
Algorithms 1

2Algorithms

3

Problem ProgramSolution

computer

Algorithms

 A problem is a question to which we seek an
answer.

 Example 1.1 sorting

 Example 1.2 searching

 An instance of the problem.

 Example 1.3

 Example 1.4

 Computational problems

4Algorithms

 A computing problem ?
 An instance of the problem.

 The Selection Problem?
 An instance of the selection problem?

5Algorithms

 The sorting problem
 The searching problem
 The selection problem
 …

6Algorithms

 Input (and store) data.
 Process (manipulate) data. (algorithms)
 Output data.

7Algorithms

 A simple data

 Consists of atomic data items (values).

 A structured data

 Consists of collections of data items (values), all
related to each other in certain ways.

 A particular way of storing and organizing data so
that it can be used efficiently.

 Data Structures

8Algorithms

 Arrays
 Linked lists
 Stacks
 Queues
 Binary heaps
 Hash tables
 Binary trees
 Binary search trees

9Algorithms

 Skip lists
 Self-organizing lists
 Graphs
 Leftist heaps
 Skew heaps
 AVL trees
 Splay trees
 2-3 trees
 2-3-4 trees
 Red-Black trees
 B-trees

10Algorithms

 Operations that manipulate the data items in
the data structures. (mini-algorithms!)

 Algorithms that use these operations.

 A general step-by-step procedure for producing
the solution to each instance of a problem.

 Example 1.5 Sequential Search

 Efficient data structures are a key to
designing efficient algorithms!

11Algorithms

 Divide-and-Conquer
 Dynamic Programming
 Greedy Approach
 Backtracking
 Branch-and-Bound

12Algorithms

 Efficient Solution =

 Efficient Data Structures +

 Efficient Operations +

 Efficient Algorithms

 QUIZ: Does every problem have an
algorithm?

13Algorithms

 The study of all possible algorithms that can
solve a given problem.

 Determines a lower bound on the efficiency
of all algorithms for a given problem.

 Lower Bound for fundamental problems:

 The sorting problem

 The searching problem

 The selection problem

14Algorithms

 The sorting problem?

 …

 The searching problem?

 …

 The selection problem?

 …

15Algorithms

 Tractable Problems
 A problem is called tractable if an efficient (polynomial

running time P) algorithm is possible.
▪ The sorting problem

▪ The searching problem

▪ The selection problem

▪ …

 Intractable (Hard) Problems
 A problem is called intractable if an efficient algorithm is

not possible.

▪ NP and NP-complete problems
▪ …

16Algorithms

 Tractable Problems?

 …

 Intractable (Hard) Problems?

 …

17Algorithms

 An implementation of a solution (design)!

18

Program

Data
(Structures)

Operations

Algorithms

Program

Algorithms

Data#1 (Structure#1)
Operations#1

Data#2 (Structure#2)
Operations#2

Data#3 (Structure#3)
Operations#3

Data#n (Structure#n)
Operations#n

.

.

.

Algorithms

19Algorithms

 Correctness
 Efficiency

20Algorithms

 Iterative algorithms

 Using iteration

 Recursive algorithms

 Using recursion

21Algorithms

 Algorithm 1.1 Sequential Search - Iterative

 Algorithm 1.2 Add Array Members

 Algorithm 1.3 Exchange Sort

 Algorithm 1.4 Matrix Multiplication

 Algorithm 1.5 Binary Search – Iterative

22Algorithms

 Algorithm 1.1 Sequential Search

 Linear time O(N)

 How to improve?

 Idea?

 Sorting + Search

 Divide-and-Conquer

 Top-down

23Algorithms

 Algorithm 1.5 Binary Search – Iterative

 Divide-and-Conquer

 Top-down

 O(log N)

24Algorithms

 Comparison of Binary Search and Sequential
Search:

 Table 1.1 Comparison

25Algorithms

 Write an iterative Sequential Search
algorithm?

 Algorithm 1.1

 Write an iterative Binary Search algorithm?

 Algorithm 1.5

26Algorithms

 Fib(n) = Fib(n – 1) + Fib(n – 2) for n >= 2;
 Fib(0) =0
 Fib(1) = 1

27Algorithms

 Algorithm 1.6 nth Fibonacci Term (Recursive)

 Divide-and-Conquer

 Top-down

 Exponential time O(2N)

28Algorithms

 fib(5)?

