Algorithms:
Efficiency and Analysis

Algorithms

Problem Solving

Algorithms

The Problem Solving Process via

Programs

Algorithms 3

Computational Problem

A problem is a question to which we seek an
answer.

Example 1.1 sorting

Example 1.2 searching
An instance of the problem.

Example 1.3

Example 1.4
Computational problems

Algorithms 4

» QUIZ? Computing Problems & Instances?

A computing problem ?
An instance of the problem.

The Selection Problem?
An instance of the selection problem?

Algorithms 5

Fundamental Computational

Problems

The sorting problem
The searching problem
The selection problem

Algorithms 6

Solution

Input (and store) data.
Process (manipulate) data. (algorithms)

Output data.

Algorithms 7

Solution: Data Structures

A simple data

Consists of atomic data items (values).
A structured data

Consists of collections of data items (values), all
related to each other in certain ways.

A particular way of storing and organizing data so
that it can be used efficiently.

Data Structures

Algorithms 8

Basic Data Structures

Arrays

Linked lists

Stacks

Queues

Binary heaps

Hash tables

Binary trees
Binary search trees

Algorithms

Advanced Data Structures

Skip lists
Self-organizing lists
Graphs

Leftist heaps
Skew heaps
AVL trees
Splay trees

2-3 trees

2-3-4 trees
Red-Black trees
B-trees

Algorithms

Solution: Algorithms

Operations that manipulate the data items in
the data structures. (mini-algorithms!)
Algorithms that use these operations.

A general step-by-step procedure for producing
the solution to each instance of a problem.

Example 1.5 Sequential Search

Efficient data structures are a key to
designing efficient algorithms!

Algorithms

v" Algorithm Design
Approach/Paradigms

Divide-and-Conquer
Dynamic Programming
Greedy Approach
Backtracking
Branch-and-Bound

Algorithms

Solution = DS + Algorithms

Efficient Solution =
Efficient Data Structures +
Efficient Operations +
Efficient Algorithms

QUIZ: Does every problem have an
algorithm?

Algorithms 13

v Computational Complexity for

Problems

The study of all nossible alaorithms that can
solve a given problem.

Determines a lower bound on the efficiency
of all algorithms for a given problem.
Lower Bound for fundamental problems:

The sorting problem
The searching problem

The selection problem

Algorithms

» QUIZ? Lower Bound?

The sorting problem?
The searching problem?

The selection problem?

Algorithms 15

v’ Computationally Tractable &

Intractable Problems

Tractable Problems

A problem is called tractable if an efficient (polynomial
running time P) algorithm is possible.

The sorting problem

The searching problem

The selection problem

Intractable (Hard) Problems

A problem is called intractable if an efficient algorithm is
not possible.

NP and NP-complete problems

Algorithms 16

» QU IZ? Tractable & Intractable Problem Examples

Tractable Problems?

Intractable (Hard) Problems?

Algorithms 17

Program=Data Structures +

Algorithms

An implementation of a solution (desiaj

Program

Operations

Algorithms

Algorithms

=)

- /7

Program

Data#1 (Structure#1)
Operations#1

Data#2 (Structure#2)
Operations#2

Data#3 (Structure#3)
Operations#3

Data#n (Structure#n)
Operations#n

Algorithms

18

Algorithms: Efficiency

Algorithms

Algorithms

Correctness
Efficiency

Algorithms

Types of Algorithms?

Iterative algorithms

Using iteration
Recursive algorithms

Using recursion

Algorithms

Example: Algorithms

Alaorithm 1.1 Seauential Search - lterative

Algorithm 1.2 Add Array Members
Algorithm 1.3 Exchange Sort

Algorithm 1.4 Matrix Multiplication

Algorithm 1.5 Binary Search — lterative

Algorithms

Search - Sequential Search?

Algorithm 1.1 Sequential Search

Linear time O(N)
How to improve?

ldea?

Sorting + Search

Divide-and-Conaquer

Top-down

Algorithms 23

Search - Binary Search?

