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 A problem is a question to which we seek an 
answer.

 Example 1.1 sorting

 Example 1.2 searching

 An instance of the problem.

 Example 1.3

 Example 1.4

 Computational problems
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 A computing problem ?
 An instance of the problem.

 The Selection Problem?
 An instance of the selection problem?
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 The sorting problem
 The searching problem
 The selection problem
 …
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 Input (and store) data.
 Process (manipulate) data. (algorithms)
 Output data. 
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 A simple data

 Consists of atomic data items (values).

 A structured data

 Consists of collections of data items (values), all 
related to each other in certain ways.

 A particular way of storing and organizing data so 
that it can be used efficiently.

 Data Structures 

8Algorithms



 Arrays
 Linked lists
 Stacks
 Queues
 Binary heaps
 Hash tables
 Binary trees
 Binary search trees
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 Skip lists
 Self-organizing lists
 Graphs
 Leftist heaps
 Skew heaps
 AVL trees
 Splay trees
 2-3 trees
 2-3-4 trees
 Red-Black trees
 B-trees
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 Operations that manipulate the data items in 
the data structures. (mini-algorithms!)

 Algorithms that use these operations.

 A general step-by-step procedure for producing 
the solution to each instance of a problem. 

 Example 1.5  Sequential Search

 Efficient data structures are a key to 
designing efficient algorithms!
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 Divide-and-Conquer
 Dynamic Programming
 Greedy Approach
 Backtracking
 Branch-and-Bound
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 Efficient Solution = 

 Efficient Data Structures + 

 Efficient Operations + 

 Efficient Algorithms

 QUIZ: Does every problem have an 
algorithm? 
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 The study of all possible algorithms that can 
solve a given problem. 

 Determines a lower bound on the efficiency 
of all algorithms for a given problem. 

 Lower Bound for fundamental problems:

 The sorting problem

 The searching problem

 The selection problem
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 The sorting problem?

 …

 The searching problem?

 …

 The selection problem?

 …
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 Tractable Problems
 A problem is called tractable if an efficient (polynomial 

running time P) algorithm is possible.
▪ The sorting problem

▪ The searching problem

▪ The selection problem

▪ …

 Intractable (Hard) Problems
 A problem is called  intractable if an efficient algorithm is 

not possible.

▪ NP and NP-complete problems
▪ …
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 Tractable Problems?

 …

 Intractable (Hard) Problems?

 …
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 An implementation of a solution (design)!
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 Correctness
 Efficiency
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 Iterative algorithms

 Using iteration

 Recursive algorithms 

 Using recursion
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 Algorithm 1.1 Sequential Search - Iterative

 Algorithm 1.2 Add Array Members

 Algorithm 1.3 Exchange Sort

 Algorithm 1.4 Matrix Multiplication

 Algorithm 1.5 Binary Search – Iterative
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 Algorithm 1.1 Sequential Search

 Linear time O(N)

 How to improve?

 Idea?

 Sorting + Search

 Divide-and-Conquer

 Top-down
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 Algorithm 1.5 Binary Search – Iterative

 Divide-and-Conquer

 Top-down

 O(log N)

24Algorithms



 Comparison of Binary Search and Sequential 
Search:

 Table 1.1 Comparison
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 Write an iterative Sequential Search 
algorithm?

 Algorithm 1.1 

 Write an iterative Binary Search algorithm?

 Algorithm 1.5
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 Fib(n) = Fib(n – 1) + Fib(n – 2) for n >= 2;  
 Fib(0) =0 
 Fib(1) = 1
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 Algorithm 1.6 nth Fibonacci Term (Recursive)

 Divide-and-Conquer

 Top-down

 Exponential time O(2N)  
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 fib(5)?

 Fig 1.2
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 fib(n)?

 Table

 T(n) = The number of terms in the recursion tree

 Theorem 1.1

 This algorithm is extremely inefficient.
 How to improve?
 Idea?

