
Algorithms 1

2Algorithms

3

Problem ProgramSolution

computer

Algorithms

 A problem is a question to which we seek an
answer.

 Example 1.1 sorting

 Example 1.2 searching

 An instance of the problem.

 Example 1.3

 Example 1.4

 Computational problems

4Algorithms

 A computing problem ?
 An instance of the problem.

 The Selection Problem?
 An instance of the selection problem?

5Algorithms

 The sorting problem
 The searching problem
 The selection problem
 …

6Algorithms

 Input (and store) data.
 Process (manipulate) data. (algorithms)
 Output data.

7Algorithms

 A simple data

 Consists of atomic data items (values).

 A structured data

 Consists of collections of data items (values), all
related to each other in certain ways.

 A particular way of storing and organizing data so
that it can be used efficiently.

 Data Structures

8Algorithms

 Arrays
 Linked lists
 Stacks
 Queues
 Binary heaps
 Hash tables
 Binary trees
 Binary search trees

9Algorithms

 Skip lists
 Self-organizing lists
 Graphs
 Leftist heaps
 Skew heaps
 AVL trees
 Splay trees
 2-3 trees
 2-3-4 trees
 Red-Black trees
 B-trees

10Algorithms

 Operations that manipulate the data items in
the data structures. (mini-algorithms!)

 Algorithms that use these operations.

 A general step-by-step procedure for producing
the solution to each instance of a problem.

 Example 1.5 Sequential Search

 Efficient data structures are a key to
designing efficient algorithms!

11Algorithms

 Divide-and-Conquer
 Dynamic Programming
 Greedy Approach
 Backtracking
 Branch-and-Bound

12Algorithms

 Efficient Solution =

 Efficient Data Structures +

 Efficient Operations +

 Efficient Algorithms

 QUIZ: Does every problem have an
algorithm?

13Algorithms

 The study of all possible algorithms that can
solve a given problem.

 Determines a lower bound on the efficiency
of all algorithms for a given problem.

 Lower Bound for fundamental problems:

 The sorting problem

 The searching problem

 The selection problem

14Algorithms

 The sorting problem?

 …

 The searching problem?

 …

 The selection problem?

 …

15Algorithms

 Tractable Problems
 A problem is called tractable if an efficient (polynomial

running time P) algorithm is possible.
▪ The sorting problem

▪ The searching problem

▪ The selection problem

▪ …

 Intractable (Hard) Problems
 A problem is called intractable if an efficient algorithm is

not possible.

▪ NP and NP-complete problems
▪ …

16Algorithms

 Tractable Problems?

 …

 Intractable (Hard) Problems?

 …

17Algorithms

 An implementation of a solution (design)!

18

Program

Data
(Structures)

Operations

Algorithms

Program

Algorithms

Data#1 (Structure#1)
Operations#1

Data#2 (Structure#2)
Operations#2

Data#3 (Structure#3)
Operations#3

Data#n (Structure#n)
Operations#n

.

.

.

Algorithms

19Algorithms

 Correctness
 Efficiency

20Algorithms

 Iterative algorithms

 Using iteration

 Recursive algorithms

 Using recursion

21Algorithms

 Algorithm 1.1 Sequential Search - Iterative

 Algorithm 1.2 Add Array Members

 Algorithm 1.3 Exchange Sort

 Algorithm 1.4 Matrix Multiplication

 Algorithm 1.5 Binary Search – Iterative

22Algorithms

 Algorithm 1.1 Sequential Search

 Linear time O(N)

 How to improve?

 Idea?

 Sorting + Search

 Divide-and-Conquer

 Top-down

23Algorithms

 Algorithm 1.5 Binary Search – Iterative

 Divide-and-Conquer

 Top-down

 O(log N)

24Algorithms

 Comparison of Binary Search and Sequential
Search:

 Table 1.1 Comparison

25Algorithms

 Write an iterative Sequential Search
algorithm?

 Algorithm 1.1

 Write an iterative Binary Search algorithm?

 Algorithm 1.5

26Algorithms

 Fib(n) = Fib(n – 1) + Fib(n – 2) for n >= 2;
 Fib(0) =0
 Fib(1) = 1

27Algorithms

 Algorithm 1.6 nth Fibonacci Term (Recursive)

 Divide-and-Conquer

 Top-down

 Exponential time O(2N)

28Algorithms

 fib(5)?