 Fig 1.2

29Algorithms

 fib(n)?

 Table

 T(n) = The number of terms in the recursion tree

 Theorem 1.1

 This algorithm is extremely inefficient.
 How to improve?
 Idea?

 Dynamic Programming

 Bottom-up

30Algorithms

 Algorithm 1.7 nth Fibonacci Term (Iterative)

 Dynamic Programming

 Bottom-up

 Linear time O(N)

31Algorithms

 Comparison of Algorithm 1.6 nth Fibonacci
Term (Recursive) and Algorithm 1.7 nth
Fibonacci Term (Iterative):
 Table 1.2 Comparison

 Algorithm 1.6 nth Fibonacci Term (Recursive)
▪ Divide-and-Conquer

▪ Top-down

 Algorithm 1.7 nth Fibonacci Term (Iterative)
▪ Dynamic Programming

▪ Bottom-up

32Algorithms

 Measure the efficiency of an algorithm in
terms of

 Time (required for an algorithm)

 Space (required for a data structure)

 Complexity Theory!

 Time complexity

 Space complexity

33Algorithms

 Algorithm analysis measures the efficiency of
an algorithm as a function of the input size.

 We want a measure that is independent of

 the computer,

 the programming language,

 the programmer, and

 all the complex details of the algorithm.

34Algorithms

 In general, the running time of the algorithm
increases with the size of the input.

 The total running time is proportional to how
many times some basic operation is done.

 Therefore, we analyze an algorithm’s
efficiency by determining

 the number of some basic operation as a
function of the size of the input.

35Algorithms

 A time complexity analysis determines how
many times the basic operation is done for
each value of the input size.

 There is no hard and fast rule for choosing the
basic operation.

 It is largely a matter of judgment and experience.

36Algorithms

 Every Case Time
 Worst Case Time
 Average Case Time
 Best Case Time

37Algorithms

 T(n) = the number of times the algorithm
does the basic operation for an instance of
size n.
 Called the every-case time complexity of the

algorithm.
 Analysis of Algorithm 1.2 (Add Array

Members)
 Analysis of Algorithm 1.3 (Exchange Sort)
 Analysis of Algorithm 1.4 (Matrix

Multiplication)

38Algorithms

 W(n) = the maximum number of times the
algorithm will ever do its basic operation for
an input size of n.

 Called the worst case time complexity of the
algorithm.

 Analysis of Algorithm 1.1 (Sequential Search)

39Algorithms

 A(n) = the average (expected) value of the
number of times the algorithm does the basic
operation for an input size of n.

 Called an average-case time complexity analysis.

 Analysis of Algorithm 1.1 (Sequential Search)

40Algorithms

 B(n) = the minimum number of times the
algorithm will ever do its basic operation for
an input size of n .

 Called the best-case time complexity of the
algorithm.

 Analysis of Algorithm 1.1 (Sequential Search)

41Algorithms

 The behavior of an algorithm for very large
problem sizes.
 How quickly the algorithm’s time/space

requirement grows as a function of the problem
size?

 Measure the efficiency of an algorithm as a
growth rate function of the algorithm.
 An estimating technique!

 But, proved to be useful!

42Algorithms

 Why not the exact time behavior of an
algorithm?

43Algorithms

 The asymptotic running time of the algorithm
A for the problem size n: GrowthRateTimeA(n)

44

The (Asymptotic) Efficiency of an Algorithm =

A Growth Rate of the Function of the Problem Size

How it grows?

Algorithms

 Types of algorithms?
 The time complexity (running time) of an

algorithm?
 Time complexity cases?
 Asymptotic behavior?
 Why not the exact behavior of an algorithm?

45Algorithms

 For asymptotic upper bound

Big-O
 For asymptotic lower bound

Big-

 Big-

46Algorithms

 Upper Bound
 Lower Bound

47Algorithms

 An asymptotic bound as function of the size
of the input, on the worst (slowest, most
amount of space used) an algorithm will take
to solve a problem.

 No input will cause the algorithm to use more
resources than the bound.

48Algorithms

 Let f(n) be a function which is non-negative
for all integers n  0.

49

f(n) = O (g(n))

f(n) Є O (g(n))

“f(n) is big-oh g(n)”

if

there exist a constant c  0 and a constant n0

such that

f(n)  c  g(n) for all integers n  n0.

