Software (Engineering) Project Management

Metrics-Based Project Management & Project Monitoring

Software Metrics-Based Project Management

What Are Software Metrics?

- Quantitative measures that could be used to measure different characteristics of
 - A software system
 - product metrics
 - A software development process
 - process metrics
 - A software development project
 - project metrics

A Metrics-based Project Management

Metrics-based project management is another basic approach that modern SE uses!

Measures, Measurement, Metrics, & Indicators

 Measures, metrics, and indicators are distinct (though related) entities.

Measures

- A measure is established when a single data point is collected.
- A measure provides a quantitative indication of the extent, amount, dimension, capacity or size of some attribute or process.
 Collect measures of specific attributes of the

process, project and product!

Measurement

- Measurement is the act of determining a measure.
- Measurement: Collect measures of specific attributes of the process, project and product!

Metrics

- A software metric relates individual measures in a meaningful way.
- A metric is a quantitative measure of the degree to which a system, component or process possesses a given attribute.
 Compute metrics from the measures!

Indicators

An indicator is a metric or combination of metrics that provide insight into the software project, process, or product.
 Obtain indicators by analyzing and evaluating metrics!

Why Measure?

- To improve the software process.
- To assist in the planning, tracking and control of a software project.
- To asses the quality of the product that is produced.

Who Does?

- Software engineers collect software measures.
- Software project managers analyze and assess software metrics using .

Software Metrics

 Use of metrics as a mechanism for improving the software development process and managing software projects.

Process Metrics

 Process metrics are used to make strategic decisions about how to complete the common process framework activities.

Project Metrics

 Project metrics are used to monitor progress during software development and to control product quality.

Product Metrics

Focus on the quality of deliverables

Software Measures

Direct measures

- LOC or defects over time
- Cost and effort
- Indirect measures
 - Functionality
 - Quality
 - Reliability
 - Maintainability

Normalization of Measures for Metrics

- Measures are normalized to be used for metrics!
 - Size-oriented normalization
 - The LOC (line of code) approach
 - Size-oriented metrics
 - Function-oriented normalization
 - The function point approach
 - Function-oriented metrics

Size-Oriented Metrics

 Size-oriented metrics are derived by normalizing quality or productivity measures over the product size (typically LOC or KLOC).

Typical Size-Oriented Metrics

- Errors per KLOC (thousand lines of code)
- Defects per KLOC
- \$ per LOC
- Errors per person-month
- LOC per person-month
- s per page of documentation

Size-Oriented Metrics

- Some weaknesses of LOC as a measure (like language dependency).
- What to count in LOC (e.g. executable statements) and what not to count (e.g. comments)

Function-Oriented Metrics

 Use a measure of the functionality delivered by the application as a normalization value.

Function Points

- A method of indirectly measuring functionality using other direct measures.
- Function points are derived from measures of the information domain and a subjective assessment of problem complexity.

Typical Function-Oriented Metrics

- Errors per FP (thousand lines of code)
- Defects per FP
- \$ per FP
- FP per person-month

Software Metrics

Metrics in SE

- Measurement is not used in software engineering work as often as it is in other branches of engineering.
 - Software engineers have trouble agreeing on what to measure and have trouble evaluating the measures that are collected.
- The only rational way to improve a process is to make strategic decisions based on metrics and indicators developed from measurements of process attributes.

Software Metrics Guidelines

- Use common sense and organizational sensitivity when interpreting metrics data.
- Don't use metrics to appraise individuals.
- Work with practitioners and teams to set clear goals and metrics that will be used to achieve them.
- Don't obsess on a single metric to the exclusion of other important metrics.

Project Monitoring/Tracking

Software Engineering Economics

- Software Engineering Economics are about making decisions related to software engineering in a business context.
- Earned Value Management (EVM)
- Earned Value Project/Performance Management (EVPM)

Project Monitoring Technique

- Earned Value Analysis (EVA) is a technique to monitor/track the project status by comparing (at some specific time):
 - How much effort has been expended

<u>versus</u>

 How much effort was planned to have been expended

Earned Value Analysis (EVA)

- A quantitative approach to project tracking
- Earned Value
 - A measure of progress
 - Enables us to assess the "percent of completeness" of a project using quantitative analysis!

BCWS

- The Budgeted Cost of Work Scheduled (BCWS) is determined for each work task represented in the schedule.
 - BCWS_i is the effort planned for work task *i*.
 - BCWS is the sum of the BCWS_i values for all work tasks that are to be completed by that point in time on the project schedule.
 - Planned Value (PV)

BCWP

Budgeted Cost of Work Performed (BCWP)

- The sum of the BCWS values for all work tasks that have actually been completed by a point in time on the project schedule.
- Earned Value (EV)

Budget At Completion, BAC.

• BAC = \sum (BCWS_k) for all tasks k

Percent Complete

Percent complete = BCWP/BAC

 A quantitative indication of the percent of completeness of the project at a given point in time *t*.

SPI & SV

- Schedule Performance Index (SPI) = BCWP/BCWS
 - SPI is an indication of the efficiency with which the project is utilizing scheduled resources.
 - SPI=1.0 (Efficient execution of project schedule)
- Schedule Variance (SV) = BCWP-BCWS

ACWP, CPI & Cost Variance

Actual Cost of Work Performed, ACWP

- The sum of the effort actually expended on work tasks that have been completed by a point in time on the project schedule.
- Cost Performance Index (CPI) = BCWP/ACWP
 - CPI=1.0 (Within the budget)
- Cost Variance (CV) = BCWP ACWP

Example: Earned Value Analysis

Work Tasks	Estimated Effort in Pers-days	Actual Effort spent so far in Pers-days	Estimated Completion date in mm/dd/yy*	Actual Completion date in mm/dd/yy*
1	10	10	2/5/11	2/5/11
2	15	25	3/15/11	3/25/11
3	30	15	4/25/11	
4	25	20	5/5/11	4/1/11
5	15	5	5/25/11	
6	20	15	6/10/11	

The Status Checking Date : 4/5/2011

BAC? BCWS? BCWP? ACWP? PercentComplete? CV? SV?

BAC is the sum of the estimated efforts for all the tasks:

BAC = 10+15+30+25+15+20 = 115 person-days

 BCWS for the date 4/5 is the sum of the estimated effort of all the tasks which were <u>schedule to be</u> <u>completed</u> on or before 4/5:

BCWS = 10 + 15 = 25 person days

 BCWP for the date 4/5 is the sum of the estimated effort of all the tasks which were <u>actually completed</u> on or before 4/5:

BCWP = 10 + 15 + 25 = 50 person-days

 ACWP for the date 4/5 is the sum of the actual efforts expended for all the tasks that have been completed on or before 4/5:

ACWP = 10 + 25 + 20 = 55 person-days

Example

- Percent Complete= BCWP / BAC = 50/115 = .434
 - The project is estimated to be 43% complete as of 4/5
- Cost Variance = BCWP - ACWP = 50 - 55 = -5
- Schedule Variance =
 BCWP BCWS = 50 25 = 25