
Formal Specification: a Roadmap

Axel van Lamsweerde
Département d’Ingénierie Informatique

Université catholique de Louvain
B-1348 Louvain-la-Neuve (Belgium)

avl@info.ucl.ac.be
i
n

e
r

is
s
y’
r
-
e

oo
s
m
u
s

fo
n
9
h
n
c
e

a
o
w
77
a-
a
,

n
-
e
e

, of

s
at
is

of
nd
nd
sat-
r-

uch
le-
ral

in,
to
th

of
re
re
c-
n.
-
l
ity,
by
ng

of
er-

or-
is

eci-
s

be

A
e
al
ABSTRACT
Formal specifications have been a focus of software eng
neering research for many years and have been applied i
wide variety of settings. Their industrial use is still limited
but has been steadily growing. After recalling the essenc
role, usage, and pitfalls of formal specification, the pape
reviews the main specification paradigms to date and d
cuss their evaluation criteria. It then provides a brief asses
ment of the current strengths and weaknesses of toda
formal specification technology. This provides a basis fo
formulating a number of requirements for formal specifica
tion to become a core software engineering activity in th
future.

1. INTRODUCTION

Formal specifications have been considered since the g
old days of Computing Science. In the late nineteen fortie
Turing observed that reasoning about sequential progra
was made simpler by annotating them with properties abo
program states at specific points [Ran73]. In the late sixtie
Floyd, Hoare and Naur proposed axiomatic techniques
proving the consistency between sequential programs a
such properties, called specifications [Flo67, Hoa6
Nau69]. Dijkstra showed how a formal calculus over suc
specifications could be used constructively to derive no
deterministic programs that meet them [Dij75]. Specifi
techniques were also proposed to formally express intend
properties for special kinds of programs, notably, dat
structured programs [Par72, Lis75] and concurrent pr
grams [Pnu77]. This was the starting point for a whole ne
area of research aimed at specification-in-the-large [Par
SRS79, Abr80, Hen80]. The interest in formal specific
tions and their multiple uses in software engineering h
been growing continually since that point [Win90, Cra93
Hin95, Cla96, Win99, SCP2K].

What are formal specifications?

Formal specifications may refer to fairly different things i
the software lifecycle; the wording is thus heavily over
loaded. An additional source of confusion stems from th
fact that a single word is used for a product and the corr
sponding process.

Generally speaking, aformal specificationis the expression,
er-
he
ng
).
-
a

,

-
-
s

d
,
s
t
,
r
d
,

-

d
-
-

,

s

-

in some formal language and at some level of abstraction
a collection of properties some system should satisfy.

This purposely general definition covers different notion
dependent on what the word “system” really covers, wh
kind of properties are of interest, what level of abstraction
considered, and what kind of formal language is used.

Complex software applications are built using a series
development steps: (a) high-level goals are identified a
refined until a set of requirements on the software a
assumptions on the environment can be made precise to
isfy such goals; (b) a software architecture, made of inte
connected software components, is designed to satisfy s
requirements; and (c) the various components are imp
mented and integrated so as to satisfy the architectu
descriptions. All along this development/satisfaction cha
knowledge about the application domain is often used
guide the elaboration and to support the validation wi
respect to upstream prescriptions.

The “system” being specified may be a descriptive model
the domain of interest; a prescriptive model of the softwa
and its environment; a prescriptive model of the softwa
alone; a model for the user interface; the software archite
ture; a model of some process to be followed; and so o
The “properties” under consideration may refer to high
level goals; functional requirements; non-functiona
requirements about timing, performance, accuracy, secur
etc.; environmental assumptions; services provided
architectural components; protocols of interaction amo
such components; and so on.

Beyond such different realizations of the general concept
specification, there is a common idea of specifications p
taining to theproblem domain(as opposed to the solution
domain). To make sure some solution solves a problem c
rectly, one must first state that problem correctly. Th
dichotomy is however simplistic; a solution to a problem
may in general be given as a set of subproblems to be sp
fied and solved in turn [Swa82]. A specification must thu
in general satisfy some higher-level specification and
satisfied by some lower-level specifications.

“Formal” is often confused with “precise” (the former
entails the latter but the reverse is of course not true).
specification isformal if it is expressed in a language mad
of three components: rules for determining the grammatic
well-formedness of sentences (the syntax); rules for int
preting sentences in a precise, meaningful way within t
domain considered (the semantics); and rules for inferri
useful information from the specification (the proof theory

Taken From:"The Future of Software Engineering" , Anthony Finkelstein (Ed.), ACM Press 2000Order number is 592000-1, ISBN 1-58113-253-0. ACM E-Store: http://store.acm.org/acmstore 



to
4,

-

di-
le

nts
];

te

tion

a-

am
olu-

y
rly
ts,
ols.
nt
in
in
be

hat
rs

tool
ble
up-
-

ld
his
-
m-

ife-
e,
ls,
the
e
en

ns

-
n

ter
The latter component provides the basis for automated anal-
ysis of the specification.

The collection of properties being specified is often fairly
large; the language should thus allow the specification to be
organized intounits linked throughstructuring relationships
- such as specialization, aggregation, instantiation, enrich-
ment, use, etc. Each unit in general has a declaration part,
where variables of interest are declared, and an assertion
part, where the intended properties on the declared variables
are formalized. Formal specification techniques essentially
differ from semi-formal ones (such as dataflow diagrams,
entity-relationship diagrams or state transition diagrams) in
that the latter do not formalize the assertion part.

What are good specifications?
Writing a “correct” specification is very difficult - probably
as difficult as writing a correct program. A specification
must beadequate, that is, it must adequately state the prob-
lem at hand. It must beinternally consistent, that is, it must
have a meaningful semantic interpretation that makes true all
specified properties taken together. It must beunambiguous,
that is, it may not have multiple interpretations of interest
making it true. It must becompletewith respect to higher-
level ones, that is, the collection of properties specified must
be sufficient to establish the latter [Yue87]. It must besatis-
fied by lower-level ones. It should beminimal, that is, it
should not state properties that are irrelevant to the problem
or that are only relevant to a solution for that problem
[Mey85].

Why specify formally?
Problem specifications are essential for designing, validat-
ing, documenting, communicating, reengineering, and reus-
ing solutions. Formality helps in obtaining higher-quality
specifications within such processes; it also provides the
basis for their automated support.

The act of formalization in itself has been widely experi-
enced to raise many questions and detect serious problems in
original informal formulations. Besides, the semantics of the
formalism being used provides precise rules of interpretation
that allow many of the problems with natural language to be
overcome. A language with rich structuring facilities may
also produce better structured specifications.

As the major payoff, formal specifications may be manipu-
lated by automated tools for a wide variety of purposes:

• to derive premises or logical consequences of the specifi-
cation, for user confirmation, through deductive theorem
proving techniques [Owr95, Man96];

• to confirm that an operational specification satisfies more
abstract specifications, or to generate behavioral counter-
examples if not, through algorithmic model checking
techniques [Que82, Cla86, Hol91, Hol97, McM93, Atl93,
Man96, Hei98a, Cla99];

• to generate counterexamples to claims about a declarative
specification [Jac96];

• to generate concrete scenarios illustrating desired or
undesired features about the specification [Fic92, Hal95,
Hal98] or, conversely, to infer the specification inductively

from such scenarios [Lam98c];

• to produce animations of the specification in order
check its adequacy [Hek88, Har90, Dub93, Doug9
Heit96, Tho99];

• to check specific forms of specification consistency/com
pleteness efficiently [Heim96, Heit96];

• to generate high-level exceptions and conflict precon
tions that may make the specification unsatisfiab
[Lam98b, Lam2K];

• to generate higher-level specifications such as invaria
or conditions for liveness [Lam79, Ben96, Par98, Jef98

• to drive refinements of the specification and genera
proof obligations [Car90, Abr96, Dar96];

• to generate test cases and oracles from the specifica
[Ber91, Ric92, Roo94, Wey94, Man95];

• to support formal reuse of components through specific
tion matching [Kat87, Reu91, Mas97, Zar97].