 Fig 1.2

29Algorithms

 fib(n)?

 Table

 T(n) = The number of terms in the recursion tree

 Theorem 1.1

 This algorithm is extremely inefficient.
 How to improve?
 Idea?

 Dynamic Programming

 Bottom-up

30Algorithms

 Algorithm 1.7 nth Fibonacci Term (Iterative)

 Dynamic Programming

 Bottom-up

 Linear time O(N)

31Algorithms

 Comparison of Algorithm 1.6 nth Fibonacci
Term (Recursive) and Algorithm 1.7 nth
Fibonacci Term (Iterative):
 Table 1.2 Comparison

 Algorithm 1.6 nth Fibonacci Term (Recursive)
▪ Divide-and-Conquer

▪ Top-down

 Algorithm 1.7 nth Fibonacci Term (Iterative)
▪ Dynamic Programming

▪ Bottom-up

32Algorithms

 Measure the efficiency of an algorithm in
terms of

 Time (required for an algorithm)

 Space (required for a data structure)

 Complexity Theory!

 Time complexity

 Space complexity

33Algorithms

 Algorithm analysis measures the efficiency of
an algorithm as a function of the input size.

 We want a measure that is independent of

 the computer,

 the programming language,

 the programmer, and

 all the complex details of the algorithm.

34Algorithms

 In general, the running time of the algorithm
increases with the size of the input.

 The total running time is proportional to how
many times some basic operation is done.

 Therefore, we analyze an algorithm’s
efficiency by determining

 the number of some basic operation as a
function of the size of the input.

35Algorithms

 A time complexity analysis determines how
many times the basic operation is done for
each value of the input size.

 There is no hard and fast rule for choosing the
basic operation.

 It is largely a matter of judgment and experience.

36Algorithms

 Every Case Time
 Worst Case Time
 Average Case Time
 Best Case Time

37Algorithms

 T(n) = the number of times the algorithm
does the basic operation for an instance of
size n.
 Called the every-case time complexity of the

algorithm.
 Analysis of Algorithm 1.2 (Add Array

Members)
 Analysis of Algorithm 1.3 (Exchange Sort)
 Analysis of Algorithm 1.4 (Matrix

Multiplication)

38Algorithms

 W(n) = the maximum number of times the
algorithm will ever do its basic operation for
an input size of n.

 Called the worst case time complexity of the
algorithm.

 Analysis of Algorithm 1.1 (Sequential Search)

39Algorithms

 A(n) = the average (expected) value of the
number of times the algorithm does the basic
operation for an input size of n.

 Called an average-case time complexity analysis.

 Analysis of Algorithm 1.1 (Sequential Search)

40Algorithms

 B(n) = the minimum number of times the
algorithm will ever do its basic operation for
an input size of n .

 Called the best-case time complexity of the
algorithm.

 Analysis of Algorithm 1.1 (Sequential Search)

41Algorithms

 The behavior of an algorithm for very large
problem sizes.
 How quickly the algorithm’s time/space

requirement grows as a function of the problem
size?

 Measure the efficiency of an algorithm as a
growth rate function of the algorithm.
 An estimating technique!

 But, proved to be useful!

42Algorithms

 Why not the exact time behavior of an
algorithm?

43Algorithms

 The asymptotic running time of the algorithm
A for the problem size n: GrowthRateTimeA(n)

44

The (Asymptotic) Efficiency of an Algorithm =

A Growth Rate of the Function of the Problem Size

How it grows?

Algorithms

 Types of algorithms?
 The time complexity (running time) of an

algorithm?
 Time complexity cases?
 Asymptotic behavior?
 Why not the exact behavior of an algorithm?

45Algorithms

 For asymptotic upper bound

Big-O
 For asymptotic lower bound

Big-

 Big-

46Algorithms

 Upper Bound
 Lower Bound

47Algorithms

 An asymptotic bound as function of the size
of the input, on the worst (slowest, most
amount of space used) an algorithm will take
to solve a problem.

 No input will cause the algorithm to use more
resources than the bound.

48Algorithms

 Let f(n) be a function which is non-negative
for all integers n 0.

49

f(n) = O (g(n))

f(n) Є O (g(n))

“f(n) is big-oh g(n)”

if

there exist a constant c 0 and a constant n0

such that

f(n) c g(n) for all integers n n0.

