Programming Languages:
Introduction
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What Is a Programming
Language?

» A language (formal notational system)

— For describing computations so that they can be
executed on a computer (machine)

¢ Human-readable
¢ Machine-readable
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Describing Solvable Computations

A programming language must be universal.

— Any problem if it can be solved at all by a
computer, must have a solution that can be
programmed (expressed) in the language.
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Universal — All Solvable Computations

A programming language is universal if

— integer values and arithmetics
— variables

— assignment statement

— selection statement

— loop statement/go to statement
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Not-computable Computations
(Problems)?

Is there a not-computable problem at all?
- Yes
— The halting problem
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Human Readability

A programming language must be human-
readable
How easy?
— Readability
- Writability
How?

— Abstractions
« Data abstraction
« Control abstraction
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Machine Readability

» A programming language must be
implementable on a computer.

— Every well-formed program in the language must
be executable on a computer.

* How efficient?
— Time
— Space
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Not-executable?

» Is there an unimplementable language?
- Yes
— Specification languages
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Two Aspects of Programming
Languages

e Syntax

— Structure or form
* Semantics

— Meaning
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How to Evaluate Programming
Languages?

 Readability
» Writability
* Reliability
» Cost
* Others:
— Portability, generality, well-definedness
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Readability

* The ease with which programs can be read and
understood
* Factors:
— Overall simplicity
» Too many features is bad.
* Multiplicity of features is bad.
* Operator overloading
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Readability

— Orthogonality: A relatively small set of primitive
constructs can be combined in a relatively small
number of ways to build the control and data
structures of the language.

« Lack of orthogonality leads to rule exceptions.
« Makes the language easy to learn and read.
» Too much orthogonality?

— Sufficient control statements — No go-to’s

— Sufficient data types and structures
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Writability

» A measure of how easily a language can be

used to create programs for a chosen problem
domain.

* Factors:
— Simplicity and orthogonality

— Support for abstraction — process and data
abstraction

— Expressivity
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Cost

* Cost for
— Programmer training
— Software creation
— Compilation
— Execution
— Compiler cost
— Maintenance
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Reliability

« A program is reliable if it performs to its
specifications under all conditions.
* Factors:
— Type checking
— Exception handling
— Aliasing
— Readability and writability

CS516

Other Criteria

* Portability

— The ease with which programs can be moved from
one implementation to another

» Generality

— The applicability to a wide range of applications
» Well-definedness

— The completeness and precision of the language’s
official defining document
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How to Implement Programming
Languages?

» Compilation
* Pure interpretation
 Hybrid — compilation + interpretation
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Compilation

« Translated into machine code by a program
called a compiler.

 And then executed directly on the computer.
— Slow translation
— Fast execution
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Phases in Compilation

* Inatypical compiler, compilation proceeds
through a series of well-defined phases.
» Each phase discovers information or

transforms the program into a form of use to
later phases.
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Phases in Compilation

Scanner (Lexical analysis)

Parser (Syntax analysis)

 Semantic analysis

Intermediate code generation
Machine-independent code improvement
(optimization)

* Target code generation

» Machine-specific code improvement
(optimization)
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Recognizing the Structure of the
Program

« Scanner (Lexical Analysis)
— A stream of characters
— A stream of tokens
* Parser (Syntax Analysis)
— A stream of tokens
— A parse tree
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Discovering the Meaning of the
Program

« Semantic Analysis
— A parse tree (concrete syntax tree)
— An abstract syntax tree (syntax tree)
« Builds and maintains a symbol table.

— Symbol table serves as a repository for information
about identifiers throughout compilation.

* Intermediate Code Generation
— An abstract syntax tree (syntax tree)
— An intermediate code (form)
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Translating Into Target Code

» Semantic-preserving translation
 Target Code Generation

— A modified intermediate code (form)

— A target (assembly or machine) language
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Improving (Optimizing) Code

» Machine-independent code improvement
— An intermediate code (form)
— A modified intermediate code (form)

» Machine-dependent code improvement
— A target (assembly or machine) language
— A modified target language

* Optional!
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The Compilation Process

» The compilation process
— See fig 1.3
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The Pure Interpretation Process

Pure Interpretation

 Executed directly by a program called an
interpreter.

— No translation

— Slow execution

— More space

— Source-level debugging
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 The pure interpretation process
— See Fig. 1.4
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Compilation + Interpretation

» Compiled first and then interpreted
— Hybrid implementation
— Small translation cost
— Medium execution speed
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The Compilation + Interpretation
Process

» The compilation & interpretation process
— See Fig. 1.5
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Programming Language Design

* Primary influences on programming language
design:

— Computer architecture
« Machine efficiency

— Programming methodologies
« Human efficiency
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Computer Architecture

Programming
Methodologies/Paradigms

 The basic architecture of computers
— The von Neumann machines
— A sequential machine
— See fig 1.1

— Imperative programming languages — based on
variables and assignments
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Imperative programming
Functional programming
Obiject-oriented programming
Logic programming
Concurrent programming
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Categories of Programming
Languages

Programming Languages vs.
Programming Paradigms

« Imperative languages
— Procedure-oriented
« Functional languages
— Function-oriented
¢ Logic languages
— Rule-based
« Object-oriented languages
— Closely related to imperative
« Scripting languages
— Glue
« Domain-specific languages
— Special-purpose
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Imperative languages for Imperative
Programming
Functional languages for Functional
Programming

Object-oriented languages for Object-oriented

programming
Logic languages for Logic Programming
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High-level Programming
Languages

Major High-level Programming

Languages So Far

« How many languages?