Algorithm 1.5 Binary Search - Iterative
Divide-and-Conquer
Top-down
O(log N)

Algorithms .

Search - Sequential Search vs Binary

Search

Comparison of Binary Search and Sequential
Search:

Table 1.2 Comparison

Algorithms 25

> QUIZ?

Write an iterative Sequential Search
algorithm?

Algorithm 1.1
Write an iterative Binary Search algorithm?

Algorithm 1.5

Algorithms 26

The Fibonacci Sequence

~ib(n) = Fib(n —1) + Fib(n — 2) for n >= 2;
-Ib(0) =0
-ib(1) =1

Algorithms

The Fibonacci Sequence — Recursive?

Algorithm 1.6 nth Fibonacci Term (Recursive)
Divide-and-Conquer
Top-down
Exponential time O(2N)

Algorithms 28

The Fibonacci Sequence - Recursive

Algorithms 29

The Fibonacci Sequence - Recursive

fib(n)?
Table

T(n) =The number of terms in the recursion tree
Theorem1.1

This algorithm is extremely inefficient.
How to improve?

ldea?

Dynamic Programming

Qr\'l-'l-nm_up

Algorithms

The Fibonacci Sequence — Iterative?

Algorithm 1.7 nth Fibonacci Term (Iterative)
Dynamic Programming
Bottom-up
Linear time O(N)

Algorithms 31

The Fibonacci Sequence Algorithms

Comparison of Algorithm 1.6 nth Fibonacci
Term (Recursive) and Algorithm 1.7 nth
Fibonacci Term (Iterative):

Table 1.2 Comparison

Algorithm 1.6 nth Fibonacci Term (Recursive)
Divide-and-Conquer
Top-down

Algorithm 1.7 nth Fibonacci Term (Iterative)
Dynamic Programming
Bottom-up

Algorithms 32

v'Algorithm Efficiency

Measure the efficiency of an algorithm in
terms of

Time (required for an algorithm)
Space (required for a data structure)

Complexity Theory!
Time complexity
Space complexity

Algorithms 33

v" Analysis of Algorithms

Algorithm analysis measures the efficiency of
an algorithm as a function of the input size.

-7

We want a measure thatis independent of

t
t
t

ne computer,

ne

e

all t

Algorithms

orogramming language,
programmer, and

he complex details of the algorithm.

34

v Time Complexity Analysis

In general, the running time of the algorithm
increases with the size of the input.

The total running time is proportional to how
many times some basic operation is done.
Therefore, we analyze an algorithm’s
efficiency by determining

the number of some basic operation as a
function of the size of the input.

Algorithms 35

Basic Operation

A time complexity analysis determines how
many times the basic operation is done for

each value of the input size.

There is no hard and fast rule for choosing the
basic operation.

It is largely a matter of judgment and experience.

Algorithms 36

v Time Complexity Cases

Every Case Time
Worst Case Time

Average Case Time
Best Case Time

Algorithms 37

Every-Case Time Complexity?

T(n) = the number of times the algorithm
does the basic operation for an instance of
size n.
Called the every-case time complexity of the
algorithm.
Analysis of Algorithm 1.2 (Add Array
Members)
Analysis of Algorithm 1.3 (Exchange Sort)
Analysis of Algorithm 1.4 (Matrix
Multiplication)

Algorithms 38

Worst-Case Time Complexity?

W(n) = the maximum number of times the
algorithm will ever do its basic operation for
an input size of n.

Called the worst case time complexity of the
algorithm.

Analysis of Algorithm 1.1 (Sequential Search)

Algorithms 39

Average (Expected)-Case Time

Complexity?

A(n) = the average (expected) value of the
number of times the algorithm does the basic
operation for an input size of n.

Called an average-case time complexity analysis.
Analysis of Algorithm 1.1 (Sequential Search)

Algorithms 40

Best-Case Time Complexity?

B(n) = the minimum number of times the
algorithm will ever do its basic operation for
an input size of n .

