
1

CS516 1

Programming Languages:
Introduction

CS516 2

What Is a Programming
Language?

• A language (formal notational system)

– For describing computations so that they can be
executed on a computer (machine)

• Human-readable
• Machine-readable

CS516 3

Describing Solvable Computations

• A programming language must be universal.

– Any problem if it can be solved at all by a
computer, must have a solution that can be
programmed (expressed) in the language.

CS516 4

Universal – All Solvable Computations

• A programming language is universal if

– integer values and arithmetics
– variables
– assignment statement
– selection statement
– loop statement/go to statement

CS516 5

Not-computable Computations
(Problems)?

• Is there a not-computable problem at all?
– Yes
– The halting problem

CS516 6

Human Readability

• A programming language must be human-
readable

• How easy?
– Readability
– Writability

• How?
– Abstractions

• Data abstraction
• Control abstraction

2

CS516 7

Machine Readability

• A programming language must be
implementable on a computer.

– Every well-formed program in the language must
be executable on a computer.

• How efficient?
– Time
– Space

CS516 8

Not-executable?

• Is there an unimplementable language?
– Yes
– Specification languages

CS516 9

Two Aspects of Programming
Languages

• Syntax
– Structure or form

• Semantics
– Meaning

CS516 10

How to Evaluate Programming
Languages?

• Readability
• Writability
• Reliability
• Cost
• Others:

– Portability, generality, well-definedness

CS516 11

Readability

• The ease with which programs can be read and
understood

• Factors:
– Overall simplicity

• Too many features is bad.
• Multiplicity of features is bad.
• Operator overloading

CS516 12

Readability

– Orthogonality: A relatively small set of primitive
constructs can be combined in a relatively small
number of ways to build the control and data
structures of the language.
• Lack of orthogonality leads to rule exceptions.
• Makes the language easy to learn and read.
• Too much orthogonality?

– Sufficient control statements – No go-to’s
– Sufficient data types and structures

3

CS516 13

Writability

• A measure of how easily a language can be
used to create programs for a chosen problem
domain.

• Factors:
– Simplicity and orthogonality
– Support for abstraction – process and data

abstraction
– Expressivity

CS516 14

Reliability

• A program is reliable if it performs to its
specifications under all conditions.

• Factors:
– Type checking
– Exception handling
– Aliasing
– Readability and writability

CS516 15

Cost

• Cost for
– Programmer training
– Software creation
– Compilation
– Execution
– Compiler cost
– Maintenance

CS516 16

Other Criteria

• Portability
– The ease with which programs can be moved from

one implementation to another
• Generality

– The applicability to a wide range of applications
• Well-definedness

– The completeness and precision of the language’s
official defining document

CS516 17

How to Implement Programming
Languages?

• Compilation
• Pure interpretation
• Hybrid – compilation + interpretation

CS516 18

Compilation

• Translated into machine code by a program
called a compiler.

• And then executed directly on the computer.
– Slow translation
– Fast execution

4

CS516 19

Phases in Compilation

• In a typical compiler, compilation proceeds
through a series of well-defined phases.

• Each phase discovers information or
transforms the program into a form of use to
later phases.

CS516 20

Phases in Compilation

• Scanner (Lexical analysis)
• Parser (Syntax analysis)
• Semantic analysis
• Intermediate code generation
• Machine-independent code improvement

(optimization)
• Target code generation
• Machine-specific code improvement

(optimization)

CS516 21

Recognizing the Structure of the
Program

• Scanner (Lexical Analysis)
– A stream of characters
– A stream of tokens

• Parser (Syntax Analysis)
– A stream of tokens
– A parse tree

CS516 22

Discovering the Meaning of the
Program

• Semantic Analysis
– A parse tree (concrete syntax tree)
– An abstract syntax tree (syntax tree)

• Builds and maintains a symbol table.
– Symbol table serves as a repository for information

about identifiers throughout compilation.
• Intermediate Code Generation

– An abstract syntax tree (syntax tree)
– An intermediate code (form)

CS516 23

Translating Into Target Code

• Semantic-preserving translation
• Target Code Generation

– A modified intermediate code (form)
– A target (assembly or machine) language

CS516 24

Improving (Optimizing) Code

• Machine-independent code improvement
– An intermediate code (form)
– A modified intermediate code (form)

• Machine-dependent code improvement
– A target (assembly or machine) language
– A modified target language

• Optional!

