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 A problem is a question to which we seek an 
answer.

 Example 1.1 sorting

 Example 1.2 searching

 An instance of the problem.

 Example 1.3

 Example 1.4

 Computational problems
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 A computing problem ?
 An instance of the problem.

 The Selection Problem?
 An instance of the selection problem?
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 The sorting problem
 The searching problem
 The selection problem
 …
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 Input (and store) data.
 Process (manipulate) data. (algorithms)
 Output data. 
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 A simple data

 Consists of atomic data items (values).

 A structured data

 Consists of collections of data items (values), all 
related to each other in certain ways.

 A particular way of storing and organizing data so 
that it can be used efficiently.

 Data Structures 
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 Arrays
 Linked lists
 Stacks
 Queues
 Binary heaps
 Hash tables
 Binary trees
 Binary search trees
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 Skip lists
 Self-organizing lists
 Graphs
 Leftist heaps
 Skew heaps
 AVL trees
 Splay trees
 2-3 trees
 2-3-4 trees
 Red-Black trees
 B-trees
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 Operations that manipulate the data items in 
the data structures. (mini-algorithms!)

 Algorithms that use these operations.

 A general step-by-step procedure for producing 
the solution to each instance of a problem. 

 Example 1.5  Sequential Search

 Efficient data structures are a key to 
designing efficient algorithms!
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 Divide-and-Conquer
 Dynamic Programming
 Greedy Approach
 Backtracking
 Branch-and-Bound
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 Efficient Solution = 

 Efficient Data Structures + 

 Efficient Operations + 

 Efficient Algorithms

 QUIZ: Does every problem have an 
algorithm? 
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 The study of all possible algorithms that can 
solve a given problem. 

 Determines a lower bound on the efficiency 
of all algorithms for a given problem. 

 Lower Bound for fundamental problems:

 The sorting problem

 The searching problem

 The selection problem
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 The sorting problem?

 …

 The searching problem?

 …

 The selection problem?

 …
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 Tractable Problems
 A problem is called tractable if an efficient (polynomial 

running time P) algorithm is possible.
▪ The sorting problem

▪ The searching problem

▪ The selection problem

▪ …

 Intractable (Hard) Problems
 A problem is called  intractable if an efficient algorithm is 

not possible.

▪ NP and NP-complete problems
▪ …

16Algorithms



 Tractable Problems?

 …

 Intractable (Hard) Problems?

 …
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 An implementation of a solution (design)!
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 Correctness
 Efficiency
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 Iterative algorithms

 Using iteration

 Recursive algorithms 

 Using recursion
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 Algorithm 1.1 Sequential Search - Iterative

 Algorithm 1.2 Add Array Members

 Algorithm 1.3 Exchange Sort

 Algorithm 1.4 Matrix Multiplication

 Algorithm 1.5 Binary Search – Iterative
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 Algorithm 1.1 Sequential Search

 Linear time O(N)

 How to improve?

 Idea?

 Sorting + Search

 Divide-and-Conquer

 Top-down
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 Algorithm 1.5 Binary Search – Iterative

 Divide-and-Conquer

 Top-down

 O(log N)
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 Comparison of Binary Search and Sequential 
Search:

 Table 1.1 Comparison
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 Write an iterative Sequential Search 
algorithm?

 Algorithm 1.1 

 Write an iterative Binary Search algorithm?

 Algorithm 1.5
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 Fib(n) = Fib(n – 1) + Fib(n – 2) for n >= 2;  
 Fib(0) =0 
 Fib(1) = 1
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 Algorithm 1.6 nth Fibonacci Term (Recursive)

 Divide-and-Conquer

 Top-down

 Exponential time O(2N)  
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 fib(5)?

 Fig 1.2
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 fib(n)?

 Table

 T(n) = The number of terms in the recursion tree

 Theorem 1.1

 This algorithm is extremely inefficient.
 How to improve?
 Idea?