Called the best-case time complexity of the
algorithm.
Analysis of Algorithm 1.1 (Sequential Search)

Algorithms 41

v Asymptotic Behavior?

The behavior of an algorithm for very large
problem sizes.

How quickly the algorithm’s time/space
requirement grows as a function of the problem
size?
Measure the efficiency of an algorithm as a
arowth rate function of the algorithm.
An estimating technique!

But, proved to be useful!

Algorithms

> QUIZ?

Why not the exact time behavior of an
algorithm?

Algorithms 43

Asymptotic Order of Growth

The asymptotic running time of the algorithm
A for the problem size n: GrowthRateTimea(n)

The (Asymptotic) Efficiency of an Algorithm =
A Growth Rate of the Function of the Problem Size

Jrow it rous7]

Algorithms YA

> QUIZ?

Types of algorithms?

The time complexity (running time) of an
algorithm?

Time complexity cases?

Asymptotic behavior?

Why not the exact behavior of an algorithm?

Algorithms 45

v Notations for Asymptotic

Behavior?

For asymptotic upper bound
Big-O
For asymptotic lower bound

Bia-Q

Big-®

Algorithms 46

Time Complexity Bounds

|l Inner Bound

| ower Bound

Algorithms 47

Asymptotic Upper Bound

An asymptotic bound as function of the size
of the input, on the worst (slowest, most
amount of space used) an algorithm will take
to solve a problem.

No input will cause the algorithm to use more
resources than the bound.

Algorithms 48

v’ Big-O Notation for (Asymptotic)

Upper Bound?

Let f(n) be a function which is non-negative
for all integersn > o.

f(n) =0 (g(n))
f(n) € O (g(n))
“f(n) is big-oh g(n)”
if

there exist a constant ¢ > 0 and a constant n,
such that

f(ﬂ) S C* g(n) for all integers n > n,

Algorithms 49

Conventions for Big-O Expressions

Drop all but the most significant terms.
O(n2+nlogn+n+1)=>»0(n?)
O(nlogn+n+1)=» O(nlogn)
O(n + 1) = O(n)

Drop constant (usually small!) coefficients.
O(2 n?) = O(n?)

O(1024) = O(2)

Algorithms 50

Example: Big-O

log n =0(n)

n =0(n)

100 n + 10 log n =0(n)
Example 1.7

Example 1.8

Example 1.9
Example 1.10
Example 1.11

Algorithms 51

Algorithm Growth Rates

A constant growth rate O(a2)

A logarithmic logarithmic growth rate (log
(log N))

A logarithmic growth rate (log N)

A logarithmic squared growth rate (log 2 N)
A linear growth rate O(N)

A linear-logarithmic (?) growth rate O(N log
N)

Algorithms 52

Algorithm Growth Rates

A quadratic growth rate O(N?)

A cubic growth rate O(N3)

A polynomial growth rate O(NX) for a
constant k.

An exponential growth rate O(2N)

A factorial growth rate O(N!)

Algorithms 53

Common Complexity Classes

O(2)

O(log N)
O(N)

O(N log N)
O(N?)
O(2N)

Algorithms

O(a2) - Constant Growth Rates

The amount of space or time is independent
of the amount of data.
If the amount of data doubles, the amount of

space or time will stay the same!
Example:

An item can be added to the beginning of a linked

list in constant time independent of the number of
items in the list.

Algorithms 55

O(log N) - Logarithmic Growth Rates

If the amount of data doubles, the amount of
space or time will increase by 1!
Example:

The worst-case time for binary search is
logarithmic in the size of the array.

Algorithms 56

O(N) - Linear Growth Rates

If the amount of data doubles, the amount of
space or time will also double!
Example:

The time needed to print all of the values stored in
an array is linear in the size of the array.

Algorithms 57

O(N?) - Quadratic Growth Rates

If the amount of data doubles, the amount of
space or time will quadruple!
Example:

The amount of space needed to store a two-
dimensional square array is quadratic in the
number of rows.