?
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« FORTRAN « PASCAL .« Ct++
« LISP « C « ML/SML
< ALGOL *« SCHEME *  Quick BASIC
« COBOL « MODULA * Visual BASIC
+ BASIC + PROLOG L pASKELL
< PL/I « ADA T AvA
T APL * SMALLTALK « JavaScript
« SNOBOL « ICON . c#
* SIMULA « COMMON LISP . Perl

+ PhP

« Phyton

*  Ruby




The First High-level Language:
FORTRAN

¢ The first high-level programming language
— FORTRAN (FORmula TRANSslator) |
— FORTRAN II
— FORTRAN 77
— FORTRAN 90
— For scientific applications
 First implemented version of FORTRAN
— Names could have up to six characters
— User-defined subprograms
— Three-way selection statement (arithmetic IF)
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The First Functional Language:
LISP

« The first functional language
e LISP (LISt Processing language ) — 1959
— For list processing and Al applications
« Pioneered functional programming
— No need for variables or assignment
— Control via recursion and conditional expressions
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Functional Languages:
Descendants of LISP

» Scheme

* COMMON LISP
ML (MetalLanguage)
SML (Standard ML)
* Miranda

Haskell
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The First Step Toward Sophistication:
ALGOL

* ALGOL (ALGOrithmic Language) 58 - 1958
 Language Features:

— Concept of types was formalized

— Names could have any length

— Arrays could have any number of subscripts

— Parameters were separated by mode (in & out)

— Subscripts were placed in brackets

— Compound statements (begin ... end)

— Semicolon as a statement separator

— Assignment operator was :=

— if had an else-if clause
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ALGOLG60

* New Features:
— Block structure (local scope)

— Two parameter passing methods: pass by value & pass
by name

— Subprogram recursion
— Stack-dynamic arrays

— First language whose syntax was formally defined
(using BNF).

 All subsequent imperative languages are
based on it.

— “Algol-like” programming languages
CS516

The First Language For Business
Application: COBOL

* COBOL (COmmon Business Oriented Language) -
1960

— Designed for business applications.

Contributions:

— First macro facility in a high-level language

— Hierarchical data structures (records)

— Nested selection statements

— Long names (up to 30 characters), with hyphens

— Data Division

« Still the most widely used business applications
language
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The Beginning of Timesharing:
BASIC

» BASIC (Beginner’s All-purpose Symbolic
Instruction Code) - 1964

* For:

— Easy to learn and use for non-science students

— Extremely simple syntax and semantics
 Current popular dialects:

— QuickBASIC

— Visual BASIC
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The First Language For “Everything
For Everybody”: PL/I

» PL/I (Programming Language/l)- 1965
« Contributions:

— First unit-level concurrency

— First exception handling

— Switch-selectable recursion

— First pointer data type
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The Beginnings of Data Abstraction:
SIMULAG67

e SIMULA 67 - 1967
— For system simulation
— Based on ALGOL 60
* Contributions:
— Coroutines - a kind of subprogram
— Implemented in a structure called a class
— Classes are the basis for data abstraction

— Classes are structures that include both local data
and functionality
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Orthogonal Design: ALGOLG68

e ALGOL 68 - 1968

— Based on the concept of orthogonality
 Contributions:

— User-defined data structures

— Reference types

— Dynamic arrays
¢ Comments:

— Had even less usage than ALGOL 60.

— Had strong influence on subsequent languages, especially
Pascal, C, and Ada.
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Simplicity by Design: PASCAL

* Pascal - 1971
— For teaching structured programming
— Small, simple, nothing really new

— Most widely used language for teaching
programming in colleges
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A Portable System Language: C

« C-1972
— For systems programming
— Evolved primarily from B, but also ALGOL 68

— Powerful set of operators, but poor type checking.
— Initially spread through UNIX.
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The First Language Based on
Logic: PROLOG

* PROLOG (PROgramming in LOGic)- 1972
— Based on formal logic
— Non-procedural

— Being an intelligent database system that uses an

inferencing process to infer the truth of given
queries
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History’s Largest Design Effort:
ADA

e Ada- 1983
— Huge design effort, involving hundreds of people, much
money, and about eight years
« Contributions:
— Packages - support for data abstraction
— Exception handling - elaborate
— Generic program units
— Concurrency - through the tasking model
* Included all that was then known about software
engineering and language design.
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Object-Oriented Language:
SMALLTALK

» Smalltalk — 1980

« First full implementation of an object-oriented
language

— data abstraction, inheritance, and dynamic type
binding

* Pioneered the graphical user interface
everyone now uses
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Combining Imperative and OO
Features: C++

 Developed at Bell Labs by Stroustrup in 1985

« Facilities for object-oriented programming,

taken partially from SIMULA 67, were added
to C.

A large and complex language

Rapidly grew in popularity, along with OOP.
ANSI standard approved in November, 1997.
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Programming the WWW: JAVA

» Programming the World Wide Web.
» Developed at Sun in the early 1990s.
» Based on C++

— Significantly simplified.

— Supports only OOP.

— Has references, but not pointers.

— Includes support for applets and a form of
concurrency.
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Programming Future: Library &
Scripting

» Growing importance on libraries

— Interface with OS and Hardware

— Avrich library

— Integrated with the programming languages
« Scripting languages

— Ties utilities together
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High-level

Summary:
Programming Languages

A big picture:

 See Fig. 2.1!
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Why Study Concepts of PLs?

To increase capacity to express programming
concepts.

To improve background for choosing
appropriate languages.

To increase ability to learn new languages.

To understand the significance of
implementation.

To increase ability to design new languages.

CS516 56

In This Course

Foundations (syntax + semantics)
Fundamental Concepts

* Implementations

* Paradigms

» Programming

- SML
- Prolog
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QuUIZ

APL?

Conditions for a PL?
A universal min PL?
How implement a PL?
Evaluate PLs?
Paradigms vs. PLs?
Major PLs?
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