 Dynamic Programming

 Bottom-up
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 Algorithm 1.7 nth Fibonacci Term (Iterative)

 Dynamic Programming

 Bottom-up

 Linear time O(N)
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 Comparison of Algorithm 1.6 nth Fibonacci 
Term (Recursive) and Algorithm 1.7 nth 
Fibonacci Term (Iterative):
 Table 1.2 Comparison

 Algorithm 1.6 nth Fibonacci Term (Recursive)
▪ Divide-and-Conquer

▪ Top-down

 Algorithm 1.7 nth Fibonacci Term (Iterative)
▪ Dynamic Programming

▪ Bottom-up
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 Measure the efficiency of an algorithm in 
terms of 

 Time (required for an algorithm)

 Space (required for a data structure) 

 Complexity Theory!

 Time complexity

 Space complexity
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 Algorithm analysis measures the efficiency of 
an algorithm as a function of the input size. 

 We want a measure that is independent of 

 the computer, 

 the programming language, 

 the programmer, and 

 all the complex details of the algorithm. 
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 In general, the running time of the algorithm 
increases with the size of the input. 

 The total running time is proportional to how 
many times some basic operation is done. 

 Therefore, we analyze an algorithm’s 
efficiency by determining 

 the number of some basic operation as a 
function of the size of the input. 
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 A time complexity analysis determines how 
many times the basic operation is done for 
each value of the input size. 

 There is no hard and fast rule for choosing the 
basic operation. 

 It is largely a matter of judgment and experience. 
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 Every Case Time
 Worst Case Time
 Average Case Time
 Best Case Time
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 T(n) = the number of times the algorithm 
does the basic operation for an instance of 
size n. 
 Called the every-case time complexity of the 

algorithm.
 Analysis of Algorithm 1.2 (Add Array 

Members)
 Analysis of Algorithm 1.3 (Exchange Sort)
 Analysis of Algorithm 1.4 (Matrix 

Multiplication)
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 W(n) = the maximum number of times the 
algorithm will ever do its basic operation for 
an input size of n. 

 Called the worst case time complexity of the 
algorithm.

 Analysis of Algorithm 1.1 (Sequential Search)
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 A(n) = the average (expected) value of the 
number of times the algorithm does the basic 
operation for an input size of n.

 Called an average-case time complexity analysis.

 Analysis of Algorithm 1.1 (Sequential Search)
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 B(n) = the minimum number of times the 
algorithm will ever do its basic operation for 
an input size of n .

 Called the best-case time complexity of the 
algorithm.

 Analysis of Algorithm 1.1 (Sequential Search)
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 The behavior of an algorithm for very large 
problem sizes.
 How quickly the algorithm’s time/space 

requirement grows as a function of the problem 
size?

 Measure the efficiency of an algorithm as a 
growth rate function of the algorithm.
 An estimating technique!

 But, proved to be useful!
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 Why not the exact time behavior of an 
algorithm? 
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 The asymptotic running time of the algorithm 
A for the problem size n: GrowthRateTimeA(n)
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The (Asymptotic) Efficiency of an Algorithm = 

A Growth Rate of the Function of the Problem Size

How it grows?
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 Types of algorithms?
 The time complexity (running time) of an 

algorithm?
 Time complexity cases?
 Asymptotic behavior?
 Why not the exact behavior of an algorithm? 
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 For asymptotic upper bound

Big-O
 For asymptotic lower bound

Big-

 Big-
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 Upper Bound
 Lower Bound
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 An asymptotic bound as function of the size 
of the input, on the worst (slowest, most 
amount of space used) an algorithm will take 
to solve a problem. 

 No input will cause the algorithm to use more 
resources than the bound. 
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 Let f(n) be a function which is non-negative 
for all integers n  0.
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f(n) = O (g(n)) 

f(n) Є O (g(n)) 

“f(n) is big-oh g(n)” 

if 

there exist a constant c  0 and a constant n0

such that 

f(n)  c  g(n) for all integers n  n0.
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 Drop all but the most significant terms.

 O(n2 + n log n + n + 1) O(n2 )

 O(n log n + n + 1) O(n log n)

 O(n + 1) O(n)

 Drop constant (usually small!) coefficients.