Algorithms 58

O(2N) - Exponential Growth Rates

If the amount of data increase by 1, the
amount of space or time will double!
Example:

The number of moves required to solve the
Towers of hanoi puzzle is exponential in the
number of disks used.

Algorithms 59

» QUIZ? common Complexity Classes Examples

O(1)

O(log N)
O(N)

O(N log N)
O(N?3)
O(2N)

Algorithms 60

Comparison of Growth Rates

Comparison of Growth Rates

Figure 1.3

131,072
65,536
32,768
16,384

8,192
4,096
2,048
1,024
512
256
128
64

32

AN Y N TN N N TN N R R R
0 1 2 4 8 16 32 64 128 256 512 1024 2048

Algorithms 62

Comparison of Growth Rates

Table 1.3
Table 1.4

Algorithms 63

Asymptotic Lower Bound

An asymptotic bound as function of the size
of the input, on the best (fastest, least

amount of space used) an algorithm will take
to solve a problem.

No algorithm can use fewer resources than the
bound.

Algorithms 64

v'Big-Q Notation for (Asymptotic)

Lower Bounds?

Let f(n) be a function which is non-negative
for allintegersn > o.

f(n) = Q(g(n))
i(n) € Q(g(n))
“f(n) is (big-)omega g(n)”
if
there exist a constant ¢ > 0 and a constant n,
such that

C = g(ﬂ) ~ f(ﬂ) for all integers n > n,

Algorithms 65

Example: Big-£2

n =Q(n)
nz = Q)(n)
2" = Q(n)

Exam
Exam
Exam
Exam

Algorithms

O O 0O

e1.12
e 1.13
e1.14
e 1.15

66

v'Big-® Notation

Let f(n) be a function which is non-negative
for all integersn > o.

i(n) = © (9(n))
f(n) € © (g(n))
“f(n) is (bia-) theta a(n)”
if and only if

f(n) is O (g(n)) and f(n) is €2(g(n))

Algorithms 67

Example: Big-®

Example 1.126
Figure 1.6

4n3+ 3n?

6+n4

6n°+ 9 6n

5n2+2n ‘I.,:j 2"+ 4n

/

Algorithms 68

O,
o
-
(C
G
O’

n—

s §=

f S

S /d
|||||||| P4
\

n—

g
cf(n)

s k=

n—>»

(b) g(n) € Q(f(n)) (c) g(n) € B(f(n))

(@) g(n) € O(f(n))

69

Algorithms

Asymptotic Behaviors of Polynomial

Functions

ff(n)=a,n™+...+a, n+a_t
ff(n)=a,n™+...+a, n+a,t
ff(n)=a,n™+...+a, n+a,t

Algorithms

nen f(n) = O(nN™)
nen f(n) = Q(n™)

nen f(n) = ®(n™)

Tight Bound vs Loose Bound

= 0O(1) O(logN) O(N) O(N log N) O(N?) O(2V)

Tight bound <> Loose bound

Q(1) Qflog N) Q(N) QN log N) QN2 Q2 =

Loose bound ﬁ Tight bound

Algorithms 71

> QUIZ?

Notations for Asymptotic Behavior?
Big-O Notation for (Asymptotic) Upper
Bound?

Big-€2 Notation for (Asymptotic) Lower
Bounds?

Algorithms 72

v" A Fast Computer or a Fast

Algorithm?

The Order (Growth Rate) of an Algorithm is more important
than the Speed of a Computer.

Algorithms

73

Example: Time Complexity

If an O(n2) algorithm takes 3.1 msec to run on
an array of 200 elements, how long would
you expect it to take to run on a similar array

of 40,000 elements?

C® 200°=3.1msec —> C=13.1/2007
C ® 40000? =(3.1/200?) 400002 = 124000 MsecC

124000 mMseC =124 seconds

Algorithms 74

> QUIZ?

If an O(n log n) algorithm takes 3.2 msec to
run on an array of 200 elements, how long
would you expect it to take to run on a similar
array of 40,000 elements?