 Dynamic Programming

 Bottom-up
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 Algorithm 1.7 nth Fibonacci Term (Iterative)

 Dynamic Programming

 Bottom-up

 Linear time O(N)
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 Comparison of Algorithm 1.6 nth Fibonacci 
Term (Recursive) and Algorithm 1.7 nth 
Fibonacci Term (Iterative):
 Table 1.2 Comparison

 Algorithm 1.6 nth Fibonacci Term (Recursive)
▪ Divide-and-Conquer

▪ Top-down

 Algorithm 1.7 nth Fibonacci Term (Iterative)
▪ Dynamic Programming

▪ Bottom-up
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 Measure the efficiency of an algorithm in 
terms of 

 Time (required for an algorithm)

 Space (required for a data structure) 

 Complexity Theory!

 Time complexity

 Space complexity
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 Algorithm analysis measures the efficiency of 
an algorithm as a function of the input size. 

 We want a measure that is independent of 

 the computer, 

 the programming language, 

 the programmer, and 

 all the complex details of the algorithm. 
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 In general, the running time of the algorithm 
increases with the size of the input. 

 The total running time is proportional to how 
many times some basic operation is done. 

 Therefore, we analyze an algorithm’s 
efficiency by determining 

 the number of some basic operation as a 
function of the size of the input. 
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 A time complexity analysis determines how 
many times the basic operation is done for 
each value of the input size. 

 There is no hard and fast rule for choosing the 
basic operation. 

 It is largely a matter of judgment and experience. 
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 Every Case Time
 Worst Case Time
 Average Case Time
 Best Case Time
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 T(n) = the number of times the algorithm 
does the basic operation for an instance of 
size n. 
 Called the every-case time complexity of the 

algorithm.
 Analysis of Algorithm 1.2 (Add Array 

Members)
 Analysis of Algorithm 1.3 (Exchange Sort)
 Analysis of Algorithm 1.4 (Matrix 

Multiplication)
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 W(n) = the maximum number of times the 
algorithm will ever do its basic operation for 
an input size of n. 

 Called the worst case time complexity of the 
algorithm.

 Analysis of Algorithm 1.1 (Sequential Search)
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 A(n) = the average (expected) value of the 
number of times the algorithm does the basic 
operation for an input size of n.

 Called an average-case time complexity analysis.

 Analysis of Algorithm 1.1 (Sequential Search)
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 B(n) = the minimum number of times the 
algorithm will ever do its basic operation for 
an input size of n .

 Called the best-case time complexity of the 
algorithm.

 Analysis of Algorithm 1.1 (Sequential Search)
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 The behavior of an algorithm for very large 
problem sizes.
 How quickly the algorithm’s time/space 

requirement grows as a function of the problem 
size?

 Measure the efficiency of an algorithm as a 
growth rate function of the algorithm.
 An estimating technique!

 But, proved to be useful!
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 Why not the exact time behavior of an 
algorithm? 
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 The asymptotic running time of the algorithm 
A for the problem size n: GrowthRateTimeA(n)
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The (Asymptotic) Efficiency of an Algorithm = 

A Growth Rate of the Function of the Problem Size

How it grows?
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 Types of algorithms?
 The time complexity (running time) of an 

algorithm?
 Time complexity cases?
 Asymptotic behavior?
 Why not the exact behavior of an algorithm? 
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 For asymptotic upper bound

Big-O
 For asymptotic lower bound

Big-

 Big-
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 Upper Bound
 Lower Bound

47Algorithms



 An asymptotic bound as function of the size 
of the input, on the worst (slowest, most 
amount of space used) an algorithm will take 
to solve a problem. 

 No input will cause the algorithm to use more 
resources than the bound. 
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 Let f(n) be a function which is non-negative 
for all integers n  0.
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f(n) = O (g(n)) 

f(n) Є O (g(n)) 

“f(n) is big-oh g(n)” 

if 

there exist a constant c  0 and a constant n0

such that 

f(n)  c  g(n) for all integers n  n0.
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 Drop all but the most significant terms.

 O(n2 + n log n + n + 1) O(n2 )

 O(n log n + n + 1) O(n log n)

 O(n + 1) O(n)

 Drop constant (usually small!) coefficients.