Algorithms

 Drop all but the most significant terms.

 O(n2 + n log n + n + 1) O(n2)

 O(n log n + n + 1) O(n log n)

 O(n + 1) O(n)

 Drop constant (usually small!) coefficients.

 O(2 n2) O(n2)

 O(1024) O(1)

50

What dominates?

Algorithms

 log n = O(n)
 n = O(n)
 100 n + 10 log n = O(n)
 Example 1.7
 Example 1.8
 Example 1.9
 Example 1.10
 Example 1.11

51Algorithms

 A constant growth rate O(1)
 A logarithmic logarithmic growth rate (log

(log N))
 A logarithmic growth rate (log N)
 A logarithmic squared growth rate (log 2 N)
 A linear growth rate O(N)
 A linear-logarithmic (?) growth rate O(N log

N)

52Algorithms

 A quadratic growth rate O(N2)
 A cubic growth rate O(N3)
 A polynomial growth rate O(Nk) for a

constant k.
 An exponential growth rate O(2N)
 A factorial growth rate O(N!)

53Algorithms

 O(1)
 O(log N)
 O(N)
 O(N log N)
 O(N2)
 O(2N)

54Algorithms

 The amount of space or time is independent
of the amount of data.

 If the amount of data doubles, the amount of
space or time will stay the same!

 Example:

 An item can be added to the beginning of a linked
list in constant time independent of the number of
items in the list.

55Algorithms

 If the amount of data doubles, the amount of
space or time will increase by 1!

 Example:

 The worst-case time for binary search is
logarithmic in the size of the array.

56Algorithms

 If the amount of data doubles, the amount of
space or time will also double!

 Example:

 The time needed to print all of the values stored in
an array is linear in the size of the array.

57Algorithms

 If the amount of data doubles, the amount of
space or time will quadruple!

 Example:

 The amount of space needed to store a two-
dimensional square array is quadratic in the
number of rows.

58Algorithms

 If the amount of data increase by 1, the
amount of space or time will double!

 Example:

 The number of moves required to solve the
Towers of hanoi puzzle is exponential in the
number of disks used.

59Algorithms

 O(1)
 O(log N)
 O(N)
 O(N log N)
 O(N2)
 O(2N)

60Algorithms

61

O(N!)

O(2N)

O(N3)

O(N2)

O(N log N)

O(N)

O(log 2 N)

O(log N)

O(log (log N))

O(1)
Algorithms

 Figure 1.3

62Algorithms

 Table 1.3
 Table 1.4

63Algorithms

 An asymptotic bound as function of the size
of the input, on the best (fastest, least
amount of space used) an algorithm will take
to solve a problem.

 No algorithm can use fewer resources than the
bound.

64Algorithms

 Let f(n) be a function which is non-negative
for all integers n 0.

65

f(n) = (g(n))

f(n) Є (g(n))

“f(n) is (big-)omega g(n)”

if

there exist a constant c 0 and a constant n0

such that

c g(n) f(n) for all integers n n0.

Algorithms

 n = (n)
 n2 = (n)
 2n = (n)
 Example 1.12
 Example 1.13
 Example 1.14
 Example 1.15

66Algorithms

 Let f(n) be a function which is non-negative
for all integers n 0.

67

f(n) = (g(n))
f(n) Є (g(n))

“f(n) is (big-) theta g(n)”

if and only if

f(n) is O (g(n)) and f(n) is (g(n))

Algorithms

 Example 1.16
 Figure 1.6

68Algorithms

69Algorithms

 If f(n) = am nm + … +a1 n + a0 then f(n) = O(nm)
 If f(n) = am nm + … +a1 n + a0 then f(n) = (nm)
 If f(n) = am nm + … +a1 n + a0 then f(n) = (nm)

70Algorithms

71

O(1) O(log N) O(N) O(N log N) O(N2) O(2N)F =

Tight bound Loose bound

(1) (log N) (N) (N log N) (N2) (2N) F=

Loose bound Tight bound

Algorithms

 Notations for Asymptotic Behavior?
 Big-O Notation for (Asymptotic) Upper

Bound?
 Big-Notation for (Asymptotic) Lower

Bounds?

72Algorithms

73

The Order (Growth Rate) of an Algorithm is more important

than the Speed of a Computer.