Algorithms

 Drop all but the most significant terms.

 O(n2 + n log n + n + 1) O(n2)

 O(n log n + n + 1) O(n log n)

 O(n + 1) O(n)

 Drop constant (usually small!) coefficients.

 O(2 n2) O(n2)

 O(1024) O(1)

50

What dominates?

Algorithms

 log n = O(n)
 n = O(n)
 100 n + 10 log n = O(n)
 Example 1.7
 Example 1.8
 Example 1.9
 Example 1.10
 Example 1.11

51Algorithms

 A constant growth rate O(1)
 A logarithmic logarithmic growth rate (log

(log N))
 A logarithmic growth rate (log N)
 A logarithmic squared growth rate (log 2 N)
 A linear growth rate O(N)
 A linear-logarithmic (?) growth rate O(N log

N)

52Algorithms

 A quadratic growth rate O(N2)
 A cubic growth rate O(N3)
 A polynomial growth rate O(Nk) for a

constant k.
 An exponential growth rate O(2N)
 A factorial growth rate O(N!)

53Algorithms

 O(1)
 O(log N)
 O(N)
 O(N log N)
 O(N2)
 O(2N)

54Algorithms

 The amount of space or time is independent
of the amount of data.

 If the amount of data doubles, the amount of
space or time will stay the same!

 Example:

 An item can be added to the beginning of a linked
list in constant time independent of the number of
items in the list.

55Algorithms

 If the amount of data doubles, the amount of
space or time will increase by 1!

 Example:

 The worst-case time for binary search is
logarithmic in the size of the array.

56Algorithms

 If the amount of data doubles, the amount of
space or time will also double!

 Example:

 The time needed to print all of the values stored in
an array is linear in the size of the array.

57Algorithms

 If the amount of data doubles, the amount of
space or time will quadruple!

 Example:

 The amount of space needed to store a two-
dimensional square array is quadratic in the
number of rows.

58Algorithms

 If the amount of data increase by 1, the
amount of space or time will double!

 Example:

 The number of moves required to solve the
Towers of hanoi puzzle is exponential in the
number of disks used.

59Algorithms

 O(1)
 O(log N)
 O(N)
 O(N log N)
 O(N2)
 O(2N)

60Algorithms

61

O(N!)

O(2N)

O(N3)

O(N2)

O(N log N)

O(N)

O(log 2 N)

O(log N)

O(log (log N))

O(1)
Algorithms

 Figure 1.3

62Algorithms

 Table 1.3
 Table 1.4

63Algorithms

 An asymptotic bound as function of the size
of the input, on the best (fastest, least
amount of space used) an algorithm will take
to solve a problem.

 No algorithm can use fewer resources than the
bound.

64Algorithms

 Let f(n) be a function which is non-negative
for all integers n  0.

65

f(n) = (g(n))

f(n) Є (g(n))

“f(n) is (big-)omega g(n)”

if

there exist a constant c  0 and a constant n0

such that

c  g(n)  f(n) for all integers n  n0.

Algorithms

 n = (n)
 n2 = (n)
 2n = (n)
 Example 1.12
 Example 1.13
 Example 1.14
 Example 1.15

66Algorithms

 Let f(n) be a function which is non-negative
for all integers n  0.

67

f(n) =  (g(n))
f(n) Є  (g(n))

“f(n) is (big-) theta g(n)”

if and only if

f(n) is O (g(n)) and f(n) is (g(n))

Algorithms

 Example 1.16
 Figure 1.6

68Algorithms

69Algorithms

 If f(n) = am nm + … +a1 n + a0 then f(n) = O(nm)
 If f(n) = am nm + … +a1 n + a0 then f(n) = (nm)
 If f(n) = am nm + … +a1 n + a0 then f(n) = (nm)

70Algorithms

71

O(1) O(log N) O(N) O(N log N) O(N2) O(2N)F =

Tight bound Loose bound

(1) (log N) (N) (N log N) (N2) (2N) F=

Loose bound Tight bound

Algorithms

 Notations for Asymptotic Behavior?
 Big-O Notation for (Asymptotic) Upper

Bound?
 Big-Notation for (Asymptotic) Lower

Bounds?

72Algorithms

73

The Order (Growth Rate) of an Algorithm is more important

than the Speed of a Computer.