Formal specifications can also be generated from progr
code as a basis for reverse engineering and software ev
tion [Gan96, Ern99].

Specify... for whom?
One of the problems with formal specifications is that the
may concern different classes of consumers having fai
different background, abstractions and languages - clien
domain experts, users, architects, programmers, and to
For example, the specification of a goal or requireme
should be checked by clients for adequacy; a doma
description should be produced or checked by doma
experts; an architectural component specification should
seen in a detailed form by programmers assigned to t
component and in a more abstract form by programme
assigned to other components using that component; a
should see a specification in some efficiently processa
form; and so on. One way to handle such clashes is to s
port multilingual specifications, at the price of raising con
sistency problems (see below).

It is now well-accepted that a programming language shou
be a language for the programmer, not for the machine. T
principle is still not widely accepted for specification lan
guages; many of them still seem to be designed for progra
mers or for tools rather than for specifiers.

Specify... when?
As seen before, there are multiple stages in the software l
cycle at which formal specifications may enter the pictur
e.g., when modeling the domain; when elaborating the goa
requirements on the software, and assumptions about
environment; when designing a functional model for th
software; when designing the software architecture; or wh
modifying or reengineering the software.

The main focus to date has been on formal specificatio
written during thedesignof a preliminary functional model
for the software [Win90]. We will therefore focus the discus
sion of past achievements on this kind of specificatio
mainly. We will also take the viewpoint ofspecification
buildingsince formal reasoning is covered in another chap



e
op-
ms
ing
er-

its
r

ral
ons
es.
can
an
us
2,
,
r-
re

es,
ome
by

ap-
pli-
tion
for

ron-
is
n
the

0]
s

ys-
ons
by
n;
h
ut
n-
a
di-

A

ol-
be

t
n-
of this volume.

2. FORMALIZATION: SCOPE AND PITFALLS

Although close to commonsense, there are a few important
principles and facts that are often overlooked by champions
of formalization.

• Specifications are never formal in the first place. To state
properties precisely and formally, one must first figure out
what these properties are. The latter must necessarily be
formulated in a language all parties can speak and under-
stand, that is, natural language.

• Formal specifications are meaningless without a precise,
informal definition of how to interpret them in the domain
considered. A formalization involves terms and predicates
which may have many different meanings. The specifica-
tion thus makes sense only if the meaning of each term/
predicate is stated precisely, by mapping function/predi-
cate names to functions/relations on domain objects. This
mapping must be precise but necessarily informal (to avoid
infinite regression). This fairly obvious principle is often
neglected [Zav97].

• Formal specification is not a mere translation process from
informal to formal. The specification of a large, complex
system requires relevant objects and phenomena to be
identified, interrelated, and characterized through proper-
ties of interest. Model construction and property descrip-
tion are thus tightly coupled components of any
specification-in-the-large process.

• Formal specifications are hard to develop and assess.This
stems from the diversity and subtlety of errors that can be
made (see Section 1) and from the multiplicity of model-
ing choices that can be made. As a consequence, formal
specifications are rarely correct in the first place. It has
been frequently noted, however, that even wrong specifica-
tions may help finding out problems in original formula-
tions.

• The rationale for specific modeling choices in a specifica-
tion is important for explanation and evolution [Sou93].
Unfortunately, such rationale is rarely documented.

• The by-products of a formal specification process are often
more important than the formal specification itself; they
include a better informal specification, obtained by feed-
back from formal expression, structuring and analysis; and
lower-level products that are more likely to satisfy them
thanks to such formalization/analysis.

• To be useful, a formal system must have a limited domain
of applicability. Specific types of systems require specific
types of techniques for natural expression and efficient
analysis. For example, the formal specification of a com-
piler must include a definition of the input grammar. A
BNF-style specification would be most appropriate for this
domain but clearly inappropriate for the domain of pro-
cess-control systems. There is thus no point in looking for
a universal specification technique.

3. SPECIFICATION PARADIGMS

Formal specification techniques differ mainly by the particu-

lar specification paradigm they rely on. In the sequel, w
avoid the usual, somewhat confusing model-based vs. pr
erty-based dichotomy; the reason is that for large syste
any property-based specification involves system model
and any model-based specification involves system prop
ties.

History-based specification
The principle here is to specify a system by characterizing
maximal set of admissible histories (or “behaviors”) ove
time. The properties of interest are specified by tempo
logic assertions about system objects; such asserti
involve operators referring to past, current and future stat
The assertions are interpreted over time structures. Time
be linear [Pnu77] or branching [Eme86]. Time structures c
be discrete [Man92, Lamp94], dense [Gre86], or continuo
[Han91]. The properties may refer to time points [Man9
Lam94], time intervals [Mos97], or both [Gre86, Jah86
All89, Ghe91]. Most often it is necessary to specify prope
ties over time bounds; real-time temporal logics are therefo
necessary [Koy92, Dub91, Mor92, Dar93, Mos97].

State-based specification
Instead of characterizing the admissible system histori
one may characterize the admissible system states at s
arbitrary snapshot. The properties of interest are specified
(a) invariants constraining the system objects at any sn
shot, and (b) pre- and post-assertions constraining the ap
cation of system operations at any snapshot. A pre-asser
captures a weakest necessary condition on input states
the operation to be applied; a post-assertion captures a st
gest effect condition on output states if the operation
applied. The latter may be explicit or implicit dependent o
whether or not the assertion contains equations defining
output constructively.

Languages such as Z [Abr80, Spi92, Pot96], VDM [Jon9
or B [Abr96] relyon this paradigm. Object-oriented variant
have been proposed as well [Lan95].

Transition-based specification
Instead of characterizing admissible system histories or s
tem states, one may characterize the required transiti
from state to state. The properties of interest are specified
a set of transition functions in the state machine transitio
the transition function for a system object gives, for eac
input state and triggering event, the corresponding outp
state. The occurrence of a triggering event is a sufficient co
dition for the corresponding transition to take place (unlike
precondition, it captures an obligation); necessary precon
tions may also be specified to guard the transition.

Languages such as Statecharts [Har87], PROMEL
[Hol91], STeP-SPL [Man92], RSML [Lev94] or SCR
[Par95, Heit96] rely on this paradigm.

Functional specification
The principle here is to specify a system as a structured c
lection of mathematical functions. Two approaches may
distinguished.

Algebraic specification. The functions are grouped by objec
types that appear in their domain or codomain, thereby defi



ca-
d
w-
e
l-

of
-

ing
ers
n

heir
d

od-
s-
es

-
al
cal

on
nd
d

for
ric-
nd
ct.

s a
ly-
o-
2,
],

d
-
s a
cal
es
ch
6,
ri-
ns to

e

e

ds
the
u-
y
rt
d

tis-
ing algebraic structures (or abstract data types). The proper-
ties of interest are then specified as conditional equations
that capture the effect of composing functions (typically,
compositions with type generators).

