, the binding to
the correct method must be dynamic.

• Binding of messages to methods at run-time!
• Why?

– Allows software to be more easily extended during
development and maintenance.

CS216 39

Example: Java
class A
{void p() { System.out.println("A.p");}
void q() { System.out.println("A.q");}
void f() { p(); q();}
}

class B extends A
{ void p() { System.out.println("B.p");}
void q() { System.out.println("B.q"); super.q();}
}

public class dbinding
{ public static void main(String[] args)
{ A a= new A();
a.f();
a=new B();
a.f();
}
}

A::p
A::q
B::p
B::q
A::q

CS216 40

Example: Java

CS216 41

Example: Java

CS216 42

Example: Java

8

CS216 43

Example: Java

CS216 44

Example: Java

CS216 45

Static Binding

• Binding of messages to methods at compile-
time!

• Why?
– Efficient!

CS216 46

Example 1: C++
class A {
public: void p(){ cout << “A::p\n”;}

void q(){ cout << “A::q\n”;}
void f() { p(); q();}

};
class B : public A {
public: void p(){ cout << “B::p\n”;}

void q(){ cout << “B::q\n”;}
};
int main()
{ A a;

B b;
a.f();
b.f();
a = b;
a.f();

}

A::p
A::q
A::p
A::q
A::p
A::q

CS216 47

Example 1: C++

CS216 48

Example 1: C++

9

CS216 49

Example 2: C++ virtual for Dynamic
Binding

class A {
public: void p(){ cout << “A::p\n”;}
virtual void q(){ cout << “A::q\n”;}

void f() { p(); q();}
};
class B : public A {
public: void p(){ cout << “B::p\n”;}

void q(){ cout << “B::q\n”;}
};
int main()
{ A a;

B b;
a.f();
b.f();
a = b;
a.f();

}

A::p
A::q
A::p
B::q
A::p
A::q

CS216 50

Example 2: C++

CS216 51

Example 2: C++

CS216 52

Example 3: C++
class A {
public: void p(){ cout << “A::p\n”;}
virtual void q(){ cout << “A::q\n”;}

void f() { p(); q();}
};
class B : public A {
public: void p(){ cout << “B::p\n”;}

void q(){ cout << “B::q\n”;}
};
int main()
{ A *a;

B *b;
a = new A;
b = new B;
a->f();
b->f();
a = b;
a->f();

}

A::p
A::q
A::p
B::q
A::p
B::q

CS216 53

Example 3: C++

CS216 54

Example 3: C++

10

CS216 55

Example All: C++

class A {
public: void p(){ cout << "A::p";}
virtual void q(){ cout << "A::q";}

void f() { p(); q();}
};
class B : public A {
public: void p(){ cout << "B::p";}

void q(){ cout << "B::q";}
};
int main()
{ A a; A *aa=new A;
B b; B *bb=new B;
a = b;
a.f();a.p();a.q();
aa=bb;
aa->f();aa->p();aa->q();

}

A::p
A::q
A::p
A::q
A::p
B::q
A::p
B::q

CS216 56

Example 4: C++

class shape {
public: virtual void draw() { …};
…

}
class circle : public shape {
public: virtual void draw() { …}
…

}
class rectangle : public shape {
public: virtual void draw() { …}
…

}
class square : public rectangle {
public: virtual void draw() { …}
…

}

square s;
rectangle r;
shape &ref_shape = s;
ref_shape.draw();
r.draw();

shape

circle rectangle

square

CS216 57

Example 4: C++

CS216 58

Example 5: C++

class shape {
public: void draw() { …};
…

}
class circle : public shape {
public: void draw() { …}
…

}
class rectangle : public shape {
public: void draw() { …}
…

}
class square : public rectangle {
public: void draw() { …}
…

}

square s;
rectangle r;
shape &ref_shape = s;
ref_shape.draw();
r.draw();

shape

circle rectangle

square

CS216 59

Example 5: C++

CS216 60

Design Issues for OOPLs

• OOPLs are programming languages that
support OOP well.

11

CS216 61

The Exclusivity of Objects

• Everything is an object.
– Elegance and purity
– Slow operations on simple objects (e.g., float)

CS216 62

The Exclusivity of Objects

• Include an imperative-style typing system for
primitives but make everything else objects.
– Fast operations on simple objects and a relatively

small typing system
– Still some confusion because of the two type systems

CS216 63

Single and Multiple Inheritance

• Multiple inheritance
– Disadvantages:

• Language and implementation complexity
• A class may inherit from the same base class through

more than one path.
• Potential inefficiency - dynamic binding costs more

with multiple inheritance (but not much)

– Advantage:
• Sometimes it is extremely convenient and valuable.

CS216 64

Allocation and Deallocation of
Objects

• From where are objects allocated?
– If they all live in the heap, references to them are

uniform.
• Is deallocation explicit or implicit?

CS216 65

Dynamic and Static Binding

• Should all bindings of messages to methods be
dynamic?
– If none are, you lose the advantages of

dynamic binding.
– If all are, it is inefficient.

CS216 66

Java As OOPL

• Single inheritance
• Dynamic binding
• Inclusion polymorphism
• Implicit object deallocation (Garbage

collection)

12

CS216 67

C++ As OOPL

• Multiple inheritance
• Static binding & Dynamic binding (virtual)
• Inclusion polymorphism
• Explicit object deallocation

CS216 68

Implementation of OOPLs

• An object of a class as a structure
• An object of a subclass as an extension of the

object of a class
• A method as a function
• Dynamic binding using a virtual method table

(VMT)