1240 msec 1.24 seconds

c ® (200 log200)=3.1 msec = c=3.1/(200 log200)

c ® (4000010g940000) = (3.1 /200 l0g200) (40000 10g40000)
= 1240 msec

Algorithms 75

> QUIZ?

If an O(n) algorithm takes 3.2 msec to run on
an array of 200 elements, how long would
you expect it to take to run on a similar array

of 40,000 elements?
620 msec .620 seconds

Ce® 200=3.1msec = C=3.1/200
C ® 40000 = (3.1 /200) 40000 = 620 Msec

Algorithms 76

> QUIZ?

If an O(log n) algorithm takes 3.2 msec to run
on an array of 200 elements, how long would
you expect it to take to run on a similar array
of 40,000 elements?

6.2 msec .0062 seconds

c e log200=3.2msec = c=3.1/log200
c ® log40000 = (3.1 /l0g200) log40000= 6.2 msec

Algorithms 77

Example: Time Complexity

Suppose you have a computer that requires 1
minute to solve problem instances of size n
=1,000. Suppose you buy a new computer
that runs 1,000 times faster than the old one.
What instance sizes can be run in 1 minute,
assuming the following time complexities
T(n) = n for our algorithm?

ce1000=1min = ¢/1000 e n
n =106

Algorithms 78

> QUIZ?

Suppose you have a computer that requires 1
minute to solve problem instances of size n
=1,000. Suppose you buy a new computer that
runs 1,000 times faster than the old one. What
Instance sizes can be run in 1 minute, assuming
the following time complexities T(n) = n? for our
algorithm?

1045
c e 10002=1 min = ¢/1000 e n2

Algorithms 79

v" Algorithms: Analysis

Algorithms 8o

How to Calculate the Running Time

Complexity

Depends on the type of an algorithm!

Iterative algorithms

Summation
Recursive algorithms

Recurrence equation/relation

Algorithms 81

1. How to Calculate the Running Time

Complexity — Iterative Algorithms?

lterative algorithms

Summation

2.

Algorithms 82

Running Time Calculation - Sequence

Single assignment statement
O(1)
Simple expression
O(1)
Statements; Statement2; ...;Statementn

The maximum of O(Statementi1), O(Statement2),
..., and O(Statementn).

Algorithms 83

Running Time Calculation-

Conditional

IF Condition THEN Statement1 ELSE
Statement2;

O(Condition) + The maximum of O(Statementa)
and O(Statement2).

The maximum of O(Condition), O(Statementa)
and O(Statement?2).

Algorithms 84

Running Time Calculation - Iteration

FOR (i=1; i<=N; i++) Statement

O(NxStatement) where N=The number of loop
iterations.

FOR (Sa; S2;53) Statement
O(51 + S2x(N+1) + S3xN + StatementxN)

The maximum of O(51), O(S2x (N+1)), O(53 x N)
and O(Statement x N)

Algorithms

85

Running Time Calculation- Iteration

WHILE (condition) Statement

O(NxStatement) where N=The number of loop
iterations.

Algorithms 86

Example: Running Time Complexity —
lterative Algorithms

1 sum=0;
2 for (I=1; I<=n; I++)
3 sum+=n;

Total = O(n)

Algorithms 87

Example: Running Time Complexity —

lterative Algorithms

1 sum1=0;

: : , =1, i=1n1= 9
2 for (|=1; 1<=n; |+.|.) ‘Zl n 2 j=1,n N

3 for(j=1; j<=n; j++)
4 sum7 ++;

Total = O(n?)

Algorithms 88

Example: Running Time Complexity —

lterative Algorithms

1 sum2 = 0;
2 for (|=1; I<=n; |++) ‘Zi=1,n >i=1i 1 = n(n+1)/2‘

3 for (j=1; j<=i; j++)
4 sum2 ++;

Total = O(n?)

Algorithms

Example: Running Time Complexity —

lterative Algorithms

1 sum1=0;
2 for (I=1; I<=n; |++)
for (j=1; j<=n; j++)

or (I=1; I<=n; I++)
for (j=1; j<=i; j++)

Total = O(n?)