Algorithms

 If an O(n2) algorithm takes 3.1 msec to run on
an array of 200 elements, how long would
you expect it to take to run on a similar array
of 40,000 elements?

 c  2002 =3.1 msec  c = 3.1 / 2002

 c  400002 = (3.1 / 2002) 400002 = 124000 msec

 124000 msec = 124 seconds

74Algorithms

 If an O(n log n) algorithm takes 3.1 msec to
run on an array of 200 elements, how long
would you expect it to take to run on a similar
array of 40,000 elements?

 1240 msec 1.24 seconds

 c  (200 log200) =3.1 msec  c = 3.1 / (200 log200)

 c  (40000 log40000) = (3.1 /200 log200) (40000 log40000)
= 1240 msec

75Algorithms

 If an O(n) algorithm takes 3.1 msec to run on
an array of 200 elements, how long would
you expect it to take to run on a similar array
of 40,000 elements?

 620 msec .620 seconds

 c  200 =3.1 msec  c = 3.1 / 200

 c  40000 = (3.1 / 200) 40000 = 620 msec

76Algorithms

 If an O(log n) algorithm takes 3.1 msec to run
on an array of 200 elements, how long would
you expect it to take to run on a similar array
of 40,000 elements?

 6.2 msec .0062 seconds

 c  log200 =3.1 msec  c = 3.1 / log200

 c  log40000 = (3.1 / log200) log40000 = 6.2 msec

77Algorithms

 Suppose you have a computer that requires 1
minute to solve problem instances of size n
=1,000. Suppose you buy a new computer
that runs 1,000 times faster than the old one.
What instance sizes can be run in 1 minute,
assuming the following time complexities
T(n) = n for our algorithm?

 c  1000 = 1 min = c/1000  n
 n = 106

78Algorithms

 Suppose you have a computer that requires 1
minute to solve problem instances of size n
=1,000. Suppose you buy a new computer that
runs 1,000 times faster than the old one. What
instance sizes can be run in 1 minute, assuming
the following time complexities T(n) = n2 for our
algorithm?

 104.5

 c  10002 = 1 min = c/1000  n2

79Algorithms

80Algorithms

 Depends on the type of an algorithm!

1. Iterative algorithms

 Summation

2. Recursive algorithms

 Recurrence equation/relation

81Algorithms

 Iterative algorithms

Summation

82Algorithms



 Single assignment statement

 O(1)

 Simple expression

 O(1)

 Statement1; Statement2; …;Statementn

 The maximum of O(Statement1), O(Statement2),
…, and O(Statementn).

83Algorithms

 IF Condition THEN Statement1 ELSE
Statement2;

 O(Condition) + The maximum of O(Statement1)
and O(Statement2).

 The maximum of O(Condition), O(Statement1)
and O(Statement2).

84Algorithms

 FOR (i=1; i<=N; i++) Statement

 O(NStatement) where N= The number of loop
iterations.

 FOR (S1 ; S2 ; S3) Statement

 O(S1 + S2(N+1) + S3N + StatementN)

 The maximum of O(S1), O(S2 (N+1)), O(S3 N)
and O(Statement N)

85Algorithms

 WHILE (condition) Statement

 O(NStatement) where N= The number of loop
iterations.

86Algorithms

87

1 sum = 0;

2 for (i=1; i<=n; i++)

3 sum += n;

Total = O(n)

Algorithms

88

1 sum1 = 0;

2 for (i=1; i<=n; i++)

3 for (j=1; j<=n; j++)

4 sum1 ++;

Total = O(n2)

i=1,n j=1,n 1 = n2

Algorithms

89

1 sum2 = 0;

2 for (i=1; i<=n; i++)

3 for (j=1; j<=i; j++)

4 sum2 ++;

Total = O(n2)

i=1,n j=1,i 1 = n(n+1)/2

Algorithms

90

1 sum1 = 0;

2 for (i=1; i<=n; i++)

3 for (j=1; j<=n; j++)

4 sum1 ++;

5 sum2 = 0;

6 for (i=1; i<=n; i++)

7 for (j=1; j<=i; j++)

8 sum2 ++;
Total = O(n2)

Algorithms

91

1 sum = 0;

2 for (j=1; j<=n; j++)

3 for (i=1; i<=j; i++)

4 sum ++;

5 for (k=0; k<=n; k++)

6 A[k] = k;

Total = O(n2)

Algorithms

92

1 sum1 = 0;

2 for (i=1; i<=n; i*=2)

3 for (j=1; j<=n; j++)

4 sum1 ++;

Total = O(n log n)

i=0,log n j=1,n 1 = n (log n+1)

Assume n = 2k

Algorithms

i = 1, 2, 4, 8, …, n i = 20 21 22 23 … 2log n

i=1,2,4,8,…,n (j=1,n 1) = ?