Languages such as OBJ [Fut85], ASL [Ast86], PLUSS
[Gau92] or LARCH [Gut93] rely on this paradigm.

Higher-Order Functions. The functions are grouped into
logical theories. Such theories contain type definitions (pos-
sibly by means of logical predicates), variable declarations,
and axioms defining the various functions in the theory.
Functions may have other functions as arguments which sig-
nificantly increases the power of the language. Languages
such as HOL [Gor93] or PVS [Cro95, Owr95] rely on this
paradigm.

Operational specification

At the extreme opposite, a system may be characterized as a
structured collection of processes that can be executed by
some more or less abstract machine. Early languages such as
Paisley [Zav82], GIST [Bal82], Petri nets or process alge-
bras [Hoa85, Mil89] rely on this paradigm.

4. HOW GOOD IS MY FAVORED TECHNIQUE?

Specification techniques may be evaluated and compared
against a number of criteria. Unsurprisingly, some of these
criteria are interdependent and even conflicting; the choice
of a reasonable compromise thus depends on the specifier’s
priorities for the task and system at hand.

Expressive power and level of coding required.As noted
before, each paradigm above has some built-in semantic bias
in order to be useful. State-based and functional specifica-
tions focus on sequential behaviors while providing rich
structures for defining complex objects. They are thus better
targeted at transactional systems. Conversely, history-based,
transition-based specifications and operational specifications
focus on concurrent behaviors while providing only fairly
simple structures for defining the objects being manipulated.
They are thus better targeted at reactive systems. There are,
of course, hybrid approaches that attempt to recover from
this, e.g., [Fau92, Geo95].

Beyond such semantic bias, the formal language should
allow the properties of interest to be expressed without too
much hard coding. Specification is about defining problems,
not about programming solutions. Ideally, there should be a
simple, straightforward mapping between the natural lan-
guage formulation of a property and its formal counterpart.

This is, unfortunately, rarely the case. Unlike natural lan-
guage, formal languages impose limitations. For example, a
first-order language makes it impossible to refer to opera-
tions as predicate arguments so that coding tricks are
required to overcome the problem - such as the introduction
of auxiliary events that encode the application of operations.
Most languages are weak at supporting temporal referenc-
ing; explicit or implicit time references occur frequently in
natural formulations. For example, the built-in inability of
state-based specifications to refer to the past makes it neces-
sary to introduce auxiliary variables for encoding whether
such or such event of interest has occurred, with correspond-

ing update operations to be specified at each state modifi
tion (as in imperative programming). History-base
specifications are the main exception to this problem. Ho
ever they may also be problematic for specifying relativ
orderings of events; e.g., [Dwy99] gives an example of a re
atively simple ordering property that requires six levels
operator nesting in linear temporal logic! Algebraic specifi
cations are among those which require the most cod
expertise; experience reveals that many novice specifi
incorrectly write fairly simple operations such as deleting a
element from a set, because of the distance between t
intuition of what this operation is about and the require
delete/add commutativity axioms.

Due to language expressiveness problems, specification c
ing may require a lot of expertise; in the end it makes it que
tionable whether or not the specification correctly captur
the target properties of interest.

Constructibility, manageability and evolvability.The speci-
fication technique should provide facilities for building com
plex specifications in a piecewise, incremental way. Loc
changes in problem features should be reflected by lo
changes in the specification. These requirements depend
(a) language mechanisms for specification structuring a
compositional reasoning, and (b) the availability of a metho
for incremental construction, analysis and modification.

Many languages support basic structuring mechanisms
modularizing specifications - such as encapsulation, gene
ity, inheritance, inclusion, enrichment, etc. State-based a
functional languages are probably the richest in that respe

Some languages also support refinement relationships a
basis for incremental specification development and ana
sis, e.g., data reification [Jon90, Abr96], component comp
sition/decomposition through logical connectors [Spi9
Aba95], state composition/decomposition [Har87, Lev94
or goal abstraction/refinement [Dar96].

Usability. It should be possible for reasonably well-traine
people towrite high-quality specifications. This soft, higher
level criterion of course depends on all previous ones plu
few more. The language should have a simple theoreti
basis. This probably explains the popularity of languag
built on simple, well-understood mathematical notions su
as sets, relations and functions [Abr80, Spi92, Abr9
Owr95]. The language should also exempt users from int
cacies such as, e.g., the need in state-based specificatio
specify that “nothing else changes” through additional fram
axioms [Bor95].

Communicability. Conversely, the technique should b
accessible for reasonably well-trained people toread high-
quality specifications and check them. This criterion depen
on the previous ones (notably, the closeness between
specification and its corresponding natural language form
lation), and on the external format the specification ma
take. It explains the popularity of techniques that suppo
tabular formats [Hen80, Lev94, Par95, Cro95, Heit96] an
diagrammatic notations [Har87, Lev94].

Powerful and efficient analysis. The effectiveness of a for-
mal specification technique depends on the degree of sa



d.

ed
ci-

hat
of

es
to
as
e

ali-
te-
ate
te-
the
e

ly
in
a-
as-
nd
cts.
ng
at
to
a

n
ese
he
nd

r-
n-

of
es
d

ed
out

he
en-
p-

ro-
t is
h-
as,
nsi-
3,
faction of the various objectives mentioned in Section 1. In
particular, there is no much sense writing formal specifica-
tions without being rewarded by feedback from automated
tools. The latter should ideally support a wide range of anal-
ysis in the space of possibilities listed in Section 1. With a
few notable exceptions (e.g., [Hei98b]) this has mostly been
wishful thinking so far. Favoring one kind of analysis or
another usually dictates the choice of one specification tech-
nique or another.

The more efficient the analysis is, the more coding effort is
usually required on the specifier’s side. This is the case for
specification animation based on executing operational spec-
ifications or on term rewriting of algebraic specifications.
Model checkers illustrate this as well; the unconvinced
reader may look at what their input code for a complex
application may look like.

On another hand, the more powerful the analysis is, the more
expert intervention is usually required. Proof assistants are a
good illustration of this unsurprising fact [Cro95].

It should become clear from our brief review of evaluation
criteria that any multicriteria analysis will inevitably result in
favoring a multiparadigm framework in which complemen-
tary formalisms, methods and tools are integrated in a coher-
ent way so as to combine the best of each paradigm for
specific domains, tasks, and concerns. Very preliminary
attempts have started in this direction [Nis89, Dar93, Nus93,
Zav93, Zav96].

5. TODAY’S GOOD NEWS

The number of success stories in using formal specifications
for real systems is steadily growing from year to year. They
range from to the reengineering of existing systems (e.g.,
[Hen80, Crai93]) to the development of new systems (e.g.,
[Hal96, Beh99]). In the latter case, there was some reported
evidence that the development, while resulting in products of
much higher quality, did not incur higher costs but rather the
contrary. Although many of the stories are in the domain of
transportation systems, there are other domains such as
information systems, telecommunication systems, power
plant control, protocols and security. Good accounts can be
found in [Cra93, Hin95, Cla96, SCP2K].