5

CS516 25

The Compilation Process

• The compilation process
– See fig 1.3

CS516 26

Pure Interpretation

• Executed directly by a program called an
interpreter.
– No translation
– Slow execution
– More space
– Source-level debugging

CS516 27

The Pure Interpretation Process

• The pure interpretation process
– See Fig. 1.4

CS516 28

Compilation + Interpretation

• Compiled first and then interpreted
– Hybrid implementation
– Small translation cost
– Medium execution speed

CS516 29

The Compilation + Interpretation
Process

• The compilation & interpretation process
– See Fig. 1.5

CS516 30

Programming Language Design

• Primary influences on programming language
design:
– Computer architecture

• Machine efficiency

– Programming methodologies
• Human efficiency

6

CS516 31

Computer Architecture

• The basic architecture of computers
– The von Neumann machines
– A sequential machine
– See fig 1.1
– Imperative programming languages – based on

variables and assignments

CS516 32

Programming
Methodologies/Paradigms

• Imperative programming
• Functional programming
• Object-oriented programming
• Logic programming
• Concurrent programming
• …

CS516 33

Categories of Programming
Languages

• Imperative languages
– Procedure-oriented

• Functional languages
– Function-oriented

• Logic languages
– Rule-based

• Object-oriented languages
– Closely related to imperative

• Scripting languages
– Glue

• Domain-specific languages
– Special-purpose

CS516 34

Programming Languages vs.
Programming Paradigms

• Imperative languages for Imperative
Programming

• Functional languages for Functional
Programming

• Object-oriented languages for Object-oriented
programming

• Logic languages for Logic Programming

CS516 35

High-level Programming
Languages

• How many languages?
– ?

CS516 36

Major High-level Programming
Languages So Far

• FORTRAN
• LISP
• ALGOL
• COBOL
• BASIC
• PL/I
• APL
• SNOBOL
• SIMULA

• PASCAL
• C
• SCHEME
• MODULA
• PROLOG
• ADA
• SMALLTALK
• ICON
• COMMON LISP

• C++
• ML/ SML
• Quick BASIC
• Visual BASIC
• HASKELL
• Eiffel
• JAVA
• JavaScript
• C#
• Perl
• PhP
• Phyton
• Ruby
• …

7

CS516 37

The First High-level Language:
FORTRAN

• The first high-level programming language
– FORTRAN (FORmula TRANslator) I
– FORTRAN II
– FORTRAN 77
– FORTRAN 90
– For scientific applications

• First implemented version of FORTRAN
– Names could have up to six characters
– User-defined subprograms
– Three-way selection statement (arithmetic IF)

CS516 38

The First Functional Language:
LISP

• The first functional language
• LISP (LISt Processing language) – 1959

– For list processing and AI applications
• Pioneered functional programming

– No need for variables or assignment
– Control via recursion and conditional expressions

CS516 39

Functional Languages:
Descendants of LISP

• Scheme
• COMMON LISP
• ML (MetaLanguage)
• SML (Standard ML)
• Miranda
• Haskell

CS516 40

The First Step Toward Sophistication:
ALGOL

• ALGOL (ALGOrithmic Language) 58 - 1958
• Language Features:

– Concept of types was formalized
– Names could have any length
– Arrays could have any number of subscripts
– Parameters were separated by mode (in & out)
– Subscripts were placed in brackets
– Compound statements (begin ... end)
– Semicolon as a statement separator
– Assignment operator was :=
– if had an else-if clause

CS516 41

ALGOL60

• New Features:
– Block structure (local scope)
– Two parameter passing methods: pass by value & pass

by name
– Subprogram recursion
– Stack-dynamic arrays
– First language whose syntax was formally defined

(using BNF).
• All subsequent imperative languages are

based on it.
– “Algol-like” programming languages

CS516 42

The First Language For Business
Application: COBOL

• COBOL (COmmon Business Oriented Language) -
1960
– Designed for business applications.

