
1

CS516 1

Assignment Statements
in Programming Languages

CS516 2

A Programming Language –
Universal: All Solvable Computations

• integer values and arithmetic operators
(arithmetic exressions)

• variables
• assignment statement
• selection statement
• loop statement/go to statement

CS516 3

Assignment Statements

CS516 4

Simple Assignment Statements

• Simple Assignments
– <target_variable> <assignment_operator>
<exp>

• The assignment operator symbol:
:= ALGOLs, Pascal, Modula-2, Ada
= FORTRAN, BASIC, PL/I, C, C++, Java

• = can be bad if it is overloaded for the relational operator
for equality.

CS516 5

Assignment Statements

• Multiple targets
– A, B = 10

• Conditional targets
– C, C++, and Java
– (first = true) ? total : subtotal = 0

CS516 6

Compound Assignment
Statements

• Compound assignment operators:
– The target variable (LHS) is the first operand in the

expression (RHS).
– Abbreviated assignmant
– C, C++, and Java
– sum = sum + next;
– sum += next;

2

CS516 7

Unary Assignment Statements

• Unary assignment operators:
– Abbreviated assignmant combined with increment

and decrement operators.
– Prefix or postfix
– C, C++, and Java

sum = ++ count;

count = count + 1;
sum = count;

sum = count ++;

sum = count;
count = count + 1;

CS516 8

Assignment as an Expression

• The assignment statement produces a result,
which is the same as the value assigned to the
target variable.
– C, C++, and Java

• Can be used as an operand in an expression.
– while ((ch = getchar()) != EOF) { ... }

• Disadvantage:
– Another kind of expression side effect.

CS516 9

Mixed-Mode Assignment

• The types of LHS and RHS of an assignment
statement are different.

• Design issues:
– Does the type of the expression have to be the same

as the type of the variable being assigned?
– Can type coercion be used?

CS516 10

Mixed-Mode Assignment

• FORTRAN, C, and C++:
– Use coercion rules.

• Pascal:
– integers can be assigned to reals, but reals cannot

be assigned to integers.
• Java:

– Only widening assignment coercions are done.
• Ada:

– No assignment coercion.

CS516 11

Statement-Level
Control Structures

in Programming Languages

CS516 12

A Programming Language –
Universal: All Solvable Computations

• integer values and arithmeticoperators
(arithmetic exressions)

• variables
• assignment statement
• selection statement
• loop statement/go to statement

3

CS516 13

Levels of Control Flow

• Flow of control (execution sequence) in a
program:
– Within expressions
– Among statements
– Among program units

CS516 14

Compound Statements as Blocks

• A collection of statements:
– Introduced by ALGOL 60: begin...end

• Variable declarations in a compound statement.
– Can define a new scope (with local variables).
– A block.

CS516 15

Control Statements

• Control statements:
– Selection
– Iteration (Loop)
– Unconditional branch (Goto)

• It was proven that all computations can be coded with
only two-way selection and pretest logical loops.

• Overall Design Question:
– What control statements should a language have beyond

selection and pretest logical loops?

CS516 16

Control Statements

1. Selection
– Two-way selection
– Multi-way selection

2. Iteration (Loop)
• Counter-controlled loops
• Logically-controlled loops

3. Unconditional Branching (Goto)

CS516 17

1. Selection Statements

• Two-way selection statements
• Multi-way selection statements

CS516 18

Two-Way Selection Statements

• Design Issues:
– What is the form and type of the control

expression?
– What is the selectable segment form (single

statement, statement sequence, compound
statement)?

– How should the meaning of nested selectors be
specified?

4

CS516 19

Single-Way Selector

• A subform of a two-way selector.
• FORTRAN IV: A logical IF

– IF (boolean_expr) a_single_statement

– Can select only a single statement.
– To select more, a goto must be used.

IF (FLAG .NOT. 1) GOTO 20

I = 1
J = 2

20 CONTINUE

CS516 20

Two-Way Selector

• ALGOL 60:
if (boolean_expr) then

begin
...

end

if (boolean_expr)then
statement

else
statement

CS516 21

Nested Selectors

• Pascal:
if ... then

if ... then
...

else ...