A recent, fairly impressive example is worth pointing out
[Beh99]. The Paris metro system has recently opened a new
line (line 14, Tolbiac-Madeleine). The traffic on this line is
entirely controlled by software. Driverless trains and conven-
tional trains are both supported. The safety-critical compo-
nents of the software (located on board, along the track, and
on ground) were formally developed by Matra Transport
using the B abstract machine method [Abr96]. The develop-
ment includes abstract models of those components, refine-
ments to concrete models, and automated translation to ADA
code. According to [Beh99], there are about 100,000 lines of
B specification, covering the abstract and the concrete
model, and 87,000 lines of ADA code. The refinement was
entirely validated by formal proofs. The B tool automatically
proved 28,000 lemmas and 65% of the rules added to dis-
charge proofs. Many errors were found thereby, and fixed in
the concurrent development. In addition, a conventional test-

ing process was deployed and not a single error was foun

The success of this formal development might be explain
by the unusual combination of success factors. The B spe
fication language has a simple mathematical basis t
allows engineers to use it after a reasonably short period
training; the specification technique is multi-level and mak
it possible to smoothly move from an abstract model up
code in a provably correct way; methodological support w
provided in the form of guidelines and heuristics to guide th
development and validation processes; a development/v
dation process model was first designed explicitly and in
grated in the company’s process model to accommod
conventional practices such as testing (the lack of such in
gration has been recognized to be a serious obstacle to
adoption of formal methods [Cra95]); last but not least, th
process was supported by powerful tools.

The maturity of specification tool technology is also steadi
growing from year to year. Tools become more effective
analyzing formal specifications and deriving useful inform
tion; their performance on large specifications keeps incre
ing; they become more usable. Specification animators a
model checkers are particularly successful in those respe
Moreover there is a promising tendency towards integrati
multiple tools so as to offer a wide spectrum of analysis
various costs - from fully automatic, dedicated checks
interactive assistance in difficult proofs. The SCR toolset is
good illustration of this recent trend [Hei98b].

6. TODAY’S BAD NEWS

In spite of such good news, today’s formal specificatio
techniques suffer a number of weaknesses. Some of th
explain why in their present form they are inadequate for t
upstream critical phase of requirements specification a
analysis.

• Limited scope. The vast majority of techniques are limited
to the specification of functional properties, that is, prope
ties about what the target system is expected to do. No
functional properties are in general left outside any kind
formal treatment. The main exception are techniqu
allowing timing properties to be formalized and reasone
about.

• Poor separation of concerns. Most techniques provide no
support for making a clear separation between (a) intend
properties of the system considered, (b) assumptions ab
the environment of this system, and (c) properties of t
application domain. One cannot therefore make the ess
tial distinction between descriptive and prescriptive pro
erties (called “indicative” and “optative” in [Zav97]); they
are all mixed together in the specification.

• Low-level ontologies. The concepts in terms of which
problems have to be structured and formalized are p
gramming concepts - most often, data and operations. I
time to raise the level of abstraction and conceptual ric
ness found in informal requirements documents - such
e.g., goals and their refinements, agents and their respo
bilities, alternatives, and so forth [Fea87, Fic92, Dar9
Myl98, Myl99].



th
t
.

e is
n-
i-
nd
heir

s

m

i-
al.
up-

he
ry
-
-
-

en
d
ke-

e
of
e-
hi-
e,

-
y,
in
-
sis

l
ion
be

he
ols
n-
in
ofs

ll
d in
• Isolation. With a few exceptions mentioned before, formal
specification techniques are isolated from other software
products and processes both vertically and horizontally.
Vertical isolation: specification techniques generally pay
no attention to what upstream products in the software
lifecycle the formal specification is coming from (viz.
goals, requirements, assumptions) nor what downstream
products the formal specification is leading to (viz. archi-
tectural components).Horizontal isolation:the techniques
generally do not pay attention to what companion products
the formal specification should be linked to (e.g., the cor-
responding informal specification, a documentation of
choices, validation data, project management information,
etc.).

• Poor guidance. The main emphasis in the formal specifi-
cation literature has been on suitable sets of notations and
on a posteriori analysis of specifications written using
such notations. Constructive methods for building correct
specifications for complex systems in a safe, systematic,
incremental way are by and large non-existent. Instead of
inventing more and more languages, one should put more
effort in devising and validating methods for elaboration
and modification of good specifications (in the sense
recalled in Section 1).

• Cost. Many formal specification techniques require high
expertise in formal systems in general (and mathematical
logic in particular), in analysis techniques, and in the
white-box use of tools. Due to the scarcity of such exper-
tise their use in industrial projects is nowadays still highly
limited in spite of the promised benefits.

• Poor tool feedback. Many analysis tools are effective at
pointing out problems, but in general they do a poor job of
(a) suggesting causes at the root of such problems, and (b)
proposing recovery actions.

7. BACK TO THE FUTURE

The discussion above provides the material for paving the
road ahead. Tomorrow’s technology should meet the follow-
ing requirements and challenges for formal specification to
become an essential vehicle for the engineering or reengi-
neering of higher-quality software.

• Constructiveness. The almost exclusive focus on a poste-
riori analysis of possibly poor specifications should in part
be shifted towards a more constructive approach in which
specifications are built incrementally from higher-level
ones in a way that guarantees high quality by construction.
One could then really speak of a method, typically made
of a collection of model building strategies, style selection
rules, specification derivation rules, guidelines, and heu-
ristics; some might be domain-independent, some others
might be domain-specific. Such a method should provide
active guidance in the specifier’s decision making process.
It might be supported by automated specification assis-
tants that would provide advice at decision points and
record the process followed, for documentation and possi-
ble replay in case of later evolution.

• Support for comparative analysis. Experience in teaching
formal specification reveals that different specifiers wi
the same background may end up with fairly differen
specifications for the same initial problem formulation
The same is true for programs, but in the latter case ther
at least an ultimate moment of truth - the program is ru
ning satisfactorily or not. Beyond the specification qual
ties recalled in Section 1, we need precise criteria a
measures for assessing specifications and comparing t
relative merits.

• Integration. Tomorrow’s technology should care for the
vertical and horizontal integration of formal specification
within the software lifecycle - from high-level goals to
functional design to architectural components; and fro
informal formulation to formal specification to related
products.

• Higher level of abstraction. Specification techniques
should move from functional design to requirements eng
neering where the impact of errors is even more cruci
We therefore need languages, methods and tools that s
port richer, problem-oriented ontologies upstream to t
program-oriented ones currently supported. Prelimina
attempts in this direction include [Myl92, Dar96] for goal
oriented refinement, [Myl92, Lam98b] for goal-level con
flict analysis, and [Lam2K] for goal-level exception han
dling.

• Richer structuring mechanisms.Most constructs avail-
able so far for modularizing large specifications have be
lifted from programming counterparts. Problem-oriente
constructs should be available as well such as, e.g., sta
holder viewpoints [Nus93] or problem views [Jac95].

• Extended scope. Specification techniques need to b
extended in order to cope with the various categories
non-functional properties that are elicited during requir
ments engineering and play a prominent role during arc
tectural design, e.g., properties about performanc
integrity, confidentiality, accuracy of information, avail
ability, fault-tolerance, operational costs, maintainabilit
and so forth. The qualitative reasoning techniques
[Myl92] are a first step in this direction. Specific catego
ries might require specific language features and analy
techniques.

• Separation of concerns. As discussed before, forma
specification languages should enforce a strict separat
between descriptive and prescriptive properties, to
exploited by analysis tools accordingly.