93

1 sum2 = 0;

2 for (i=1; i<=n; i*=2)

3 for (j=1; j<=i; j++)

4 sum2 ++;

Total = O(n)

Assume n = 2k

i=0,n 2i = 2 (n+1) -1

Algorithms

Example A.3

2log2n = n
Example A.8

i = 1, 2, 4, 8, …, n

i=1,2,4,8,…,n (j=1,i 1)

= 1 + 2 + 4 + 8 + … + n

= 20 + 21 + 22 +23 + … +2log n

= i=0,log n 2i

= 2n - 1

94

1 sum1 = 0;

2 for (i=1; i<=n; i*=2)

3 for (j=1; j<=n; j++)

4 sum1 ++;

5 sum2 = 0;

6 for (i=1; i<=n; i*=2)

7 for (j=1; j<=i; j++)

8 sum2 ++;
Total = O(n log n)

Algorithms

95

1 int fun(int n)

2 {

3 int count = 0;

4 for (int i = n; i > 0; i /= 2)

5 for (int j = 0; j < i; j++)

6 count += 1;

7 return count;

8 }

Total = O(n)

Algorithms

 Algorithm 1.5

 Binary Search – Iterative

O(log N)

96Algorithms

 Recursive algorithms

Recurrence equation/relation

97Algorithms

 The running time of an recursive algorithm
can often be described by a recurrence
relation or equation.

 A mathematical formula that generates the terms
in a sequence from previous terms.

98Algorithms

99

1 unsigned int Factorial (unsigned int n)

2 {

3 if (n == 0)

4 return 1;

5 else

6 return n * Factorial (n-1);
7 }

1

2

3 O(1)

4 O(1)

5

6 Factorial (n-1)
7 }

T(n) = O(1) if n=0

T(n) = T(n-1) + O(1) if n>0

Algorithms

100

T(n) = T(n-1) + O(1)

= T(n-2) + O(1) + O(1)

= T(n-3) + O(1) + O(1) + O(1)

= T(n-4) + O(1) + O(1) + O(1) + O(1)

.

.

= T(0) + O(1) + O(1) + ……. + O(1)

= O(1) + n x O(1)

= O(n)

T(n) = O(1) if n=0

T(n) = T(n-1) + O(1) if n>0

Algorithms

101

1 unsigned int Factorial (unsigned int n)

2 {

3 if (n == 0)

4 return 1;

5 else

6 return n * Factorial (n-1);
7 }

1

2

3 O(1)

4 O(1)

5

6 Factorial (n-1)
7 }

T(n) = O(1) if n=0

T(n) = T(n-1) + O(1) if n>0
Total = O(n)

Algorithms

 T(n) = T(n-1) + 1 if n>0

 T(0) = 1
 T(n) = T(n-1) + 1

 = T(n-2) + 1 + 1

 = T(n-3) + 1 + 1 + 1

 = T(n-4) + 1 + 1 + 1 + 1

 .

 .

 = T(n-n) + 1 + 1 + ……. + 1

 = 1 + n x 1

 = 1 + n

 = O(n)

 O(n)

102Algorithms

 T(n) = T(n-1) + n if n>0
 T(0) = 1

 T(n) = T(n-1) + n

 = T(n-2) + (n-1) + n

 = T(n-3) + (n-2) + (n-1) + n

 = T(n-4) + (n-3) + (n-2) + (n-1) + n

 .

 .

 = T(n-n) + 1 + 2 + ……. + (n-2) + (n-1) + n

 = 1 + 1 + 2 + ……. + (n-2) + (n-1) + n

 = 1 + n (n+1)/2

 = O(n2)

 O(n2)
 Example B.21

103Algorithms

 T(n) = T(n/2) + 1 if n>0
 T(1) = 1

 T(n) = T(n/21) + 1

 = T(n/22) + 1 + 1

 = T(n/23) + 1 + 1 + 1

 = T(n/24) + 1 + 1 + 1 + 1

 .