Example: Running Time Complexity —

lterative Algorithms
T sum=0;
2 for (J=1; |<=n; j++)

for (I=1; I<=]; I++)

Total = O(n?)

1 sum1 =0

2 for (i=1; i<=n; i*=2)

Assume n = 2k

‘Zi=0,log n 2j=1,n1=n(log n+1) ‘

3 for (J=1; |<=n; |++)

4

sum1 ++;

1=1,2,4,8,...,n

|2i=1,248,..n (Z=1,0 1)=7]

Algorithms

=20212223 Jlogn

Total = O(n loq n)

1 sum2 =0;

2 for (i=1; i<=n; I"=2)
for (J]=1; |<=I; |++)
SUM2 ++;

3
4

Assume n = 2k

1=1,2,4,8,...,n

>i=0,n 2'= 2 (1) 1
| |

Algorithms

Fvamnle A -

2Iogzn =n

Fxamnle A 8

i=1,2,48.....
=1+2+4+8+ .+

=20+ 21+ 22 423 +

=>i=0,logn 2
=9n -1

n j=1.i1)

+92logn

Total = O(n)

93

1 sum1=0;
2 for (1=1; I<=n; I*=2)
for (j=1; j<=n; j++)

Total = O(n log n)

int fun(int n)
{
int count = 0:
for (inti=n;1>0;1/=2)
for (intj=0; <1 J++)
count +=1;
return count;

1
2
3
4
5
6
I
8

)

Algorithms

Total = O(n)

> QUIZ?

Algorithm 1.5
Binary Search — Iterative

O(log N)

Algorithms 96

2. How to Calculate the Running Time

Complexity — Recursive Algorithms?

Recursive alaorithms

Recurrence equation/relation

Algorithms 97

Using Recurrence Relations for

Recursive Algorithms

The running time of an recursive algorithm
can often be described by a recurrence
relation or equation.

A mathematical formula that generates the terms
in a sequence from previous terms.

Algorithms 98

Example: Running Time Complexity —
Recursive Algorithms

unsigned int Factorial (unsigned int n) 1
{ 2
if (n==0) 3 O(1)

else 5

1

2

3

4 return 1; 4 0(1)

5

6 return n * Factorial (n-1); 6 Factorial (n-1)
7

)

Algorithms 99

Solving By Substitution

Algorithms

Running Time Complexity — Recursive
Algorithms

unsigned int Factorial (unsigned int n) 1
{ 2
if (n==0) 3 O(1)

else 5

1

2

3

4 return 1; 4 0(1)

5

6 return n * Factorial (n-1); 6 Factorial (n-1)
7

)

Algorithms

Solving Recurrences by Substitution

T(n) =T(n-1) + 1 if n>0
T(0) = 1

T(n) = T(n-1) + 1
=T(n-2) +1 +1
=T(n-3)+1+1+1
=T(n-4)+1+1+1+1

=T(n-n)+1+1+...... +1
=1+ nx1

=1+n

=0(n)

O(n)

Algorithms

Solving Recurrences by Substitution

T(n) =T(n-1) +n ifn>0
T(0) =1
T(n) =T(n-1) +n
=T(n-2) + (n-1) + n
=T(n-3) + (n-2) + (n-1) + n
=T(n-4) + (n-3) + (n-2) + (n-1) + n

T(n-n)+1+2+ ... +(n-2) + (n-1) + n
T+1+2+ ... +(n-2) + (n-1) + n
1+n(n+1)/2

= 0(n?)
O(n?)

Example B.21

Algorithms 103

Solving Recurrences by Substitution

T(n) =T(n/2) + 12 if n>0
T(1) =1
T(n) = T(n/2%) + 1
=T(nl22) +1 +1
=T(n/23)+1+1+1
=T(n/24)+1+1+1+1

.=T(n/2|og N+1+T+ + 1
=1+ lognx1
=1+logn
= O(log n)
O(log n)

Example B.1

Algorithms 104

> QUIZ?