• Lightweight techniques.The use of formal specifications
should not require deep expertise in formal systems. T
mathematical intricacies should be hidden; analysis to
should be usable like compilers. The work on patter
based specification in [Dwy99] is a very promising step
this direction. Patterns may also be used to reuse pro
and generate specifications [Dar96, Lam2K].

• Multiparadigm specification. Complex systems have mul-
tiple facets. Since no single paradigm will ever serve a
purposes due to semantic biases, frameworks are neede



e
e

ive

i-
to

ity.

.
-
at
e
o
ft-

rd.
it-
e
lu-
-

he
;

ms

d
v.,

-

r-

s-

n
gi-

l

r,
,
e

which multiple paradigms can be combined in a semanti-
cally meaningful way so that the best features of each par-
adigm can be exploited. The various facets then need to be
linked through consistency rules [Nus93]. Multiparadigm
frameworks should be able to integrate various formal lan-
guages, semi-formal ones, and natural language, together
with corresponding analysis techniques and tools. Prelimi-
nary linguistic attempts in this direction combine semantic
nets, history-based specification, and state-based specifica-
tion [Dar93]; or state-based specification and transition-
based specification [Zav96]. While multilingual integra-
tion is fairly easy to achieve among semi-formal languages
it raises difficult semantic issues for formal languages.

• Multibutton analysis. A multiparadigm framework should
support different levels of optional analysis - from cheap,
surface-level analysis (such as traceability analysis, static
semantics checks and qualitative reasoning) to more
expensive, deep-level analysis (such as algorithmic verifi-
cation, deductive reasoning, or inductive reasoning from
examples). The more heavyweight buttons would be
pushed only when needed and where needed. A multibut-
ton environment would also allow end-users to use the typ-
ical facilities provided by standard CASE tools in a first
stage, and then gradually enter into the more complex
world of formal methods as they get more confidence.

• Multiformat specification. To enhance the communicabil-
ity of the same specification fragment among different
types of producers/consumers, the fragment should be
maintained under multiple concrete syntaxes - e.g., tabu-
lar, diagrammatic, and textual.

• Reasoning in spite of errors. Many specification tech-
niques require that the specification be complete in some
sense before the analysis can start. It should be made pos-
sible to start analysis much earlier, on specification drafts
[Gau92], and incrementally. This would ensure early pay-
back and incremental gain for incremental effort - an
important objective already noted in [Cla96]. On another
hand, deductive techniques also assume that the specifica-
tion is consistent for useful information to be derivable.
Especially in the context of requirements engineering,
where useful information can be inferred from conflicting
viewpoints, formal systems and reasoning techniques are
needed for deriving such information in spite of temporary
inconsistencies [Hun98].

• Constructive feedback from tools.Instead of just pointing
out problems, future tools should assist in resolving them.

• Support for evolution. In general, requirements keep
evolving while some core architecture is expected to
remain stable. A more constructive approach should also
help managing the evolution of formal specifications under
such constraints.

• Support for reuse. Problems in the domain considered are
more likely to be similar than solutions. Specification
reuse should therefore be even more promising than code
reuse. Surprisingly enough, techniques for retrieving,
adapting, and consolidating reusable specifications have
received relatively little attention so far (see, e.g., [Zar97]

for some recent work in this direction). A constructiv
approach to formal specification should also favor th
reuse of specifications that proved to be good and effect
for similar systems.

• Measurability of progress. To be more convincing, the
benefits of using formal specifications in software eng
neering should be measurable thanks to metrics similar
those used for measuring increase in software productiv

8. CONCLUSION

Software is increasingly invading many aspects of our life
We increasingly need high-quality software. Formal specifi
cations offer a wide spectrum of possible paths towards th
goal. Therefore they are receiving increasing attention in th
academia and the industry. Still, there is a long way to g
before formal specifications can be used by the average so
ware engineer to provide reasonably fast and visible rewa
Among the many challenges raised, we believe that the cr
ical success factors will be the provision of constructiv
assistance in specification development, analysis, and evo
tion; the vertical and horizontal integration of formal speci
fications within the software lifecycle; higher-level
abstractions for requirements specification and analysis; t
availability of formal techniques for non-functional aspects
and lightweight interfaces for multiparadigm specification
and analysis.

Acknowledgment.

Many thanks to Michel Sintzoff for fruitful input and dis-
cussions on some issues raised in this paper.

REFERENCES
[Aba95] M. Abadi and L. Lamport, “Conjoining Specifications”,

ACM Transactions on Programming Languages and Syste
Vol. 17 No. 3, May 1995, 507-535.

[Abr80] J.R. Abrial, “The Specification Language Z: Syntax an
Semantics”. Programming Research Group, Oxford Uni
1980.

[Abr96] J.R. Abrial, The B-Book: Assigning Programs to Mean
ings. Cambridge University Press, 1996.

[All89] J.F. Allen and P.J. Hayes, “Moments and Points in an Inte
val-Based Temporal Logic”,Computational Intelligence, Vol.
5, 1989, 225-238.

[Ast86] Astesiano, E., Wirsing, M., “An introduction to ASL”,
Proc. IFIP WG2.1 Conf. on Program Specifications and Tran
formations, North-Holland, 1986.

[Atl93] J.M. Atlee, State-Based Model Checking of Event-Drive
System Requirements, IEEE Transactions on Software En
neering Vol. 19 No. 1, January 1993, 24-40.

[Bal82] R.M. Balzer, N.M. Goldman, and D.S. Wile, “Operationa
Specification as the Basis for Rapid Prototyping”,ACM SIG-
SOFT Softw. Eng. Notes Vol. 7 No. 5, Dec. 1982, 3-16.

[Beh99] P. Behm, P. Benoit, A. Faivre and J.M. Meynadie
“Météor: A Successful Application of B in a Large Project”
Proc. FM-99 - World Conference on Formal Methods in th
Development of Computing Systems, LNCS 1708, Springer-
Verlag, 1999, 369-387.



r-

t
al

,
-

E

nd

ard,
r”,
e

nd

-

uer,

ion

c
ns

S.

A

e

[Ben96] S. Bensalem, Y. Lakhnech and H. Saïdi, “Powerful Tech-
niques for the Automatic Generation of Invariants”, Proc.
CAV’96 - 8th Intl Conference on Computer-Aided Verification,
LNCS 1102, Springer-Verlag, 1996, 323-335.

[Ber91] G. Bernot, M.C. Gaudel, ad B. Marre, “Software Testing
Based on Formal Specifications: A Theory and a Tool”,Soft-
ware Engineering Journal, 1991.

[Bor95] A. Borgida, J. Mylopoulos and R. Reiter, "On the Frame
Problem in Procedure Specifications",IEEE Transactions on
Software Engineering, Vol. 21 No. 10, October 1995, 785-798.

[Car90] C. Morgan,Programming from Specifications. Prentice
Hall, 1990.

[Cla86] E.M.Clarke and E.A. Emerson, “Automatic Verification of
Finite-State Concurrent Systems Using Temporal Logic Speci-
fications”, ACM Trans. Program. Lang. SystemsVol. 8 No. 2,
1986, 244-263.

[Cla96] E.M.Clarke, J.M. Wing et al, “Formal Methods: State of
the Art and Future Directions”,ACM Computing Surveys Vol.
28 No. 4, December 1996, 626-643.

[Cla99] E.M. Clarke, O. Grumberg, and D.A. Peled,Model Check-
ing. MIT Press, 1999.