• Which then gets the else?
– Pascal's rule: else goes with the nearest then

CS516 22

Nested Selectors

• ALGOL 60's solution:
– Disallow direct nesting. (Only in a compound

statement)

if ... then if ... then
begin begin

if ... then if ... then …
... end

else ... else ...
end

CS516 23

Nested Selectors

• Algol 68, FORTRAN 77/90, Ada, Modula-2:
– Closing special word (end if) adds readability.
– Ada:

if ... then if ... then
if ... then if ... then
... ...

else end if
... else

end if ...
end if end if

CS516 24

Selection Closure

• Modula-2:
– Uses the same closing special word for all control

structures (END).
– Less readable

5

CS516 25

Multiple (N-Way) Selection
Statements

• Design Issues:
– What is the form and type of the control

expression?
– What segments are selectable (single, compound,

sequential)?
– Is the entire construct encapsulated?
– Is execution flow through the structure restricted to

include just a single selectable segment?
– What is done about unrepresented expression

values?
CS516 26

Early Multiple Selectors -
FORTRAN

• FORTRAN:
– Arithmetic IF (a three-way selector):

• IF (arithmetic expression) N1, N2, N3

– Computed GOTO
• GO TO (label_1, label_2, …, label_n) exp

– Assigned GOTO
• Problems:

– Lack of encapsulation
– Multiple entries

CS516 27

Modern Multiple Selectors

• Pascal:
– case
case expression of

constant_list_1 : statement_1;
...
constant_list_n : statement_n

end

– Encapsulation of the selectable segments.
– Implicit branch to the single exit point.

CS516 28

Modern Multiple Selectors

case index of
1, 3: begin

odd := odd + 1;
sumodd := sumodd + index

end;
2, 4: begin

even := even + 1;
sumeven := sumeven + index

end
else writeln(“Error in case, index =‘, index)

end

CS516 29

Modern Multiple Selectors

• C and C++:
– switch

switch (expression) {
case constant_expression_1 :statement_1;

...
case constant_expression_n : statement_n;
[default: statement_n+1]
}

CS516 30

Modern Multiple Selectors

switch (index) {
case 1:
case 3: odd += 1;

sumodd += index;
case 2:
case 4: even += 1;

sumeven += index;
default:

printf (“Error in switch, index = %d\n”, index);
}

6

CS516 31

Modern Multiple Selectors

switch (index) {
case 1:
case 3: odd += 1;

sumodd += index;
break;

case 2:
case 4: even += 1;

sumeven += index;
break:

default:
printf (“Error in switch, index = %d\n”, index);
}

CS516 32

Modern Multiple Selectors

• Using else-if clauses
– ALGOL 68, FORTRAN 77, Modula-2, Ada
if ...

then ...
elsif ...

then ...
elsif ...

then ...
else ...

end if

– More readable than deeply nested if's.

CS516 33

2. Iteration (Loop) Statements

• Execute a statement or compound statement zero or
more times.

• Design Issues:
– How is iteration controlled?

• Counting
• Logical
• A combination

– Where is the control mechanism in the loop?
• Top
• Bottom
• User-defined control

– Pretest vs. Posttest?
CS516 34

Iteration (Loop) Statements

1. Counter-controlled loops
2. Logically-controlled loops

CS516 35

(1) Counter-Controlled Loops

• Design Issues:
– What is the type and scope of the loop var?
– What is the value of the loop var at loop

termination?
– Should it be legal for the loop var or loop

parameters to be changed in the loop body, and if
so, does the change affect loop control?

– Should the loop parameters be evaluated only once,
or once for every iteration?

CS516 36

Counter-Controlled Loops -
Example

• FORTRAN 77 and 90:
– DO label var = start, finish [,stepsize]

– See its operational semantics (p. 331)!
• FORTRAN 90’s Other DO:

[name:] DO variable = initial, terminal [, stepsize]

. . .

