

A.T. Borgida et al. (Eds.): Mylopoulos Festschrift, LNCS 5600, pp. 363–379, 2009.
© Springer-Verlag Berlin Heidelberg 2009

On Non-Functional Requirements in Software
Engineering

Lawrence Chung1 and Julio Cesar Sampaio do Prado Leite2

1 Department of Computer Science, The University of Texas at Dallas
2 Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro

www.utdallas.edu/~chung/, www.inf.puc-rio.br/~julio

Abstract. Essentially a software system’s utility is determined by both its func-
tionality and its non-functional characteristics, such as usability, flexibility, per-
formance, interoperability and security. Nonetheless, there has been a lop-sided
emphasis in the functionality of the software, even though the functionality is
not useful or usable without the necessary non-functional characteristics. In this
chapter, we review the state of the art on the treatment of non-functional
requirements (hereafter, NFRs), while providing some prospects for future
directions.

Keywords: Non-functional requirements, NFRs, softgoals, satisficing, re-
quirements engineering, goal-oriented requirements engineering, alternatives,
selection criteria.

1 Introduction

“Soft is harder to deal with than hard.” [Anonymous]

Essentially a system’s utility is determined by both its functionality and its non-
functional characteristics, such as usability, flexibility, performance, interoperability
and security. Nonetheless, there has been a lop-sided emphasis in the functionality of
the system, even though the functionality is not useful or usable without the necessary
non-functional characteristics.

Just with almost everything else, the concept of quality is also fundamental to soft-
ware engineering, and both functional and non-functional characteristics must be
taken into consideration in the development of a quality software system. However,
partly due to the short history behind software engineering, partly due to the demand
on quickly having running systems fulfilling the basic necessity, and also partly due
to the “soft” nature of non-functional things, most of the attention in software engi-
neering in the past has been centered on notations and techniques for defining and
providing the functions a software system has to perform.

A frequently observable practice, as a result of this lop-sided emphasis in the
functional side of a software artifact, is that the needed quality characteristics are
treated only as technical issues related mostly to the detailed design or testing of an

364 L. Chung and J.C.S. do Prado Leite

implemented system. This kind of practice, of course, is quite inadequate. Detailed
design and testing do not make much sense without their preceding phases of under-
standing what the real-world problem is to which a software system might be
proposed as a solution and also what the specifics of the software solution, i.e., the
requirements, might be like. And real-world problems are more non-functionally
oriented than they are functionally oriented, e.g., poor productivity, slow processing,
high cost, low quality, and unhappy customer.

Although the requirements engineering community has classified requirements as
either functional or non-functional, most existing requirements models and require-
ments specification languages lacked a proper treatment of quality characteristics.
Treating quality characteristics as a whole, and not just as functionality alone, has
been a key focus of works in the area of goal-oriented requirements engineering [1]
[2], and in particular the NFR Framework [3] that treats non-functionality at a high
level of abstraction for both the problem and the solution.

This chapter brings forth a review of the literature on NFRs, with emphasis in the
different definitions, representation schemes, as well as more advanced uses of the
concepts. At the end, we conclude the chapter by discussing open issues in the early
treatment of NFRs and its impacts on software construction.

2 What are Non-Functional Requirements?

In literature, a plethora of definitions can be found of non-functional requirements
(NFRs).

Colloquially speaking, NFRs have been referred to as “-ilities” (e.g., usability) or
“-ities” (e.g., integrity), i.e., words ending with the string “-ility” or “-ity. A large list
of such words can be found, for example, in [3]. There are many other types of NFRs
that do not end with either “-ility” or “-ity” as well, such as performance, user-
friendliness and coherence.

An important piece of work on NFRs is the NFR Framework [1] [3], which de-
couples the concept of functionality from other quality attributes and concerns for
productivity, time and cost, by means of a higher-level of abstraction. Instead of
focusing on expressing requirements in terms of detailed functions, constraints and
attributes, the NFR Framework devised the distinction of NFRs by using the concepts
of goal and softgoal. More details on the NFR Framework will be described further in
Section 4.