• Contributions:
– First macro facility in a high-level language
– Hierarchical data structures (records)
– Nested selection statements
– Long names (up to 30 characters), with hyphens
– Data Division

• Still the most widely used business applications
language

8

CS516 43

The Beginning of Timesharing:
BASIC

• BASIC (Beginner’s All-purpose Symbolic
Instruction Code) - 1964

• For:
– Easy to learn and use for non-science students
– Extremely simple syntax and semantics

• Current popular dialects:
– QuickBASIC
– Visual BASIC

CS516 44

The First Language For “Everything

For Everybody”: PL/I

• PL/I (Programming Language/I)- 1965
• Contributions:

– First unit-level concurrency
– First exception handling
– Switch-selectable recursion
– First pointer data type

CS516 45

The Beginnings of Data Abstraction:
SIMULA67

• SIMULA 67 - 1967
– For system simulation
– Based on ALGOL 60

• Contributions:
– Coroutines - a kind of subprogram
– Implemented in a structure called a class
– Classes are the basis for data abstraction
– Classes are structures that include both local data

and functionality

CS516 46

Orthogonal Design: ALGOL68

• ALGOL 68 - 1968
– Based on the concept of orthogonality

• Contributions:
– User-defined data structures
– Reference types
– Dynamic arrays

• Comments:
– Had even less usage than ALGOL 60.
– Had strong influence on subsequent languages, especially

Pascal, C, and Ada.

CS516 47

Simplicity by Design: PASCAL

• Pascal - 1971
– For teaching structured programming
– Small, simple, nothing really new
– Most widely used language for teaching

programming in colleges

CS516 48

A Portable System Language: C

• C - 1972
– For systems programming
– Evolved primarily from B, but also ALGOL 68
– Powerful set of operators, but poor type checking.
– Initially spread through UNIX.

9

CS516 49

The First Language Based on
Logic: PROLOG

• PROLOG (PROgramming in LOGic)- 1972
– Based on formal logic
– Non-procedural
– Being an intelligent database system that uses an

inferencing process to infer the truth of given
queries

CS516 50

History’s Largest Design Effort:
ADA

• Ada - 1983
– Huge design effort, involving hundreds of people, much

money, and about eight years

• Contributions:
– Packages - support for data abstraction
– Exception handling - elaborate
– Generic program units
– Concurrency - through the tasking model

• Included all that was then known about software
engineering and language design.

CS516 51

Object-Oriented Language:
SMALLTALK

• Smalltalk – 1980
• First full implementation of an object-oriented

language
– data abstraction, inheritance, and dynamic type

binding
• Pioneered the graphical user interface

everyone now uses

CS516 52

Combining Imperative and OO
Features: C++

• Developed at Bell Labs by Stroustrup in 1985
• Facilities for object-oriented programming,

taken partially from SIMULA 67, were added
to C.

• A large and complex language
• Rapidly grew in popularity, along with OOP.
• ANSI standard approved in November, 1997.

CS516 53

Programming the WWW: JAVA

• Programming the World Wide Web.
• Developed at Sun in the early 1990s.
• Based on C++

– Significantly simplified.
– Supports only OOP.
– Has references, but not pointers.
– Includes support for applets and a form of

concurrency.

CS516 54

Programming Future: Library &
Scripting

• Growing importance on libraries
– Interface with OS and Hardware
– A rich library
– Integrated with the programming languages

• Scripting languages
– Ties utilities together

10

CS516 55

Summary:
High-level Programming Languages
• A big picture:
• See Fig. 2.1!

CS516 56

Why Study Concepts of PLs?

• To increase capacity to express programming
concepts.

• To improve background for choosing
appropriate languages.

• To increase ability to learn new languages.
• To understand the significance of

implementation.
• To increase ability to design new languages.

CS516 57

In This Course

• Foundations (syntax + semantics)
• Fundamental Concepts
• Implementations
• Paradigms
• Programming

– SML
– Prolog

CS516 58

QUIZ

• A PL?
• Conditions for a PL?
• A universal min PL?
• How implement a PL?
• Evaluate PLs?
• Paradigms vs. PLs?
• Major PLs?