. . . …
END DO [name]

7

CS516 37

Counter-Controlled Loops -
Example

• ALGOL 60:
– for var := <list_of_stuff> do statement

where <list_of_stuff> is a list of
• expression
• expression step expression until expression
• expression while boolean_expression

CS516 38

Counter-Controlled Loops -
Example

for index : = 1, 4, 13, 41 step 2 until 47,
3*index while index < 1000,
34, 2, -24 do

sum := sum + index

1, 4, 13, 41, 43, 45, 47, 141, 423, 34, 2, -24

CS516 39

Counter-Controlled Loops -
Example

• Pascal:
– for variable := initial (to | downto) final do

statement

• Ada:
– for var in [reverse] discrete_range loop

...
end loop

– See the operational semantics (p. 330)!
• C:

– for (expr_1; expr_2; expr_3) statement

CS516 40

Counter-Controlled Loops -
Example

• C++:
– The control expression can also be Boolean.
– The initial expression can include variable

definitions. (scope is from the definition to the end
of the function in which it is defined)

• Java:
– Control expression must be Boolean.
– Scope of variables defined in the initial expression

is only the loop body.

CS516 41

(2) Logically-Controlled Loops

• Design Issues:
– Pretest or posttest?
– Should this be a special case of the counting loop

statement (or a separate statement)?

CS516 42

Logically-Controlled Loops -
Example

• Pascal:
– while-do and repeat-until

• C and C++:
– while and do-while

• Java:
– Like C, except the control expression must be Boolean.

• Ada:
– Has a pretest version, but no posttest.

• FORTRAN 77 and 90:
– Have neither.

8

CS516 43

User-Located Loop Control
Mechanisms

• Design issues:
– Should the conditional be part of the exit?
– Should the mechanism be allowed in an already

controlled loop?
– Should control be transferable out of more than one

loop?

CS516 44

User-Located Loop Control
Mechanisms - Example

• Ada:
– exit [loop_label] [when condition]

for ... loop LOOP1:
... for … loop
exit when
... LOOP2:

end loop for ... loop
...
exit LOOP1 when

..
...

end loop LOOP2;
...
end loop LOOP1;

CS516 45

User-Located Loop Control
Mechanisms - Example

• C , C++, and Java:
– break

• Unconditional and unlabeled exit.

• C , C++:
– continue

• Skips the remainder of this iteration, but does not exit the loop.

• Java and FORTRAN:
– break EXIT

• Unconditional and labeled exit.

CS516 46

User-Located Loop Control
Mechanisms - Example

while (sum < 1000) {
getnext(value);
if (value < 0) break;
sum += value;

}

while (sum < 1000) {
getnext(value);
if (value < 0) continue;
sum += value;

}

CS516 47

3. Unconditional Branching
(GOTO)

• Problems:
– Readability!

• Some languages do not have them.
– Modula-2 and Java.

• Should remain, but restricted use!

CS516 48

Guarded Commands

• Guarded Commands (Dijkstra, 1975)
• Idea:

– If the order of evaluation is not important, the
program should not specify one.

9

CS516 49

Guarded Commands - Selection

if <boolean> -> <statement>
[] <boolean> -> <statement>

...
[] <boolean> -> <statement>
fi

• Semantics:
– Evaluate all boolean expressions.
– If more than one are true, choose one non-

deterministically.
– If none are true, it is a runtime error.

CS516 50

Guarded Commands - Loop

do <boolean> -> <statement>
[] <boolean> -> <statement>

...
[] <boolean> -> <statement>
od

• Semantics: For each iteration:
– Evaluate all boolean expressions.
– If more than one are true, choose one non-

deterministically; then start loop again.
– If none are true, exit loop.

CS516 51

Guarded Commands

• Connection between control statements and
program verification is intimate.
– Verification is virtually impossible with gotos.
– Verification is possible with only selection and

logical pretest loops.
– Verification is relatively simple with only guarded

commands.

CS516 52

Statement-Level Control
Structures - Summary

• Choice of control statements beyond selection
and logical pretest loops?
– Which control statements?
– How about goto?

• A trade-off between language size and
writability!

