Programming Languages:
Introduction

CS516 1

What Is a Programming
Language?

» A language (formal notational system)

— For describing computations so that they can be
executed on a computer (machine)

¢ Human-readable
¢ Machine-readable

CS516 2

Describing Solvable Computations

A programming language must be universal.

— Any problem if it can be solved at all by a
computer, must have a solution that can be
programmed (expressed) in the language.

CS516 3

Universal — All Solvable Computations

A programming language is universal if

— integer values and arithmetics
— variables

— assignment statement

— selection statement

— loop statement/go to statement

CS516 4

Not-computable Computations
(Problems)?

Is there a not-computable problem at all?
- Yes
— The halting problem

CS516 5

Human Readability

A programming language must be human-
readable
How easy?
— Readability
- Writability
How?

— Abstractions
« Data abstraction
« Control abstraction

CS516 6

Machine Readability

» A programming language must be
implementable on a computer.

— Every well-formed program in the language must
be executable on a computer.

* How efficient?
— Time
— Space

CS516 7

Not-executable?

» Is there an unimplementable language?
- Yes
— Specification languages

CS516 8

Two Aspects of Programming
Languages

e Syntax

— Structure or form
* Semantics

— Meaning

CS516 9

How to Evaluate Programming
Languages?

 Readability
» Writability
* Reliability
» Cost
* Others:
— Portability, generality, well-definedness

CS516 10

Readability

* The ease with which programs can be read and
understood
* Factors:
— Overall simplicity
» Too many features is bad.
* Multiplicity of features is bad.
* Operator overloading

CS516 11

Readability

— Orthogonality: A relatively small set of primitive
constructs can be combined in a relatively small
number of ways to build the control and data
structures of the language.

« Lack of orthogonality leads to rule exceptions.
« Makes the language easy to learn and read.
» Too much orthogonality?

— Sufficient control statements — No go-to’s

— Sufficient data types and structures

CS516 12

Writability

» A measure of how easily a language can be

used to create programs for a chosen problem
domain.

* Factors:
— Simplicity and orthogonality

— Support for abstraction — process and data
abstraction

— Expressivity

CS516

Cost

* Cost for
— Programmer training
— Software creation
— Compilation
— Execution
— Compiler cost
— Maintenance

CS516

Reliability

« A program is reliable if it performs to its
specifications under all conditions.
* Factors:
— Type checking
— Exception handling
— Aliasing
— Readability and writability

CS516

Other Criteria

* Portability

— The ease with which programs can be moved from
one implementation to another

» Generality

— The applicability to a wide range of applications
» Well-definedness

— The completeness and precision of the language’s
official defining document

CS516

How to Implement Programming
Languages?

» Compilation
* Pure interpretation
 Hybrid — compilation + interpretation

CS516

Compilation

« Translated into machine code by a program
called a compiler.

 And then executed directly on the computer.
— Slow translation
— Fast execution

CS516

Phases in Compilation

* Inatypical compiler, compilation proceeds
through a series of well-defined phases.
» Each phase discovers information or

transforms the program into a form of use to
later phases.

CS516

Phases in Compilation

Scanner (Lexical analysis)

Parser (Syntax analysis)

 Semantic analysis

Intermediate code generation
Machine-independent code improvement
(optimization)

* Target code generation

» Machine-specific code improvement
(optimization)

CS516

Recognizing the Structure of the
Program

« Scanner (Lexical Analysis)
— A stream of characters
— A stream of tokens
* Parser (Syntax Analysis)
— A stream of tokens
— A parse tree

CS516

Discovering the Meaning of the
Program

« Semantic Analysis
— A parse tree (concrete syntax tree)
— An abstract syntax tree (syntax tree)
« Builds and maintains a symbol table.

— Symbol table serves as a repository for information
about identifiers throughout compilation.