In the area of Software Architecture, one frequently encountered keyword is “qual-
ity attributes” [4], which is understood as a set of concerns related to the concept of
quality. For a definition of quality, an IEEE standard [5] is used here as a companion:
“Software quality is the degree to which software possesses a desired combination of
attributes (e.g., reliability, interoperability).”

Several other authors have also treated these types of concerns. For instance, basic
quality (functionality, reliability, ease of use, economy and safety) is distinguished
from extra quality (flexibility, reparability, adaptability, understandability, documen-
tation and enhanceability) in [6].

 On Non-Functional Requirements in Software Engineering 365

In the area of engineering and management, the well known QFD (Quality Func-
tion Deployment) strategy [7] distinguishes positive quality from negative quality:
“QFD is quite different in that it seeks out both "spoken" and "unspoken" customer
requirements and maximizes "positive" quality (such as ease of use, fun, luxury) that
creates value. Traditional quality systems aim at minimizing negative quality (such as
defects, poor service)”. One of the techniques used by QFD strategies is the House of
Quality [8], in which the process starts "...with the customer, whose requirements are
called customer attributes (CA´s) - phrases customers use to describe products and
product characteristics...". Incidentally, none of the examples of the CA´s in [8] is
related to functionality or just functionality alone.

In the area of software requirements, the term non-functional requirements [9] has
been used to refer to concerns not related to the functionality of the software. How-
ever, different authors characterize this difference in informal and unequal defini-
tions. For example, a series of such definitions is summarized in [10]:

a) “Describe the non-behavioral aspects of a system, capturing the properties
and constraints under which a system must operate. “
b) “The required overall attributes of the system, including portability, reli-
ability, efficiency, human engineering, testability, understandability, and
modifiability.”
c) “Requirements which are not specifically concerned with the functionality
of a system. They place restrictions on the product being developed and the
development process, and they specify external constraints that the product
must meet.”
d) “... global requirements on its development or operational cost, perform-
ance, reliability, maintainability, portability, robustness, and the like. ...
There is not a formal definition or a complete list of nonfunctional require-
ments.”
e) “The behavioral properties that the specified functions must have, such as
performance, usability.”
f) “A property, or quality, that the product must have, such as an appearance,
or a speed or accuracy property.”
g) “A description of a property or characteristic that a software system must
exhibit or a constraint that it must respect, other than an observable system
behavior.”

After arguing that the definitions are unclear and that they lack consensus, the author
says: “For persons who do not want to dispose of the term ‘non-functional require-
ment’, we can define this term additionally as: DEFINITION. A non-functional
requirement is an attribute of or a constraint on a system.” [10].

There are other additional definitions in literature worth adding to the list.

h) ” … types of concerns: functional concerns associated with the services to
be provided, and nonfunctional concerns associated with quality of service –
such as safety, security, accuracy, performance, and so forth.” [2].
i) “The term “non-functional requirement” is used to delineate requirements
focusing on “how good” software does something as opposed to the func-
tional requirements, which focus on “what” the software does.” [11].

366 L. Chung and J.C.S. do Prado Leite

j) “Putting it another way, NFRs constitute the justifications of design deci-
sions and constrain the way in which the required functionality may be real-
ized.” [12].

On purpose, we left the citation to [12] as the last definition of the several presented.
This definition of nonfunctional requirements is of major importance and will be
commented later on in Section 4.

Since we are revisiting so many definitions, it might help to focus on the definition
of four words that seem central to all of the definitions: quality, functionality, func-
tional and nonfunctional. The definitions were selected from WordNet [13]. Word-
Net is a lexical database of English, where nouns, verbs, adjectives and adverbs are
grouped into sets of cognitive synonyms (synsets), each expressing a distinct concept.
Here we list the major definition of each of these words as they appear in Wordnet.
We do this to call the attention to the term nonfunctional.