 O(2 n2) O(n2)

 O(1024) O(1)
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What dominates?
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 log n = O(n)
 n = O(n)
 100 n + 10 log n = O(n)
 Example 1.7
 Example 1.8
 Example 1.9
 Example 1.10
 Example 1.11
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 A constant growth rate O(1) 
 A logarithmic logarithmic growth rate  (log 

(log N))
 A logarithmic growth rate  (log N)
 A logarithmic squared growth rate  (log 2 N)
 A linear growth rate O(N)
 A linear-logarithmic (?) growth rate O(N log 

N) 
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 A quadratic growth rate  O(N2)
 A cubic growth rate O(N3) 
 A polynomial growth rate O(Nk) for a 

constant k.
 An exponential growth rate O(2N)
 A factorial growth rate O(N!)
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 O(1) 
 O(log N)
 O(N)
 O(N log N) 
 O(N2)
 O(2N)
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 The amount of space or time is independent 
of the amount of data.

 If the amount of data doubles, the amount of 
space or time will stay the same!

 Example: 

 An item can be added to the beginning of a linked 
list in constant time independent of the number of 
items in the list.
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 If the amount of data doubles, the amount of 
space or time will increase by 1!

 Example:

 The worst-case time for binary search is 
logarithmic in the size of the array.
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 If the amount of data doubles, the amount of 
space or time will also double!

 Example:

 The time needed to print all of the values stored in 
an array is linear in the size of the array.
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 If the amount of data doubles, the amount of 
space or time will quadruple!

 Example:

 The amount of space needed to store a two-
dimensional square array is quadratic in the 
number of rows.
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 If the amount of data increase by 1, the 
amount of space or time will double!

 Example:

 The number of moves required to solve the 
Towers of hanoi puzzle is exponential in the 
number of disks used.
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 O(1) 
 O(log N)
 O(N)
 O(N log N) 
 O(N2)
 O(2N)
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O(N!)

O(2N)

O(N3)

O(N2)

O(N log N)

O(N)

O(log 2 N) 

O(log N) 

O(log (log N))

O(1)
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 Figure 1.3
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 Table 1.3
 Table 1.4
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 An asymptotic bound as function of the size 
of the input, on the best (fastest, least 
amount of space used) an algorithm will take 
to solve a problem. 

 No algorithm can use fewer resources than the 
bound. 
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 Let f(n) be a function which is non-negative 
for all integers n  0.
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f(n) = (g(n)) 

f(n) Є (g(n)) 

“f(n) is (big-)omega g(n)” 

if 

there exist a constant c  0 and a constant n0

such that 

c  g(n)  f(n) for all integers n  n0.
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 n  = (n)
 n2 = (n)
 2n = (n)
 Example 1.12
 Example 1.13
 Example 1.14
 Example 1.15
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 Let f(n) be a function which is non-negative 
for all integers n  0.
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f(n) =  (g(n))
f(n) Є  (g(n))

“f(n) is (big-) theta g(n)” 

if  and only if 

f(n) is O (g(n)) and f(n) is (g(n)) 
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 Example 1.16
 Figure 1.6
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 If f(n) = am nm + … +a1 n + a0 then f(n) = O(nm)
 If f(n) = am nm + … +a1 n + a0 then f(n) = (nm)
 If f(n) = am nm + … +a1 n + a0 then f(n) = (nm)
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O(1)   O(log N)   O(N)  O(N log N)  O(N2) O(2N)F =

Tight bound Loose bound

(1) (log N) (N) (N log N) (N2) (2N) F=

Loose bound Tight bound
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 Notations for Asymptotic Behavior?
 Big-O Notation for (Asymptotic) Upper 

Bound?
 Big-Notation for (Asymptotic) Lower 

Bounds?
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73

The Order (Growth Rate) of an Algorithm is more important 

than the Speed of a Computer.
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 If an O(n2) algorithm takes 3.1 msec to run on 
an array of 200 elements, how long would 
you expect it to take to run on a similar array 
of 40,000 elements?

 c  2002 =3.1 msec    c = 3.1 / 2002 

 c  400002  = (3.1 / 2002 ) 400002  = 124000 msec

 124000 msec  = 124 seconds
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 If an O(n log n) algorithm takes 3.1 msec to 
run on an array of 200 elements, how long 
would you expect it to take to run on a similar 
array of 40,000 elements?