* Intermediate Code Generation
— An abstract syntax tree (syntax tree)
— An intermediate code (form)

CS516

Translating Into Target Code

» Semantic-preserving translation
 Target Code Generation

— A modified intermediate code (form)

— A target (assembly or machine) language

CS516

Improving (Optimizing) Code

» Machine-independent code improvement
— An intermediate code (form)
— A modified intermediate code (form)

» Machine-dependent code improvement
— A target (assembly or machine) language
— A modified target language

* Optional!

CS516

The Compilation Process

» The compilation process
— See fig 1.3

CS516

The Pure Interpretation Process

Pure Interpretation

 Executed directly by a program called an
interpreter.

— No translation

— Slow execution

— More space

— Source-level debugging

CS516

 The pure interpretation process
— See Fig. 1.4

CS516

Compilation + Interpretation

» Compiled first and then interpreted
— Hybrid implementation
— Small translation cost
— Medium execution speed

CS516

The Compilation + Interpretation
Process

» The compilation & interpretation process
— See Fig. 1.5

CS516

Programming Language Design

* Primary influences on programming language
design:

— Computer architecture
« Machine efficiency

— Programming methodologies
« Human efficiency

CS516

Computer Architecture

Programming
Methodologies/Paradigms

 The basic architecture of computers
— The von Neumann machines
— A sequential machine
— See fig 1.1

— Imperative programming languages — based on
variables and assignments

CS516

Imperative programming
Functional programming
Obiject-oriented programming
Logic programming
Concurrent programming

CS516

Categories of Programming
Languages

Programming Languages vs.
Programming Paradigms

« Imperative languages
— Procedure-oriented
« Functional languages
— Function-oriented
¢ Logic languages
— Rule-based
« Object-oriented languages
— Closely related to imperative
« Scripting languages
— Glue
« Domain-specific languages
— Special-purpose

CS516

Imperative languages for Imperative
Programming
Functional languages for Functional
Programming

Object-oriented languages for Object-oriented

programming
Logic languages for Logic Programming

CS516

High-level Programming
Languages

Major High-level Programming

Languages So Far

« How many languages?

?

CS516

CS516

« FORTRAN « PASCAL .« Ct++
« LISP « C « ML/SML
< ALGOL *« SCHEME * Quick BASIC
« COBOL « MODULA * Visual BASIC
+ BASIC + PROLOG L pASKELL
< PL/I « ADA T AvA
T APL * SMALLTALK « JavaScript
« SNOBOL « ICON . c#
* SIMULA « COMMON LISP . Perl

+ PhP

« Phyton

* Ruby

The First High-level Language:
FORTRAN

¢ The first high-level programming language
— FORTRAN (FORmula TRANSslator) |
— FORTRAN II
— FORTRAN 77
— FORTRAN 90
— For scientific applications
 First implemented version of FORTRAN
— Names could have up to six characters
— User-defined subprograms
— Three-way selection statement (arithmetic IF)

CS516

The First Functional Language:
LISP

« The first functional language
e LISP (LISt Processing language) — 1959
— For list processing and Al applications
« Pioneered functional programming
— No need for variables or assignment
— Control via recursion and conditional expressions

CS516

Functional Languages:
Descendants of LISP

» Scheme

* COMMON LISP
ML (MetalLanguage)
SML (Standard ML)
* Miranda

Haskell

CS516

The First Step Toward Sophistication:
ALGOL

* ALGOL (ALGOrithmic Language) 58 - 1958
 Language Features:

— Concept of types was formalized

— Names could have any length

— Arrays could have any number of subscripts

— Parameters were separated by mode (in & out)

— Subscripts were placed in brackets

— Compound statements (begin ... end)

— Semicolon as a statement separator

— Assignment operator was :=

— if had an else-if clause

CS516

ALGOLG60

* New Features:
— Block structure (local scope)

— Two parameter passing methods: pass by value & pass
by name

— Subprogram recursion
— Stack-dynamic arrays

— First language whose syntax was formally defined
(using BNF).

 All subsequent imperative languages are
based on it.

— “Algol-like” programming languages
CS516

The First Language For Business
Application: COBOL

* COBOL (COmmon Business Oriented Language) -
1960

— Designed for business applications.