[Cra93] D.Craigen, S. Gerhart and T. Ralston, An International Sur-
vey of Industrial Applications of Formal Methods. US Dept.
Commerce, NIST, Computer Systems Lab., NISTGCR 93/626,
March 1993.

[Cra95] D. Craigen, S. Gerhart and T. Ralston, “Formal Methods
Technology Transfer: Impediments and Innovation”, inAppli-
cations of Formal Methods, M.G. Hinchey and J.P. Bowen
(eds.), Prentice Hall, 1995, 399-419.

[Cro95] J. Crow, S. Owre, J. Rushby, N. Shankar, M. Srivas, “A
Tutorial Introduction to PVS”.Proc. WIFT’95 - Workshop on
Industrial-Strength Formal Specification Techniques, Boca
Raton, April 1995. http://www.csl.sri.com/sri-csl-fm.html.

[Dar93] A. Dardenne, A. van Lamsweerde and S. Fickas, “Goal-
Directed Requirements Acquisition”,Science of Computer Pro-
gramming, Vol. 20, 1993, 3-50.

[Dar96] R. Darimont and A. van Lamsweerde,“ Formal Refinement
Patterns for Goal-Driven Requirements Elaboration” , Proc.
FSE’4 - Fourth ACM SIGSOFT Symp. on the Foundations of
Software Engineering, San Francisco, October 1996, 179-190.

[Dij75] E.W. Dijkstra, “Guarded commands, nondeterminacy and
the formal derivation of programs”,Comm. ACMVol. 18,
August 1975, 453-457.

[Doug94] J. Douglas and R.A. Kemmerer, “Aslantest: A Symbolic
Execution Tool for Testing ASLAN Formal Specifications”,
Proc. ISTSTA '94 - Intl. Symp. on Software Testing and Analy-
sis, ACM Softw. Eng. Notes, 1994, 15-27.

[Dub91] Dubois, E., Hagelstein, J., Rifaut, A., “A Formal Language
for the Requirements Engineering of Computer Systems”, in
Introducing a Logic Based Approach to Artificial Intelligence,
A. Thayse (Ed.), Vol. 3, Wiley, 1991, 357-433.

[Dub93] E. Dubois, Ph. Du Bois and M. Petit, "Object-Oriented
Requirements Analysis: An Agent Perspective", Proc.
ECOOP’93 - 7th European Conf. on Object-Oriented Program-
ming, Springer-Verlag LNCS 707, 1993, 458-481.

[Dwy99] M.B. Dwyer, G.S. Avrunin and J.C. Corbett, “Patterns in
Property Specifications for Finite-State Verification”,Proc.

ICSE-99: 21th Intrnational Conference on Software Engine
ing, Los Angeles, 411-420.

[Eme86] E.A. Emerson and J.Y. Halpern, ““Sometime” and “no
Never” Revisited: on Branching versus Linear Time Tempor
Logic”, Journal of the ACM Vol. 33 No. 1, 1986, 151-178.

[Ern99] M.D. Ernst, J. Cockrell, W.G. Griswold, and D. Notkin
“Dynamically Discovering Likely Program Invariants to Sup
port Program Evolution”,Proc. ICSE-99: 21th Intrnational
Conference on Software Enginering, Los Angeles, 213-224.

[Fau92] S. Faulk, J. Brackett, P. Ward and J. Kirby, “The COR
Method for Real-Time Requirements”,IEEE Software, Septem-
ber 1992, 22-33.

[Fea87] M. Feather, “Language Support for the Specification a
Development of Composite Systems”,ACM Trans. on Pro-
gramming Languages and Systems 9(2), Apr. 87, 198-234.

[Fea98] M. Feather, S. Fickas, A. van Lamsweerde, and C. Pons
“Reconciling System Requirements and Runtime Behaviou
Proc. IWSSD’98 - 9th International Workshop on Softwar
Specification and Design, Isobe, IEEE CS Press, April 1998.

[Fic92] S. Fickas and R. Helm, “Knowledge Representation a
Reasoning in the Design of Composite Systems",IEEE Trans.
on Software Engineering, June 1992, 470-482.

[Flo67] R. Floyd, “Assigning Meanings to Programs”, In. Mathe
matical Aspects of Computer Science,Proc. Symp. Appl.
Maths., Vol. 19, American Mathematical Society, 1967, 19-32.

[Fut85] K. Futatsugi, J. Goguen, J.-P. Jounnaud, and J. Mesg
“Principles of OBJ”, Proc. POPL’85 - ACM Symposium on
Principles of Programming Languages, 1985, 52-66.

[Gan96] G.C. Gannod and B.H. Cheng, “Strongest Postcondit
Semantics as the Formal Basis for Reverse Engineering”,Jour-
nal of Automated Software EngineeringVol. 3, June 1996, 139-
164.

[Gau92] M.-C. Gaudel, “Structuring and Modularizing Algebrai
Specifications: the PLUSS specification language, evolutio
and perspectives”,Proc. STAS’92, LNCS 557, 1992, 3-18.

[Ghe91] C. Ghezzi and R.A. Kemmerer, “ASTRAL: An Assertion
Language for Specifying Real-Time Systems”,Proc. ESEC’91
- 3rd European Softwre Engineering Conference, LNCS 550,
Springer-Verlag, 1991.

[Geo95] C. George, A.E. Haxthausen, S. Hughes, R. Milne
Prehn and J.S. Pedersen,The RAISE Development Method.
Prentice Hall, 1995.

[Gor93] M. Gordon and T.F. Melham,Introduction to HOL. Cam-
bridge University Press, 1993.

[Gre86] S.J. Greenspan, A. Borgida and J. Mylopoulos, “
Requirements Modeling Language and its Logic”,Information
Systems Vol. 11 No. 1, 1986, 9-23.

[Gri81] D. Gries, The Science of Programming. Springer-Verlag,
1981.

[Gut93] J.V. Guttag and J.J. Horning,LARCH: Languages and
Tools for Formal Specification, Springer-Verlag, 1993.

[Hal95] R.J. Hall, “Systematic Incremental Validation of Reactiv
Systems via Sound Scenario Generalization”,Automated Soft-
ware Engineering, Vol. 2, 1995, 131-166.

[Hal96] A.Hall, “Using Formal Methods to Develop an ATC Infor-
mation System”,IEEE Software Vol. 12 No. 6, March 1996,
66-76.



ng
or,

g

of

of

w
,

r

al

n
a

es

g-

-
s",

s

-

r
-

t

[Hal98] R.J. Hall, “Explanation-Based Scenario Generation for
Reactive System Models”,ASE’98, Hawaii, Oct. 1998.

[Han91] K.M. Hansen, A.P. Ravn and H. Rischel, “Specifying and
Verifying Requirements of Real-Time Systems”,Proc. ACM
SIGSOFT’91 Conference on Software for Critical Systems,
New Orleans, December 1991.

[Har87] D. Harel, “Statecharts: A Visual Formalism for Complex
Systems”,Science of Computer ProgrammingVol. 8, 1987,
231-274.

[Har90] D.Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R.
Sherman, A. Shtull-Trauring, and M. Trakhtenbrot, “STATEM-
ATE: A Working Environment for the Development of Com-
plex Reactive Systems”,IEEE Transactions on Software
Engineering, Vol. 16 No. 4, April 1990, 403-414.