Algorithms

 If an O(n2) algorithm takes 3.1 msec to run on
an array of 200 elements, how long would
you expect it to take to run on a similar array
of 40,000 elements?

 c 2002 =3.1 msec c = 3.1 / 2002

 c 400002 = (3.1 / 2002) 400002 = 124000 msec

 124000 msec = 124 seconds

74Algorithms

 If an O(n log n) algorithm takes 3.1 msec to
run on an array of 200 elements, how long
would you expect it to take to run on a similar
array of 40,000 elements?

 1240 msec 1.24 seconds

 c (200 log200) =3.1 msec c = 3.1 / (200 log200)

 c (40000 log40000) = (3.1 /200 log200) (40000 log40000)
= 1240 msec

75Algorithms

 If an O(n) algorithm takes 3.1 msec to run on
an array of 200 elements, how long would
you expect it to take to run on a similar array
of 40,000 elements?

 620 msec .620 seconds

 c 200 =3.1 msec c = 3.1 / 200

 c 40000 = (3.1 / 200) 40000 = 620 msec

76Algorithms

 If an O(log n) algorithm takes 3.1 msec to run
on an array of 200 elements, how long would
you expect it to take to run on a similar array
of 40,000 elements?

 6.2 msec .0062 seconds

 c log200 =3.1 msec c = 3.1 / log200

 c log40000 = (3.1 / log200) log40000 = 6.2 msec

77Algorithms

 Suppose you have a computer that requires 1
minute to solve problem instances of size n
=1,000. Suppose you buy a new computer
that runs 1,000 times faster than the old one.
What instance sizes can be run in 1 minute,
assuming the following time complexities
T(n) = n for our algorithm?

 c 1000 = 1 min = c/1000 n
 n = 106

78Algorithms

 Suppose you have a computer that requires 1
minute to solve problem instances of size n
=1,000. Suppose you buy a new computer that
runs 1,000 times faster than the old one. What
instance sizes can be run in 1 minute, assuming
the following time complexities T(n) = n2 for our
algorithm?

 104.5

 c 10002 = 1 min = c/1000 n2

79Algorithms

80Algorithms

 Depends on the type of an algorithm!

1. Iterative algorithms

 Summation

2. Recursive algorithms

 Recurrence equation/relation

81Algorithms

 Iterative algorithms

Summation

82Algorithms

 Single assignment statement

 O(1)

 Simple expression

 O(1)

 Statement1; Statement2; …;Statementn

 The maximum of O(Statement1), O(Statement2),
…, and O(Statementn).

83Algorithms

 IF Condition THEN Statement1 ELSE
Statement2;

 O(Condition) + The maximum of O(Statement1)
and O(Statement2).

 The maximum of O(Condition), O(Statement1)
and O(Statement2).

84Algorithms

 FOR (i=1; i<=N; i++) Statement

 O(NStatement) where N= The number of loop
iterations.

 FOR (S1 ; S2 ; S3) Statement

 O(S1 + S2(N+1) + S3N + StatementN)

 The maximum of O(S1), O(S2 (N+1)), O(S3 N)
and O(Statement N)

85Algorithms

 WHILE (condition) Statement

 O(NStatement) where N= The number of loop
iterations.

86Algorithms

87

1 sum = 0;

2 for (i=1; i<=n; i++)

3 sum += n;

Total = O(n)

Algorithms

88

1 sum1 = 0;

2 for (i=1; i<=n; i++)

3 for (j=1; j<=n; j++)

4 sum1 ++;

Total = O(n2)

i=1,n j=1,n 1 = n2

Algorithms

89

1 sum2 = 0;

2 for (i=1; i<=n; i++)

3 for (j=1; j<=i; j++)

4 sum2 ++;

Total = O(n2)

i=1,n j=1,i 1 = n(n+1)/2

Algorithms

90

1 sum1 = 0;

2 for (i=1; i<=n; i++)

3 for (j=1; j<=n; j++)

4 sum1 ++;

5 sum2 = 0;

6 for (i=1; i<=n; i++)

7 for (j=1; j<=i; j++)

8 sum2 ++;
Total = O(n2)

Algorithms

91

1 sum = 0;

2 for (j=1; j<=n; j++)

3 for (i=1; i<=j; i++)

4 sum ++;

5 for (k=0; k<=n; k++)

6 A[k] = k;

Total = O(n2)

Algorithms

92

1 sum1 = 0;

2 for (i=1; i<=n; i*=2)

3 for (j=1; j<=n; j++)

4 sum1 ++;

Total = O(n log n)

i=0,log n j=1,n 1 = n (log n+1)

Assume n = 2k

Algorithms

i = 1, 2, 4, 8, …, n i = 20 21 22 23 … 2log n

i=1,2,4,8,…,n (j=1,n 1) = ?