Contributions:

— First macro facility in a high-level language

— Hierarchical data structures (records)

— Nested selection statements

— Long names (up to 30 characters), with hyphens

— Data Division

« Still the most widely used business applications
language

CS516

The Beginning of Timesharing:
BASIC

» BASIC (Beginner’s All-purpose Symbolic
Instruction Code) - 1964

* For:

— Easy to learn and use for non-science students

— Extremely simple syntax and semantics
 Current popular dialects:

— QuickBASIC

— Visual BASIC

CS516

The First Language For “Everything
For Everybody”: PL/I

» PL/I (Programming Language/l)- 1965
« Contributions:

— First unit-level concurrency

— First exception handling

— Switch-selectable recursion

— First pointer data type

CS516

The Beginnings of Data Abstraction:
SIMULAG67

e SIMULA 67 - 1967
— For system simulation
— Based on ALGOL 60
* Contributions:
— Coroutines - a kind of subprogram
— Implemented in a structure called a class
— Classes are the basis for data abstraction

— Classes are structures that include both local data
and functionality

CS516

Orthogonal Design: ALGOLG68

e ALGOL 68 - 1968

— Based on the concept of orthogonality
 Contributions:

— User-defined data structures

— Reference types

— Dynamic arrays
¢ Comments:

— Had even less usage than ALGOL 60.

— Had strong influence on subsequent languages, especially
Pascal, C, and Ada.

CS516

Simplicity by Design: PASCAL

* Pascal - 1971
— For teaching structured programming
— Small, simple, nothing really new

— Most widely used language for teaching
programming in colleges

CS516

A Portable System Language: C

« C-1972
— For systems programming
— Evolved primarily from B, but also ALGOL 68

— Powerful set of operators, but poor type checking.
— Initially spread through UNIX.

CS516

The First Language Based on
Logic: PROLOG

* PROLOG (PROgramming in LOGic)- 1972
— Based on formal logic
— Non-procedural

— Being an intelligent database system that uses an

inferencing process to infer the truth of given
queries

CS516

History’s Largest Design Effort:
ADA

e Ada- 1983
— Huge design effort, involving hundreds of people, much
money, and about eight years
« Contributions:
— Packages - support for data abstraction
— Exception handling - elaborate
— Generic program units
— Concurrency - through the tasking model
* Included all that was then known about software
engineering and language design.

CS516

Object-Oriented Language:
SMALLTALK

» Smalltalk — 1980

« First full implementation of an object-oriented
language

— data abstraction, inheritance, and dynamic type
binding

* Pioneered the graphical user interface
everyone now uses

CS516

Combining Imperative and OO
Features: C++

 Developed at Bell Labs by Stroustrup in 1985

« Facilities for object-oriented programming,

taken partially from SIMULA 67, were added
to C.

A large and complex language

Rapidly grew in popularity, along with OOP.
ANSI standard approved in November, 1997.

CS516

Programming the WWW: JAVA

» Programming the World Wide Web.
» Developed at Sun in the early 1990s.
» Based on C++

— Significantly simplified.

— Supports only OOP.

— Has references, but not pointers.

— Includes support for applets and a form of
concurrency.

CS516

Programming Future: Library &
Scripting

» Growing importance on libraries

— Interface with OS and Hardware

— Avrich library

— Integrated with the programming languages
« Scripting languages

— Ties utilities together

CS516

High-level

Summary:
Programming Languages

A big picture:

 See Fig. 2.1!

CS516

Why Study Concepts of PLs?

To increase capacity to express programming
concepts.

To improve background for choosing
appropriate languages.

To increase ability to learn new languages.

To understand the significance of
implementation.

To increase ability to design new languages.

CS516 56

In This Course

Foundations (syntax + semantics)
Fundamental Concepts

* Implementations

* Paradigms

» Programming

- SML
- Prolog

CS516

QuUIZ

APL?

Conditions for a PL?
A universal min PL?
How implement a PL?
Evaluate PLs?
Paradigms vs. PLs?
Major PLs?

CS516 58

10