 .

 = T(n/2log n) + 1 + 1 + ……. + 1

 = 1 + log n x 1

 = 1 + log n

 = O(log n)

 O(log n)
 Example B.1

104Algorithms

 T(n) = 3 T(n-1)
 T(n) = n T(n-1)
 T(n) = 2 T(n/2) + n

105Algorithms

 T(n) = 3 T(n-1)

O(3n)

 T(n) = n T(n-1)

O(n!)

 T(n) = 2 T(n/2) + n

O(n log n)

106Algorithms

107

1 int recursive (int n) {

2 if(n == 1)

3 return (1);

4 else

5 return (recursive (n-1) + recursive (n-1));

6 }

T(n) = 2 T(n-1) + 1
O(2n)

Algorithms

 T(n) = aT(n/b) + c*n^k
 T(1) = d

 T(n) = O(n^k) if a < b^k

 T(n) = O(n^k log n) if a = b^k

 T(n) = O(n^log _b(a)) if a > b^k

 Theorem B.5 A Master Theorem

 Example B.26

 Example B.27

108Algorithms

 T(n) = T(n/2) + 1
 T(n) = 4 T(n/2) + n
 T(n) = T (n/2) + n2

 T(n) = 2 T(n/2) + n
 T(n) = 2 T(n/2) + 1

109Algorithms

 T(n) = T(n/2) + 1

 O(log n)

 T(n) = 4 T(n/2) + n

 O(n2)

 T(n) = T (n/2) + n2

 O(n2)

 T(n) = 2 T(n/2) + n

 O(n log n)

 T(n) = 2 T(n/2) + 1

 O(n)

110Algorithms

 Theorem B.6 A Master Theorem

 Example B.28

111Algorithms

 Exercise 25 (Appendix B)

112Algorithms

 T(n) = T(n-1) + (1)

 T(n) = O(n)

 T(n) = T(n-1) + (n)

 T(n) = O(n2)

113Algorithms

 T(n) = T(n/2) + (1)

 T(n) = O(log n)

114Algorithms

Example B.1 & Example B.18

 T(n) = 2T(n/2) + (1)

 T(n) = O(n)

 T(n) = 2 T(n/2) + (n)

 T(n) = O(n log n)

115Algorithms

Example B.19

 T(n) = O(1) if n=1

 T(n) = T(n/2) + O(n) if n>1

116Algorithms

 T(n) = O(1) if n=1

 T(n) = T(n/3) + O(1) if n>1

117Algorithms

 T(n) = O(1) if n=1

 T(n) = 8T(n/2) if n>1

118Algorithms

xlogay = ylogax Example A.8

 T(n) = O(1) if n=1
 T(n) = 8T(n/2) + n2 if n>1

119Algorithms

 T(n) = O(1) if n=1

 T(n) = 7T(n/2) if n>1

120Algorithms

 T(n) = O(1) if n=1
 T(n) = 7T(n/2) + n2 if n>1

121Algorithms

 T(n) = O(1) if n=1

 T(n) = 2T(n-1) + O(1) if n>1

122Algorithms

 T(n) = 0 if n=1

 T(n) = T(n-1) + 2/n if n>1

123Algorithms

Example B.22
Example A.8

 So far, we considered the worst/average cost
for a single operation

 How about the cost for a series/sequence of N
operations?
 N times the worst-case cost of any one operation.

 Or better cost?
 Observation?
 Any one particular operation may be slow, but the

average time over a sufficiently large number of
operations is fast.

124Algorithms

 Cost for a series/sequence of N operations?
 The amortized cost of N operations is the

total cost of the operations divided by N.

Amortized analysis!

 Self-Adjusting Data Structures!

125Algorithms

 Time requirements for an algorithm that
manipulates a data structure.

 Space requirements for the data structure
itself.

126Algorithms

127

One can often achieve a reduction in

time requirements if one is willing to

sacrifice space requirements

or vice versa.

Algorithms

 Chapter 1:

 1.1

 1.2

 1.3 (1.3.1 & 1.3.2 only)

 1.4 (1.4.1 & 1.4.2 only)

 1.5

128Algorithms