 O(2 n2) O(n2)

 O(1024) O(1)

50

What dominates?
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 log n = O(n)
 n = O(n)
 100 n + 10 log n = O(n)
 Example 1.7
 Example 1.8
 Example 1.9
 Example 1.10
 Example 1.11
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 A constant growth rate O(1) 
 A logarithmic logarithmic growth rate  (log 

(log N))
 A logarithmic growth rate  (log N)
 A logarithmic squared growth rate  (log 2 N)
 A linear growth rate O(N)
 A linear-logarithmic (?) growth rate O(N log 

N) 
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 A quadratic growth rate  O(N2)
 A cubic growth rate O(N3) 
 A polynomial growth rate O(Nk) for a 

constant k.
 An exponential growth rate O(2N)
 A factorial growth rate O(N!)
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 O(1) 
 O(log N)
 O(N)
 O(N log N) 
 O(N2)
 O(2N)
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 The amount of space or time is independent 
of the amount of data.

 If the amount of data doubles, the amount of 
space or time will stay the same!

 Example: 

 An item can be added to the beginning of a linked 
list in constant time independent of the number of 
items in the list.
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 If the amount of data doubles, the amount of 
space or time will increase by 1!

 Example:

 The worst-case time for binary search is 
logarithmic in the size of the array.
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 If the amount of data doubles, the amount of 
space or time will also double!

 Example:

 The time needed to print all of the values stored in 
an array is linear in the size of the array.
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 If the amount of data doubles, the amount of 
space or time will quadruple!

 Example:

 The amount of space needed to store a two-
dimensional square array is quadratic in the 
number of rows.
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 If the amount of data increase by 1, the 
amount of space or time will double!

 Example:

 The number of moves required to solve the 
Towers of hanoi puzzle is exponential in the 
number of disks used.
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 O(1) 
 O(log N)
 O(N)
 O(N log N) 
 O(N2)
 O(2N)
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O(N!)

O(2N)

O(N3)

O(N2)

O(N log N)

O(N)

O(log 2 N) 

O(log N) 

O(log (log N))

O(1)
Algorithms



 Figure 1.3
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 Table 1.3
 Table 1.4
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 An asymptotic bound as function of the size 
of the input, on the best (fastest, least 
amount of space used) an algorithm will take 
to solve a problem. 

 No algorithm can use fewer resources than the 
bound. 
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 Let f(n) be a function which is non-negative 
for all integers n  0.
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f(n) = (g(n)) 

f(n) Є (g(n)) 

“f(n) is (big-)omega g(n)” 

if 

there exist a constant c  0 and a constant n0

such that 

c  g(n)  f(n) for all integers n  n0.
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 n  = (n)
 n2 = (n)
 2n = (n)
 Example 1.12
 Example 1.13
 Example 1.14
 Example 1.15
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 Let f(n) be a function which is non-negative 
for all integers n  0.
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f(n) =  (g(n))
f(n) Є  (g(n))

“f(n) is (big-) theta g(n)” 

if  and only if 

f(n) is O (g(n)) and f(n) is (g(n)) 
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 Example 1.16
 Figure 1.6
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 If f(n) = am nm + … +a1 n + a0 then f(n) = O(nm)
 If f(n) = am nm + … +a1 n + a0 then f(n) = (nm)
 If f(n) = am nm + … +a1 n + a0 then f(n) = (nm)
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O(1)   O(log N)   O(N)  O(N log N)  O(N2) O(2N)F =

Tight bound Loose bound

(1) (log N) (N) (N log N) (N2) (2N) F=

Loose bound Tight bound
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 Notations for Asymptotic Behavior?
 Big-O Notation for (Asymptotic) Upper 

Bound?
 Big-Notation for (Asymptotic) Lower 

Bounds?
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The Order (Growth Rate) of an Algorithm is more important 

than the Speed of a Computer.
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 If an O(n2) algorithm takes 3.1 msec to run on 
an array of 200 elements, how long would 
you expect it to take to run on a similar array 
of 40,000 elements?

 c  2002 =3.1 msec    c = 3.1 / 2002 

 c  400002  = (3.1 / 2002 ) 400002  = 124000 msec

 124000 msec  = 124 seconds
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 If an O(n log n) algorithm takes 3.1 msec to 
run on an array of 200 elements, how long 
would you expect it to take to run on a similar 
array of 40,000 elements?