[Heim96] M.P. Heimdahl and N.G. Leveson, "Completeness and
Consistency in Hierarchical State-Based Requirements",IEEE
Transactions on Software EngineeringVol. 22 No. 6, June
1996, 363-377.

[Heit96] C. Heitmeyer, R. Jeffords and B. Labaw, "Automated Con-
sistency Checking of Requirements Specificatons",ACM
Transactions on Software Engineering and MethodologyVol. 5
No. 3, July 1996, 231-261.

[Hei98a] C. Heitmeyer, J. Kirkby, B. Labaw, M. Archer and R.
Bharadwaj, “Using Abstraction and Model Checking to Detect
Safety Violations in Requirements Specifications”,IEEE
Transactions on Software EngineeringVol. 24 No. 11, Novem-
ber 1998, 927-948.

[Hei98b] C. Heitmeyer, J. Kirkby, B. Labaw, and R. Bharadwaj,
“SCR*: A Toolset for specifying and Analyzing Software
Requirements”,Proc. CAV’98 - 10th Annual Conference on
Comuter-Aided Verification, Vancouver, 1998, 526-531.

[Hek88] S. Hekmatpour and D. Ince,Software Prototyping, Formal
Methods, and VDM. Addison-Wesley, 1988.

[Hen80] K.L. Heninger, “Specifying Software Requirements for
Complex Systems: New Techniques and their Application”,
IEEE Transactions on Software EngineeringVol. 6 No. 1, Janu-
ary 1980, 2-13.

[Hin95] M.G. Hinchey and J.P. Bowen (eds.),Applications of For-
mal Methods.Prentice Hall, 1995

[Hoa69] C.A.R. Hoare, “An Axiomatic Basis for Computer Pro-
gramming”,Comm. ACMVol. 12 No. 12 No. 10, Oct. 1969,
576-583.

[Hoa85] C.A.R.Hoare,Communicating Sequential Processes. Pren-
tice Hall, 1985.

[Hol91] G.Holzman,Design and Validation of Computer Protocols.
Prentice Hall, 1991.

[Hol97] G. Holzman, "The Model Checker SPIN",IEEE Trans. on
Software Engineering Vol. 23 No. 5, May 1997, 279-295.

[Hun98] A. Hunter and B. Nuseibeh, “Managing Inconsistent Spec-
ifications: Reasoning, Analysis and Action”,ACM Transactions
on Software Engineering and Methodology, Vol. 7 No. 4. Octo-
ber 1998, 335-367.

[Jac93] M. Jackson and P. Zave, “Domain Descriptions”,Proc.
RE’93 - 1st Intl. IEEE Symp. on Requirements Engineering,
Jan. 1993, 56-64.

[Jac95] D. Jackson, “Structuring Z Specifications with Views”,
ACM Transactions on Software Engineering and Methodology

Vol. 4 No. 4, October 1995, 365-389.

[Jac96] D. Jackson and C.A. Damon, Elements of Style: Analyzi
a Software Design Feature with a Counterexample Detect
IEEE Transactions on Software EngineeringVol. 22 No. 7, July
1996, 484-495.

[Jah86] F. Jahanian and A.K. Mok, “Safety Analysis of Timin
Properties in Real-Time Systems”,IEEE Transactions on Soft-
ware Engineering, Vol. 12, September 1986, 890-904.

[Jef98] R. Jeffords and C. Heitmeyer, “Automatic Generation
State Invariants from Requirements Specifications”,Proc. FSE-
6: 6th ACM SIGSOFT Intl Symposium on the Foundations
Software Engineering, Lake Buena Vista, 1998, 56-69.

[Jon90] Jones, C.B.,Systematic Software using VDM, 2nd ed.,
Prentice Hall, 1990.

[Jon93] A.J. Jones and M. Sergot, “On the Characterization of La
and Computer Systems: the Normative System Perspective”in
J.Ch. Meyer and R.J. Wieringa (Eds.),Deontic Logic in Com-
puter Science - Normative System Specification, Wiley, 1993.

[Kat87] S. Katz, C.A. Richter, K.S. The, “PARIS: A System fo
Reusing Partially Interpreted Schemas”,Proc. ICSE-87: 9th
Intrnational Conference on Software Enginering, Monterey,
CA, March 1987, 377-385.

[Koy92] R. Koymans,Specifying message passing and time-critic
systems with temporal logic,LNCS 651, Springer-Verlag, 1992.

[Lam79] A.van Lamsweerde and M. Sintzoff, “Formal Derivatio
of Strongly Correct Concurrent Programs”, Acta Informatic
Vol. 12, 1979, 1-31.

[Lam98a] A. van Lamsweerde and E. Letier, “Integrating Obstacl
in Goal-Driven Requirements Engineering”,Proc. ICSE-98:
20th Intrnational Conference on Software Enginering, Kyoto,
April 1998.

[Lam98b] A. van Lamsweerde, R. Darimont and E. Letier, "Mana
ing Conflicts in Goal-Driven Requirements Engineering",IEEE
Trans. on Sofware. Engineering, Special Issue on Inconsistency
Management in Software Development, November 1998.

[Lam98c] A. van Lamsweerde and L. Willemet, "Inferring Declara
tive Requirements Specifications from Operational Scenario
IEEE Trans. on Sofware. Engineering, Special Issue on Sce-
nario Management, December 1998, 1089-1114.

[Lam2K] A. van Lamsweerde and E. Letier, “Handling Obstacle
in Goal-Oriented Requirements Engineering”,IEEE Transac-
tions on Software Engineering, Special Issue on Exception
Handling, 2000.

[Lamp94] L. Lamport, “The Temporal Logic of Actions”,ACM
Transactions on Programming Languages and SystemsVol. 16
No. 3, May 1994, 872-923.

[Lan95] Lano, K.,Formal Object-Oriented Development, Springer-
Verlag, 1995.

[Lev94] N.G. Leveson, M.P. Heimdahl and H. Hildtreth, “Require
ments Specification for Process-Control Systems”,IEEE Trans-
actions on Software EngineeringVol. 20 No. 9, September
1994, 684-706.

[Lis75] B.H. Liskov and S.N. Zilles, “Specification Techniques fo
Data Abstractions”,IEEE Transactions on Software Engineer
ing Vol. 1. No. 1, March 1975, 7-18.

[MaM95] D. Mandrioli, S. Morasca, A. Morzenti, "Generating tes
cases for real-time systems from logic specifications",ACM



o

of

nts
si-

-

o

n

re

-

-

-

of
,

is

f

Transactions on Computer Systems, Vol.13 No.4, Nov. 1995,
pp.365-398.

[Man92] Z. Manna and A. Pnueli,The Temporal Logic of Reactive
and Concurrent Systems, Springer-Verlag, 1992.

[Man96] Z. Manna and the STep Group, “STeP: Deductive-Algo-
rithmic Verification of Reactive and Real-Time Systems”,Proc.
CAV’96 - 8th Intl. Conf. on Computer-Aided Verification,
LNCS 1102, Springer-Verlag, July 1996, 415-418.

[Mas97] P. Massonet and A. van Lamsweerde, “Analogical Reuse
of Requirements Frameworks”, Proc. RE-97 -3rd Int. Symp. on
Requirements Engineering, Annapolis, 1997, 26-37.

[McM93] K.L. McMillan, Symbolic Model Checking: An Approach
to the State Explosion Problem, Kluwer, 1993.

[Mey85] B. Meyer, “On Formalism in Specifications”,IEEE Soft-
ware, Vol. 2 No. 1, January 1985, 6-26.