93

1 sum2 = 0;

2 for (i=1; i<=n; i*=2)

3 for (j=1; j<=i; j++)

4 sum2 ++;

Total = O(n)

Assume n = 2k

i=0,n 2i = 2 (n+1) -1

Algorithms

Example A.3

2log2n = n
Example A.8

i = 1, 2, 4, 8, …, n

i=1,2,4,8,…,n (j=1,i 1)

= 1 + 2 + 4 + 8 + … + n

= 20 + 21 + 22 +23 + … +2log n

= i=0,log n 2i

= 2n - 1

94

1 sum1 = 0;

2 for (i=1; i<=n; i*=2)

3 for (j=1; j<=n; j++)

4 sum1 ++;

5 sum2 = 0;

6 for (i=1; i<=n; i*=2)

7 for (j=1; j<=i; j++)

8 sum2 ++;
Total = O(n log n)

Algorithms

95

1 int fun(int n)

2 {

3 int count = 0;

4 for (int i = n; i > 0; i /= 2)

5 for (int j = 0; j < i; j++)

6 count += 1;

7 return count;

8 }

Total = O(n)

Algorithms

 Algorithm 1.5

 Binary Search – Iterative

O(log N)

96Algorithms

 Recursive algorithms

Recurrence equation/relation

97Algorithms

 The running time of an recursive algorithm
can often be described by a recurrence
relation or equation.

 A mathematical formula that generates the terms
in a sequence from previous terms.

98Algorithms

99

1 unsigned int Factorial (unsigned int n)

2 {

3 if (n == 0)

4 return 1;

5 else

6 return n * Factorial (n-1);
7 }

1

2

3 O(1)

4 O(1)

5

6 Factorial (n-1)
7 }

T(n) = O(1) if n=0

T(n) = T(n-1) + O(1) if n>0

Algorithms

100

T(n) = T(n-1) + O(1)

= T(n-2) + O(1) + O(1)

= T(n-3) + O(1) + O(1) + O(1)

= T(n-4) + O(1) + O(1) + O(1) + O(1)

.

.

= T(0) + O(1) + O(1) + ……. + O(1)

= O(1) + n x O(1)

= O(n)

T(n) = O(1) if n=0

T(n) = T(n-1) + O(1) if n>0

Algorithms

101

1 unsigned int Factorial (unsigned int n)

2 {

3 if (n == 0)

4 return 1;

5 else

6 return n * Factorial (n-1);
7 }

1

2

3 O(1)

4 O(1)

5

6 Factorial (n-1)
7 }

T(n) = O(1) if n=0

T(n) = T(n-1) + O(1) if n>0
Total = O(n)

Algorithms

 T(n) = T(n-1) + 1 if n>0

 T(0) = 1
 T(n) = T(n-1) + 1

 = T(n-2) + 1 + 1

 = T(n-3) + 1 + 1 + 1

 = T(n-4) + 1 + 1 + 1 + 1

 .

 .

 = T(n-n) + 1 + 1 + ……. + 1

 = 1 + n x 1

 = 1 + n

 = O(n)

 O(n)

102Algorithms

 T(n) = T(n-1) + n if n>0
 T(0) = 1

 T(n) = T(n-1) + n

 = T(n-2) + (n-1) + n

 = T(n-3) + (n-2) + (n-1) + n

 = T(n-4) + (n-3) + (n-2) + (n-1) + n

 .

 .

 = T(n-n) + 1 + 2 + ……. + (n-2) + (n-1) + n

 = 1 + 1 + 2 + ……. + (n-2) + (n-1) + n

 = 1 + n (n+1)/2

 = O(n2)

 O(n2)
 Example B.21

103Algorithms

 T(n) = T(n/2) + 1 if n>0
 T(1) = 1

 T(n) = T(n/21) + 1

 = T(n/22) + 1 + 1

 = T(n/23) + 1 + 1 + 1

 = T(n/24) + 1 + 1 + 1 + 1

 .