 1240 msec   1.24 seconds

 c  (200 log200) =3.1 msec    c = 3.1 / (200 log200)

 c  (40000 log40000) = (3.1 /200 log200) (40000 log40000)
= 1240 msec
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 If an O(n) algorithm takes 3.1 msec to run on 
an array of 200 elements, how long would 
you expect it to take to run on a similar array 
of 40,000 elements?

 620 msec   .620 seconds

 c  200 =3.1 msec    c = 3.1 / 200

 c  40000 = (3.1 / 200) 40000 = 620 msec
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 If an O(log n) algorithm takes 3.1 msec to run 
on an array of 200 elements, how long would 
you expect it to take to run on a similar array 
of 40,000 elements?

 6.2 msec    .0062  seconds

 c  log200 =3.1 msec    c = 3.1 / log200

 c  log40000 = (3.1 / log200) log40000 = 6.2 msec
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 Suppose you have a computer that requires 1 
minute to solve problem instances of size n 
=1,000. Suppose you buy a new computer 
that runs 1,000 times faster than the old one. 
What instance sizes can be run in 1 minute, 
assuming the following time complexities 
T(n) = n for our algorithm?

 c  1000 = 1 min  =  c/1000  n
 n = 106
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 Suppose you have a computer that requires 1 
minute to solve problem instances of size n 
=1,000. Suppose you buy a new computer that 
runs 1,000 times faster than the old one. What
instance sizes can be run in 1 minute, assuming 
the following time complexities T(n) = n2 for our 
algorithm?

 104.5

 c  10002 = 1 min  =  c/1000  n2
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 Depends on the type of an algorithm!

1. Iterative algorithms

 Summation

2. Recursive algorithms

 Recurrence equation/relation
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 Iterative algorithms

Summation
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 Single assignment statement

 O(1)

 Simple expression

 O(1)

 Statement1; Statement2; …;Statementn

 The maximum of O(Statement1), O(Statement2), 
…, and O(Statementn).

83Algorithms



 IF Condition THEN Statement1 ELSE 
Statement2; 

 O(Condition) + The maximum of O(Statement1) 
and O(Statement2).

 The maximum of O(Condition), O(Statement1) 
and O(Statement2).
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 FOR (i=1; i<=N; i++) Statement

 O(NStatement) where N= The number of loop 
iterations.

 FOR (S1 ;  S2 ; S3) Statement

 O(S1 + S2(N+1) + S3N + StatementN) 

 The maximum of O(S1), O(S2 (N+1)), O(S3 N) 
and O(Statement N)
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 WHILE (condition) Statement

 O(NStatement) where N= The number of loop 
iterations.
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1 sum = 0;

2 for (i=1; i<=n; i++)

3 sum += n;

Total = O(n)

Algorithms
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1 sum1 = 0;

2 for (i=1; i<=n; i++)

3 for (j=1; j<=n; j++) 

4 sum1 ++;

Total = O(n2)

i=1,n j=1,n 1 = n2
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1 sum2 = 0;

2 for (i=1; i<=n; i++)

3 for (j=1; j<=i; j++) 

4 sum2 ++;

Total = O(n2)

i=1,n j=1,i 1 = n(n+1)/2
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1 sum1 = 0;

2 for (i=1; i<=n; i++)

3 for (j=1; j<=n; j++) 

4 sum1 ++;

5 sum2 = 0;

6 for (i=1; i<=n; i++)

7 for (j=1; j<=i; j++) 

8 sum2 ++;
Total = O(n2)
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1 sum = 0;

2 for (j=1; j<=n; j++)

3 for (i=1; i<=j; i++) 

4 sum ++;

5 for (k=0; k<=n; k++)

6 A[k] = k;

Total = O(n2)
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1 sum1 = 0;

2 for (i=1; i<=n; i*=2)