[Mil89] R.Milner, Communication and Concurrency. Prentice Hall,
1989.

[Mor92] A. Morzenti, D. Mandrioli, and C. Ghezzi, “A Model
Parametric Real-Time Logic”,ACM Transactions on Program-
ming Languages and Systems, Vol. 14 No. 4, October 1992,
521-573.

[Mos97] L. Moser, Y. Ramakrishna, G. Kutty, P.M. Melliar-Smith
and L. Dillon, “A Graphical Environment for the Design of
Concurrent Real-Time Systems”,ACM Transactions on Soft-
ware Engineering and Methodology, Vol. 6 No. 1, January
1997, 31-79.

[Myl92] Mylopoulos, J., Chung, L., Nixon, B., “Representing and
Using Nonfunctional Requirements: A Process-Oriented
Approach”,IEEE Trans. on Sofware. Engineering, Vol. 18 No.
6, June 1992, pp. 483-497.

[Myl98] J. Mylopoulos, "Information Modeling in the Time of the
Revolution", Invited Review, Information Systems Vol. 23 No.
3/4, 1998, 127-155.

[Myl99] J. Mylopoulos, L. Chung and E. Yu, "From Object-Ori-
ented to Goal-Oriented Requirements Analysis", Communica-
tions of the ACM, Vol. 42 No. 1, January 1999, 31-37.

[Nau69] P. Naur, “Proofs of algorithms by General Snapshots”,BIT
Vol. 6, 1969, 310-316.

[Nis89] C. Niskier, T. Maibaum and D. Schwabe, “A Pluralistic
Knowledge-Based Approach to Software Specification”,Proc.
ESEC-89 - 2nd European Software Engineering Conference,
LNCS 387, September 1989, 411-423.

[Nus93] B. Nuseibeh, J. Kramer and A. Finkelstein, "A Framework
for Expressing the Relationships Between Multiple Views in
Requirements Specifications",IEEE Transactions on Software
Engineering, Vol. 20 No. 10, October 1994, 760-773.

[Owr95] S. Owre, J. Rushby, and N. Shankar, "Formal Verification
for Fault-Tolerant Architectures: Prolegomena to the Design of
PVS", IEEE Transactions on Software EngineeringVol. 21 No.
2, Feb. 95, 107-125.

[Par72] D.L.Parnas, “A Technique for Software Module Specifica-
tion With Examples”,Comm. ACM Vol. 15, May 1972.

[Par77] D.L. Parnas, “The Use of Precise Specifications in the
Development of Software”,Proc. IFIP’77 - Information Pro-
cessing 77, North Holland, 1977, 849-867.

[Par95] D.L. Parnas and J. Madey, “Functional Documents for
Computer Systems”,Science of Computer Programming,Vol.

25, 1995, 41-61.

[Par98] D.Y. Park, J. Skakkebaek, and D.L. Dill, “Static Analysis t
Identify Invariants in RSML Specifications”,Proc. FTRTFT’98
- Formal Techniques for Real Time or Fault Tolerance, 1998.

[Pnu77] A. Pnueli, “The Temporal Logics of Programs”,Proc. 18th
IEEE Symp. on Foundations of Computer Science, 1977, 46-57.

[Pot96] B. Potter, J. Sinclair and D. Till,An Introduction to Formal
Specification and Z. Second edition, Prentice Hall, 1996.

[Que82] J. Queille and J. Sifakis, “Specification and Verification
Concurrent Systems in CAESAR”,Proc. 5th International
Symposium on Programming, LNCS 137, 1982.

[Ran73] B. Randell,The Origin of Digital Computers. Springer-
Verlag, 1973.

[Reu91] H.B. Reubenstein and R.C. Waters, “The Requireme
Apprentice: Automated Assistance for Requirements Acqui
tion”, IEEE Transactions on Software Engineering, Vol. 17 No.
3, March 1991, 226-240.

[Ric92] D.J. Richardson, S. Leif Aha, T.O. O'Malley, "Specifica
tion-based test oracles for reactive systems",International Con-
ference on Software Engineering, Melbourne, Australia, 11-15
May 1992. ACM, 1992, pp.105-118.

[Roo94] D. Roong-Ko, P.G. Frankl, "The ASTOOT approach t
testing object-oriented programs",ACM Transactions on Soft-
ware Engineering and Methodology, Vol.3, No.2, April 1994,
pp.101-130.

[SCP2K] Science of Computer Programming, Special Issue onFor-
mal Methods in Industry, Vol. 36 No. 1, January 2000.

[Sou93] J. Souquières and N. Levy, “Description of Specificatio
Developments”,Proc. RE’93 - First IEEE Symposium on
Requirements Engineering, San Diego, 1993, 216-223.

[Spi92] J.M. SpiveyThe Z Notation - A Reference Manual. Second
Edition, Prentice Hall, 1992.

[SRS79]Proceedings SRS - Specification of Reliable Softwa.
IEEE Catalog No. 79 CH1401-9C, 1979.

[Swa82] W. Swartout and R. Balzer, "On the Inevitable Intertwin
ing of Specification and Implementation",Communications of
the ACM, Vol. 25 No. 7, July 1982, 438-440.

[Tho99] J.M. Thompson, M.E. Heimdahl, and S.P. Miller, “Specifi
cation-Based Prototyping for Embedded Systems”,Proc.
ESEC/FSE’99, Toulouse, ACM SIGSOFT, LNCS 1687,
Springer-Verlag, 1999, 163-179.

[Wey94] E. Weyuker, T. Goradia, A. Singh, "Automatically gener
ating test data from a Boolean specification",IEEE Transac-
tions on Software Engineering, Vol.20, No.5, May 1994,
pp.353-363.

[Win90] J.M. Wing, "A Specifier's Introduction to Formal Meth-
ods",IEEE Computer Vol. 23 No. 9, September 1990.

[Win99] J.M. Wing, J. Woodcock and J. Davies (eds.),FM-99 -
World Conference on Formal Methods in the Development
Computing Systems, LNCS 1708 and 1709, Springer-Verlag
1999.

[Yue87] K. Yue, “What Does It Mean to Say that a Specification
Complete?”,Proc. IWSSD-4, Fourth International Workshop
on Software Specification and Design, Monterey, 1987.

[Zar97] A.M. Zaremski and J. Wing “Specification Matching o
Software Components”,ACM Transactions on Software Engi-
neering and Methodology, Vol. 6 No. 4, October 1997, 333-



ts

”,
l-

e

e-
369.

[Zav82] P. Zave, “An Operational Approach to Requiremen
Specification for Embedded Systems”,IEEE Transactions on
Software Engineering, Vol. 8 No. 3, May 1982, 250-269.

[Zav93] P. Zave and M. Jackson, “Conjunction as Composition
ACM Transactions on Software Engineering and Methodo
ogy, Vol. 2 No. 4, October 1993, 379-411.
[Zav96] P. Zave and M. Jackson, “Where Do Operations Com
From? A Multiparadigm Specification Technique”,IEEE
Transactions on Software Engineering, Vol. 22 No. 7, July
1996, 508-528.

[Zav97] P. Zave and M. Jackson, "Four Dark Corners of Requir
ments Engineering",ACM Transactions on Software Engi-
neering and Methodology, 1997, 1-30.


	Formal Specification: a Roadmap
	Axel van Lamsweerde
	REFERENCES