T(n) =3 T(n-1)
T(n)=nT(n-1)
T(n)=2T(n/2) + n

Algorithms

» QUIZ:

T(n) =3 T(n-1)
O@3")

T(n)=nT(n-1)
O(n!)

T(n) =2T(n/2) + n

O(nlog n)

Algorithms

> QUIZ?

1 int recursive (int n) {
2 if(n==1)
3

return (1);

4 else

5 return (recursive (n-1) + recursive (n-1));
0 }

T(n)=2T(n-1) +1
O(2M

Algorithms

v A General Method for Some

Recurrence Relations

T(n) = aT(n/b) + c*n"k
T(1) = d
T(n) =0O(n"k) if a<b”k
T(n) =O(n*k logn) ifa=b"k
T(n) = O(n"log _b(a)) if a> b~k
Theorem B.5 A Master Theorem
Example B.26
Example B.27

Algorithms 108

> QUIZ?

T(n)=T(n/2) + 1
T(n)=4T(n/2) +n
T(n)=T (n/2) + n?
T(n)=2T(n/2) + n
T(n)=2T(n/2) +1

Algorithms

T(n)=T(n/2) +1
O(log n)

T(N)=4T(N/2) +n
O(n?)

T(n)=T (n/2) + n?
O(n?)

T(n)=2T(n/2) +n
O(nlogn)

T(n)=2T(n/2) +1
O(n)

Algorithms

v' A General Method for Some

Recurrence Relations

Theorem B.6 A Master Theorem
Example B.28

Algorithms

> QUIZ?

Exercise 25 (Appendix B)

Algorithms

Common Recurrence Relations

T(n)=T(n-1) + BO(2)
T(n) =0(n)

T(n) =T(n-1) + GA(n)
T(n)=0(n?)

Algorithms 113

Common Recurrence Relations

T(n) =T(n/2) + BO(2)
T(n) =0(log n)

Example B.1 & Example B.18

Algorithms 114

Common Recurrence Relations

T(n) =2T(n/2) + BO(2)
T(n) =0(n)

T(n)=2T(n/2) + O(n)
T(n)=0(nlog n)

Example B.19

Algorithms 115

> QUIZ?

T(n) = O(1) if n=1
T(n) = T(n/2) + O(n) if n>1

Algorithms

> QUIZ?

T(n) = O(1) if n=1
T(n) = T(n/3) + O(1) if n>1

Algorithms

Xlogay = y|OgaX Example A.8

O(1) if n=1
8T(n/2) + n2 if n>1

Algorithms

Algorithms

O(1) if n=1
T(n/2) +n2 if n>1

Algorithms

Algorithms

> QUIZ?

T(n)=0 if n=1
T(n) =T(n-1) + 2/n if n>1

Example B.22
Example A.8

Algorithms

v Amortized Behavior

So far, we considered the worst/average cost
for a sinale operation

How about the cost for a series/sequence of N
onerations?
N times the worst-case cost of any one operation.
Or better cost?
Obspr\l:'l-inn?

Any one particular operation may be slow, but the
average time over a sufficiently large number of
operations is fast.

Algorithms 124

Amortized Analysis

Cost for a series/sequence of N operations?
The amortized cost of N operations is the
total cost of the operations divided by N.

Amortized analysis!

Self-Adjusting Data Structures!

Algorithms 125

Space Requirement (Complexity) of

Algorithms

Time requirements for an algorithm that
manipulates a data structure.

Space requirements for the data structure
itself.

Algorithms 126

v Time and Space Tradeoff in

Algorithms?

Algorithms

One can often achieve a reduction in
time requirements if one is willing to
sacrifice space requirements
or vice versa.

Textbook Readings

Chapter 1:
1.1
1.2
1.3 (1.3.1 & 1.3.2 only)
1.4 (1.4.1 & 1.4.2 only)

1.5

Algorithms 128