Quality: Noun -- S: (n) quality (an essential and distinguishing attribute of something
or someone)

Functional: Adjective -- S: (adj) functional (designed for or capable of a particular
function or use)

Nonfunctional: Adjective -- S: (adj) nonfunctional (not having or performing a func-
tion); S: (adj) malfunctioning, nonfunctional (not performing or able to perform its
regular function)

Functionality: Noun -- S: (n) functionality (capable of serving a purpose well)

If we carefully examine these definitions, we notice that the word “functional” is an
adjective and “quality” is both noun and adjective, whereas “functionality” is a noun.
We also notice that “functional” refers to use and “functionality” refers to purpose.

We bring these definitions to bear, since if we understand the terms “functional re-
quirements” and “non-functional requirements” out of context, they may bring up
different semantics. Of course, the term “non-functional requirements” is not meant
to mean requirements that are not able to perform a function, but if interpreted out of
context, it may create a confusion. If the literature were more careful in choosing
names, this potential confusion could have been avoided.

Notwithstanding these observations and the fact that functionality can be seen as
quality as well, as also note in [6], we understand that the distinction among these two
types of quality is extremely helpful and important in software engineering.

A central point for the distinction of functionality and other qualities is that, for
software construction, the purpose of the software system needs to be well defined in
terms of the functions that the software will perform. It may sound strange, but this
distinction is not as evident in other areas of engineering, as we could see from the
QFD strategy. In business and engineering, the function of an artifact or an activity
mostly deals with physical entities, and is usually clear and upfront. In contrast, in
software engineering whose products are conceptual entities, this is not the case. As a
matter of fact, it would be odd to detail, by functions, the fact that a car has to be able
to transport people, but, for a software system to be built, a software engineer has to
understand what functions it should perform, usually with greater difficulty since they
are not evidently visible, measurable, touchable, etc. Furthermore, software is so

 On Non-Functional Requirements in Software Engineering 367

rapidly being applied to new application areas that it is not possible for a software
engineer to build always on experiences. It is a rather well known fact that a software
product may be targeting a domain not familiar to a software engineer – a problem
that other types of engineers usually do not have to confront with.

The distinction between functionality and other qualities in the field of require-
ments engineering has an important benefit: it makes clear to software engineers that
requirements are meant to deal with quality attributes and not with just one of them.
As the software industry became more mature and different domains were explored
by software engineers, it became clearer that it would not be enough just to deal with
the description of the desired functionality, but that quality attributes should be care-
fully thought of early on as well.

So, in the presence of so many different definitions on NFRs, how should we pro-
ceed? We want our working definition to be as consistent with, and accommodating,
other definitions. As a working definition, we start with the colloquial definition of
NFRs, as in the NFR framework [1] [3], namely, any “-ilities”, “-ities”, along with
many other things that do not necessarily end with either of them, such as perform-
ance, user-friendliness and coherence, as well as concerns on productivity, time, cost
and personal happiness. In view of mathematical functions, in the form of,

f: I → O (e.g., sum: int x int → int),

just about anything that addresses characteristics of f, I, O or relationships between I
and O will be considered NFRs. For example, whether the summation function can
easily be found on a calculator, whether the function can easily be built or modified,
in a time- and cost-effective manner, whether the function returns the output fast, who
can see the function, the inputs, or the output, for instance.

3 Some Classification Schemes

As seen in the previous section, various pieces of work provide for ways to distin-
guish among different types of quality concerns. One is the distinction between basic
and extra quality [6]. Another is the distinction among concerns (sub-attributes of a
quality attribute), factors (or impairments - possible properties of the system, such as
policies and mechanisms built into the system, that have an impact on the concerns)
and methods (means used by the system to attain the concerns) [4].

The standard ISO/IEC 9126 [14] is also noteworthy which distinguishes 4 types of
quality levels: quality in use, external quality, internal quality and process quality.
Based on these types, [11] provides a process oriented classification comprised of :

1) “The identification of NFR from different viewpoints and different levels
of detail.”
2) “The support for uncovering dependencies and conflicts between them,
and to discuss and prioritize them accordingly.”
3) “The documentation of NFR and the evaluation of this documentation.”
4) “The support for identifying means to satisfy the NFR, to evaluate and
discuss means, and to make trade-off decision accordingly. This includes
cost estimation.”, and
5) “The support for change and project management.”