 1240 msec   1.24 seconds

 c  (200 log200) =3.1 msec    c = 3.1 / (200 log200)

 c  (40000 log40000) = (3.1 /200 log200) (40000 log40000)
= 1240 msec
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 If an O(n) algorithm takes 3.1 msec to run on 
an array of 200 elements, how long would 
you expect it to take to run on a similar array 
of 40,000 elements?

 620 msec   .620 seconds

 c  200 =3.1 msec    c = 3.1 / 200

 c  40000 = (3.1 / 200) 40000 = 620 msec
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 If an O(log n) algorithm takes 3.1 msec to run 
on an array of 200 elements, how long would 
you expect it to take to run on a similar array 
of 40,000 elements?

 6.2 msec    .0062  seconds

 c  log200 =3.1 msec    c = 3.1 / log200

 c  log40000 = (3.1 / log200) log40000 = 6.2 msec
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 Suppose you have a computer that requires 1 
minute to solve problem instances of size n 
=1,000. Suppose you buy a new computer 
that runs 1,000 times faster than the old one. 
What instance sizes can be run in 1 minute, 
assuming the following time complexities 
T(n) = n for our algorithm?

 c  1000 = 1 min  =  c/1000  n
 n = 106
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 Suppose you have a computer that requires 1 
minute to solve problem instances of size n 
=1,000. Suppose you buy a new computer that 
runs 1,000 times faster than the old one. What
instance sizes can be run in 1 minute, assuming 
the following time complexities T(n) = n2 for our 
algorithm?

 104.5

 c  10002 = 1 min  =  c/1000  n2
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 Depends on the type of an algorithm!

1. Iterative algorithms

 Summation

2. Recursive algorithms

 Recurrence equation/relation
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 Iterative algorithms

Summation
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 Single assignment statement

 O(1)

 Simple expression

 O(1)

 Statement1; Statement2; …;Statementn

 The maximum of O(Statement1), O(Statement2), 
…, and O(Statementn).

83Algorithms



 IF Condition THEN Statement1 ELSE 
Statement2; 

 O(Condition) + The maximum of O(Statement1) 
and O(Statement2).

 The maximum of O(Condition), O(Statement1) 
and O(Statement2).
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 FOR (i=1; i<=N; i++) Statement

 O(NStatement) where N= The number of loop 
iterations.

 FOR (S1 ;  S2 ; S3) Statement

 O(S1 + S2(N+1) + S3N + StatementN) 

 The maximum of O(S1), O(S2 (N+1)), O(S3 N) 
and O(Statement N)
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 WHILE (condition) Statement

 O(NStatement) where N= The number of loop 
iterations.
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1 sum = 0;

2 for (i=1; i<=n; i++)

3 sum += n;

Total = O(n)
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1 sum1 = 0;

2 for (i=1; i<=n; i++)

3 for (j=1; j<=n; j++) 

4 sum1 ++;

Total = O(n2)

i=1,n j=1,n 1 = n2
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1 sum2 = 0;

2 for (i=1; i<=n; i++)

3 for (j=1; j<=i; j++) 

4 sum2 ++;

Total = O(n2)

i=1,n j=1,i 1 = n(n+1)/2
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1 sum1 = 0;

2 for (i=1; i<=n; i++)

3 for (j=1; j<=n; j++) 

4 sum1 ++;

5 sum2 = 0;

6 for (i=1; i<=n; i++)

7 for (j=1; j<=i; j++) 

8 sum2 ++;
Total = O(n2)
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1 sum = 0;

2 for (j=1; j<=n; j++)

3 for (i=1; i<=j; i++) 

4 sum ++;

5 for (k=0; k<=n; k++)

6 A[k] = k;

Total = O(n2)
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1 sum1 = 0;