 .

 = T(n/2log n) + 1 + 1 + ……. + 1

 = 1 + log n x 1

 = 1 + log n

 = O(log n)

 O(log n)
 Example B.1

104Algorithms

 T(n) = 3 T(n-1)
 T(n) = n T(n-1)
 T(n) = 2 T(n/2) + n

105Algorithms

 T(n) = 3 T(n-1)

O(3n)

 T(n) = n T(n-1)

O(n!)

 T(n) = 2 T(n/2) + n

O(n log n)

106Algorithms

107

1 int recursive (int n) {

2 if(n == 1)

3 return (1);

4 else

5 return (recursive (n-1) + recursive (n-1));

6 }

T(n) = 2 T(n-1) + 1
O(2n)

Algorithms

 T(n) = aT(n/b) + c*n^k
 T(1) = d

 T(n) = O(n^k) if a < b^k

 T(n) = O(n^k log n) if a = b^k

 T(n) = O(n^log _b(a)) if a > b^k

 Theorem B.5 A Master Theorem

 Example B.26

 Example B.27

108Algorithms

 T(n) = T(n/2) + 1
 T(n) = 4 T(n/2) + n
 T(n) = T (n/2) + n2

 T(n) = 2 T(n/2) + n
 T(n) = 2 T(n/2) + 1

109Algorithms

 T(n) = T(n/2) + 1

 O(log n)

 T(n) = 4 T(n/2) + n

 O(n2)

 T(n) = T (n/2) + n2

 O(n2)

 T(n) = 2 T(n/2) + n

 O(n log n)

 T(n) = 2 T(n/2) + 1

 O(n)

110Algorithms

 Theorem B.6 A Master Theorem

 Example B.28

111Algorithms

 Exercise 25 (Appendix B)

112Algorithms

 T(n) = T(n-1) + (1)

 T(n) = O(n)

 T(n) = T(n-1) + (n)

 T(n) = O(n2)

113Algorithms

 T(n) = T(n/2) + (1)

 T(n) = O(log n)

114Algorithms

Example B.1 & Example B.18

 T(n) = 2T(n/2) + (1)

 T(n) = O(n)

 T(n) = 2 T(n/2) + (n)

 T(n) = O(n log n)

115Algorithms

Example B.19

 T(n) = O(1) if n=1

 T(n) = T(n/2) + O(n) if n>1

116Algorithms

 T(n) = O(1) if n=1

 T(n) = T(n/3) + O(1) if n>1

117Algorithms

 T(n) = O(1) if n=1

 T(n) = 8T(n/2) if n>1

118Algorithms

xlogay = ylogax Example A.8

 T(n) = O(1) if n=1
 T(n) = 8T(n/2) + n2 if n>1

119Algorithms

 T(n) = O(1) if n=1

 T(n) = 7T(n/2) if n>1

120Algorithms

 T(n) = O(1) if n=1
 T(n) = 7T(n/2) + n2 if n>1

121Algorithms

 T(n) = O(1) if n=1

 T(n) = 2T(n-1) + O(1) if n>1

122Algorithms

 T(n) = 0 if n=1

 T(n) = T(n-1) + 2/n if n>1

123Algorithms

Example B.22
Example A.8

 So far, we considered the worst/average cost
for a single operation

 How about the cost for a series/sequence of N
operations?
 N times the worst-case cost of any one operation.

 Or better cost?
 Observation?
 Any one particular operation may be slow, but the

average time over a sufficiently large number of
operations is fast.

124Algorithms

 Cost for a series/sequence of N operations?
 The amortized cost of N operations is the

total cost of the operations divided by N.

Amortized analysis!

 Self-Adjusting Data Structures!

125Algorithms

 Time requirements for an algorithm that
manipulates a data structure.

 Space requirements for the data structure
itself.

126Algorithms

127

One can often achieve a reduction in

time requirements if one is willing to

sacrifice space requirements

or vice versa.

Algorithms

 Chapter 1:

 1.1

 1.2

 1.3 (1.3.1 & 1.3.2 only)

 1.4 (1.4.1 & 1.4.2 only)

 1.5

128Algorithms