3 for (j=1; j<=n; j++) 

4 sum1 ++;

Total = O(n log n)

i=0,log n j=1,n 1 = n (log n+1)

Assume n = 2k

Algorithms

i = 1, 2, 4, 8, …, n i = 20 21 22 23 … 2log n

i=1,2,4,8,…,n  (j=1,n  1) = ?
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1 sum2 = 0;

2 for (i=1; i<=n; i*=2)

3 for (j=1; j<=i; j++) 

4 sum2 ++;

Total = O(n)

Assume n = 2k

i=0,n  2i = 2 (n+1) -1

Algorithms

Example A.3

2log2n = n
Example A.8 

i = 1, 2, 4, 8, …, n

i=1,2,4,8,…,n  (j=1,i 1)

= 1 + 2 + 4 + 8 + … + n

= 20 + 21 + 22 +23 + … +2log n

= i=0,log n  2i

= 2n  - 1
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1 sum1 = 0;

2 for (i=1; i<=n; i*=2)

3 for (j=1; j<=n; j++) 

4 sum1 ++;

5 sum2 = 0;

6 for (i=1; i<=n; i*=2)

7 for (j=1; j<=i; j++) 

8 sum2 ++;
Total = O(n log n)

Algorithms
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1 int fun(int n)

2 {

3 int count = 0;

4 for (int i = n; i > 0; i /= 2)

5 for (int j = 0; j < i; j++)

6 count += 1;

7 return count;

8 }

Total = O(n)
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 Algorithm 1.5 

 Binary Search – Iterative

O(log N)
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 Recursive algorithms

Recurrence equation/relation
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 The running time of an recursive algorithm 
can often be described by a recurrence 
relation or equation.

 A mathematical formula that generates the terms 
in a sequence from previous terms.

98Algorithms



99

1     unsigned int Factorial (unsigned int n)

2     {

3        if (n == 0)

4           return 1;

5        else

6           return n * Factorial (n-1);
7    }   

1

2

3 O(1)

4 O(1)

5

6  Factorial (n-1)
7    }   

T(n) = O(1)                  if n=0

T(n) = T(n-1) + O(1)    if n>0
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T(n) = T(n-1) + O(1)

= T(n-2) + O(1) + O(1)

= T(n-3) + O(1) + O(1) + O(1)

= T(n-4) + O(1) + O(1) + O(1) + O(1)

.

.

= T(0) + O(1) + O(1) + ……. + O(1)

= O(1) +  n x O(1)

= O(n)

T(n) = O(1)                  if n=0

T(n) = T(n-1) + O(1)    if n>0
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1     unsigned int Factorial (unsigned int n)

2     {

3        if (n == 0)

4           return 1;

5        else

6           return n * Factorial (n-1);
7    }   

1

2

3 O(1)

4 O(1)

5

6  Factorial (n-1)
7    }   

T(n) = O(1)                  if n=0

T(n) = T(n-1) + O(1)    if n>0
Total = O(n)
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 T(n) = T(n-1) + 1 if n>0 

 T(0) = 1
 T(n) = T(n-1) + 1

 = T(n-2) + 1 + 1

 = T(n-3) + 1 + 1 + 1

 = T(n-4) + 1 + 1 + 1 + 1

 .

 .

 = T(n-n) + 1 + 1 + ……. + 1

 = 1 +  n x 1

 = 1 + n

 = O(n)

 O(n)
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 T(n) = T(n-1) + n  if n>0
 T(0) = 1

 T(n) = T(n-1) + n

 = T(n-2) + (n-1) + n

 = T(n-3) + (n-2) + (n-1) + n

 = T(n-4) + (n-3) + (n-2) + (n-1) + n

 .

 .

 = T(n-n) + 1 + 2 + ……. + (n-2) + (n-1) + n

 = 1 + 1 + 2 + ……. + (n-2) + (n-1) + n

 = 1 + n (n+1)/2

 = O(n2)

 O(n2)
 Example B.21
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 T(n) = T(n/2) + 1 if n>0
 T(1) = 1

 T(n) = T(n/21) + 1

 = T(n/22) + 1 + 1

 = T(n/23) + 1 + 1 + 1

 = T(n/24) + 1 + 1 + 1 + 1

 .