2 for (i=1; i<=n; i*=2)

3 for (j=1; j<=n; j++) 

4 sum1 ++;

Total = O(n log n)

i=0,log n j=1,n 1 = n (log n+1)

Assume n = 2k

Algorithms

i = 1, 2, 4, 8, …, n i = 20 21 22 23 … 2log n

i=1,2,4,8,…,n  (j=1,n  1) = ?
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1 sum2 = 0;

2 for (i=1; i<=n; i*=2)

3 for (j=1; j<=i; j++) 

4 sum2 ++;

Total = O(n)

Assume n = 2k

i=0,n  2i = 2 (n+1) -1

Algorithms

Example A.3

2log2n = n
Example A.8 

i = 1, 2, 4, 8, …, n

i=1,2,4,8,…,n  (j=1,i 1)

= 1 + 2 + 4 + 8 + … + n

= 20 + 21 + 22 +23 + … +2log n

= i=0,log n  2i

= 2n  - 1
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1 sum1 = 0;

2 for (i=1; i<=n; i*=2)

3 for (j=1; j<=n; j++) 

4 sum1 ++;

5 sum2 = 0;

6 for (i=1; i<=n; i*=2)

7 for (j=1; j<=i; j++) 

8 sum2 ++;
Total = O(n log n)
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1 int fun(int n)

2 {

3 int count = 0;

4 for (int i = n; i > 0; i /= 2)

5 for (int j = 0; j < i; j++)

6 count += 1;

7 return count;

8 }

Total = O(n)
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 Algorithm 1.5 

 Binary Search – Iterative

O(log N)
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 Recursive algorithms

Recurrence equation/relation
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 The running time of an recursive algorithm 
can often be described by a recurrence 
relation or equation.

 A mathematical formula that generates the terms 
in a sequence from previous terms.
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1     unsigned int Factorial (unsigned int n)

2     {

3        if (n == 0)

4           return 1;

5        else

6           return n * Factorial (n-1);
7    }   

1

2

3 O(1)

4 O(1)

5

6  Factorial (n-1)
7    }   

T(n) = O(1)                  if n=0

T(n) = T(n-1) + O(1)    if n>0
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T(n) = T(n-1) + O(1)

= T(n-2) + O(1) + O(1)

= T(n-3) + O(1) + O(1) + O(1)

= T(n-4) + O(1) + O(1) + O(1) + O(1)

.

.

= T(0) + O(1) + O(1) + ……. + O(1)

= O(1) +  n x O(1)

= O(n)

T(n) = O(1)                  if n=0

T(n) = T(n-1) + O(1)    if n>0
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1     unsigned int Factorial (unsigned int n)

2     {

3        if (n == 0)

4           return 1;

5        else

6           return n * Factorial (n-1);
7    }   

1

2

3 O(1)

4 O(1)

5

6  Factorial (n-1)
7    }   

T(n) = O(1)                  if n=0

T(n) = T(n-1) + O(1)    if n>0
Total = O(n)
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 T(n) = T(n-1) + 1 if n>0 

 T(0) = 1
 T(n) = T(n-1) + 1

 = T(n-2) + 1 + 1

 = T(n-3) + 1 + 1 + 1

 = T(n-4) + 1 + 1 + 1 + 1

 .

 .

 = T(n-n) + 1 + 1 + ……. + 1

 = 1 +  n x 1

 = 1 + n

 = O(n)

 O(n)
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 T(n) = T(n-1) + n  if n>0
 T(0) = 1

 T(n) = T(n-1) + n

 = T(n-2) + (n-1) + n

 = T(n-3) + (n-2) + (n-1) + n

 = T(n-4) + (n-3) + (n-2) + (n-1) + n

 .

 .

 = T(n-n) + 1 + 2 + ……. + (n-2) + (n-1) + n

 = 1 + 1 + 2 + ……. + (n-2) + (n-1) + n

 = 1 + n (n+1)/2

 = O(n2)

 O(n2)
 Example B.21
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 T(n) = T(n/2) + 1 if n>0
 T(1) = 1

 T(n) = T(n/21) + 1

 = T(n/22) + 1 + 1

 = T(n/23) + 1 + 1 + 1

 = T(n/24) + 1 + 1 + 1 + 1

 .

 .

 = T(n/2log n) + 1 + 1 + ……. + 1

 = 1 +  log n x 1

 = 1 + log n

 = O(log n)

 O(log n)
 Example B.1
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 T(n) = 3 T(n-1)
 T(n) = n T(n-1)
 T(n) = 2 T(n/2) + n
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 T(n) = 3 T(n-1)

O(3n)

 T(n) = n T(n-1)

O(n!)

 T(n) = 2 T(n/2) + n

O(n log n)
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1 int recursive (int n) {

2 if(n == 1)

3 return (1);

4 else

5 return (recursive (n-1) + recursive (n-1));

6 }

T(n) = 2 T(n-1) + 1
O(2n)
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 T(n) = aT(n/b) + c*n^k
 T(1) = d

 T(n) = O(n^k)   if a < b^k

 T(n) = O(n^k log n)   if a = b^k

 T(n) = O(n^log _b(a))   if a > b^k

 Theorem B.5 A Master Theorem

 Example B.26

 Example B.27

108Algorithms



 T(n) = T(n/2) + 1
 T(n) = 4 T(n/2) + n
 T(n) = T (n/2) + n2 

 T(n) = 2 T(n/2) + n
 T(n) = 2 T(n/2) + 1
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 T(n) = T(n/2) + 1 

 O(log n)

 T(n) = 4 T(n/2) + n

 O(n2 ) 

 T(n) = T (n/2) + n2 

 O(n2 ) 

 T(n) = 2 T(n/2) + n

 O(n log n ) 

 T(n) = 2 T(n/2) + 1

 O(n ) 
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 Theorem B.6 A Master Theorem

 Example B.28
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 Exercise 25 (Appendix B)
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 T(n) = T(n-1) + (1)

 T(n) = O(n)

 T(n) = T(n-1) + (n)

 T(n) = O(n2)
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 T(n) = T(n/2) + (1)

 T(n) = O(log n)
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 T(n) = 2T(n/2) + (1)

 T(n) = O(n)

 T(n) = 2 T(n/2) + (n)

 T(n) = O(n log n)
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 T(n) = O(1)                  if n=1

 T(n) = T(n/2) + O(n)             if n>1
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 T(n) = O(1)                  if n=1

 T(n) = T(n/3) + O(1)             if n>1
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 T(n) = O(1)                  if n=1

 T(n) = 8T(n/2)           if n>1
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xlogay = ylogax Example A.8 



 T(n) = O(1)                  if n=1
 T(n) = 8T(n/2) + n2 if n>1
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 T(n) = O(1)                  if n=1

 T(n) = 7T(n/2)           if n>1
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 T(n) = O(1)                  if n=1
 T(n) = 7T(n/2) + n2 if n>1
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 T(n) = O(1)                  if n=1

 T(n) = 2T(n-1) + O(1)          if n>1

122Algorithms



 T(n) = 0                              if n=1

 T(n) = T(n-1) + 2/n          if n>1
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 So far, we considered the worst/average cost 
for a single operation

 How about the cost for a series/sequence of N 
operations?
 N times the worst-case cost of any one operation.

 Or better cost?
 Observation?
 Any one particular operation may be slow, but the 

average time over a sufficiently large number of 
operations is fast.
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 Cost for a series/sequence of N operations?
 The amortized cost of N operations is the 

total cost of the operations divided by N.

Amortized analysis!

 Self-Adjusting Data Structures!
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 Time requirements for an algorithm that 
manipulates a data structure.

 Space requirements for the data structure 
itself.
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One can often achieve a reduction in 

time requirements if one is willing to 

sacrifice space requirements

or vice versa.
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 Chapter 1: 

 1.1 

 1.2

 1.3 (1.3.1 & 1.3.2 only)

 1.4 (1.4.1 & 1.4.2 only) 

 1.5
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