 .

 = T(n/2log n) + 1 + 1 + ……. + 1

 = 1 +  log n x 1

 = 1 + log n

 = O(log n)

 O(log n)
 Example B.1
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 T(n) = 3 T(n-1)
 T(n) = n T(n-1)
 T(n) = 2 T(n/2) + n

105Algorithms



 T(n) = 3 T(n-1)

O(3n)

 T(n) = n T(n-1)

O(n!)

 T(n) = 2 T(n/2) + n

O(n log n)
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1 int recursive (int n) {

2 if(n == 1)

3 return (1);

4 else

5 return (recursive (n-1) + recursive (n-1));

6 }

T(n) = 2 T(n-1) + 1
O(2n)
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 T(n) = aT(n/b) + c*n^k
 T(1) = d

 T(n) = O(n^k)   if a < b^k

 T(n) = O(n^k log n)   if a = b^k

 T(n) = O(n^log _b(a))   if a > b^k

 Theorem B.5 A Master Theorem

 Example B.26

 Example B.27
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 T(n) = T(n/2) + 1
 T(n) = 4 T(n/2) + n
 T(n) = T (n/2) + n2 

 T(n) = 2 T(n/2) + n
 T(n) = 2 T(n/2) + 1
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 T(n) = T(n/2) + 1 

 O(log n)

 T(n) = 4 T(n/2) + n

 O(n2 ) 

 T(n) = T (n/2) + n2 

 O(n2 ) 

 T(n) = 2 T(n/2) + n

 O(n log n ) 

 T(n) = 2 T(n/2) + 1

 O(n ) 
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 Theorem B.6 A Master Theorem

 Example B.28
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 Exercise 25 (Appendix B)
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 T(n) = T(n-1) + (1)

 T(n) = O(n)

 T(n) = T(n-1) + (n)

 T(n) = O(n2)
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 T(n) = T(n/2) + (1)

 T(n) = O(log n)
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Example B.1 & Example B.18



 T(n) = 2T(n/2) + (1)

 T(n) = O(n)

 T(n) = 2 T(n/2) + (n)

 T(n) = O(n log n)
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Example B.19



 T(n) = O(1)                  if n=1

 T(n) = T(n/2) + O(n)             if n>1
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 T(n) = O(1)                  if n=1

 T(n) = T(n/3) + O(1)             if n>1
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 T(n) = O(1)                  if n=1

 T(n) = 8T(n/2)           if n>1
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xlogay = ylogax Example A.8 



 T(n) = O(1)                  if n=1
 T(n) = 8T(n/2) + n2 if n>1
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 T(n) = O(1)                  if n=1

 T(n) = 7T(n/2)           if n>1
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 T(n) = O(1)                  if n=1
 T(n) = 7T(n/2) + n2 if n>1
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 T(n) = O(1)                  if n=1

 T(n) = 2T(n-1) + O(1)          if n>1
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 T(n) = 0                              if n=1

 T(n) = T(n-1) + 2/n          if n>1
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Example B.22 
Example A.8 



 So far, we considered the worst/average cost 
for a single operation

 How about the cost for a series/sequence of N 
operations?
 N times the worst-case cost of any one operation.

 Or better cost?
 Observation?
 Any one particular operation may be slow, but the 

average time over a sufficiently large number of 
operations is fast.
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 Cost for a series/sequence of N operations?
 The amortized cost of N operations is the 

total cost of the operations divided by N.

Amortized analysis!

 Self-Adjusting Data Structures!
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 Time requirements for an algorithm that 
manipulates a data structure.

 Space requirements for the data structure 
itself.
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One can often achieve a reduction in 

time requirements if one is willing to 

sacrifice space requirements

or vice versa.
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 Chapter 1: 

 1.1 

 1.2

 1.3 (1.3.1 & 1.3.2 only)

 1.4 (1.4.1 & 1.4.2 only) 

 1.5
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