368 L. Chung and J.C.S. do Prado Leite

Another proposal is made in [15], using the concepts of the NFR Framework [3], on a
classification of goals and softgoals, driven by the “non functional perspective”. This
classification provides 4 categories: functional hardgoals, nonfunctional hardgoals,
functional softgoals and nonfunctional softgoals.

Another classification scheme is introduced in [16]:

• Interface requirements: describe how the system is to interface with its
environment, users and other systems. E.g., user interfaces and their
qualities (e.g., user-friendliness).

• Performance requirements: describe performance constraints involving
o time/space bounds, such as workloads, response time, through-

put and available storage space. E.g., “system must handle 100
transactions/second.”

o reliability involving the availability of components and integ-
rity of information maintained and supplied to the system. E.g.,
“system must have less than 1hr downtime/3 months.”

o security, such as permissible information flows.
o survivability, such as system endurance under fire, natural ca-

tastrophes.
• Operating requirements: include physical constraints (size, weight), per-

sonnel availability, skill level considerations, system accessibility for
maintenance, etc.

• Lifecycle requirements: can be classified under two subcategories:
o quality of the design: measured in terms such as maintainabil-

ity, enhanceability, portability.
o limits on development, such as development time limitations,

resource availability, methodological standards, etc.
• Economic requirements: immediate and/or long-term costs
• Political requirements

Figure 1 depicts a software quality tree [17] which aims to address concerns for key
types of NFRs and importantly possible correlations among them.

FURPS is an acronym representing a model for classifying software quality attrib-
utes or non-functional requirements, developed at Hewlett-Packard, and + was later
added, hence FURPS+, to extend the acronym to emphasize various attributes [18]:

• Functionality - Feature set, Capabilities, Generality, Security
• Usability - Human factors, Aesthetics, Consistency, Documentation
• Reliability - Frequency/severity of failure, Recoverability, Predictability,

Accuracy, Mean time to failure
• Performance - Speed, Efficiency, Resource consumption, Throughput, Re-

sponse time
• Supportability - Testability, Extensibility, Adaptability, Maintainability,

Compatibility, Configurability, Serviceability, Installability, Localizabil-
ity, Portability

 On Non-Functional Requirements in Software Engineering 369

general utility

as-is utility

maintainability

portability

reliability

efficiency

human
engineering

testability

understandability

modifiability

device-independence

self-containedness

accuracy

completeness

robustness/integrity

consistency

accountability

device efficiency

accessibility

communicativeness

self-descriptiveness

structuredness

conciseness

legibility

augmentability

Fig. 1. Software Quality Tree [17]

However, even these well-known classification schemes are inconsistent with each

other. For example, consider performance. In Roman’s classification scheme, it is
defined in terms 4 sub-categories, whereas it does not even appear in software quality
tree, while it is shown but quite differently in FURPS+.

Another observation is that neither Roman’s nor FURPS+ recognizes any potential
interactions among NFRS, while software quality tree does so to a certain extent. For
example, in software quality tree, portability and reliability are related to each other
through a common sub-concept of self-containedness.

Similar observations can be made about other types of NFRs than performance, not
only concerning the few classification schemes shown here but many other ones not
shown here as well, including the one in [19].

Not surprisingly, NFRs play a critical role in the area of architectural design, and a
classification scheme is provided in the context of ATAM evaluations [20], e.g., dis-
tinction of runtime qualities (availability, performance, security) from development
time qualities (modifiability, integration). ATAM also addresses risk, while consider-
ing a hierarchy of architecture, process and organization.

370 L. Chung and J.C.S. do Prado Leite

Now, what should a software practitioner do then, when even well-known classifi-
cation schemes are inconsistent with one another, not only terminologically but also
categorically?

A software practitioner should be aware of some of the well known classification
schemes, such as ISO 9126 - an international standard for the evaluation of software
quality, and consider one or more to adopt with some tailoring. No matter what classi-
fication scheme a software practitioner might choose to adopt, the most important
thing to bear in mind is that s/he should know what s/he means by an NFR term, such
as performance, so that the meaning of such an NFR can be communicated with the
user as well as with system/software developers so that the end product will behave as
expected.

4 Representations of Non-Functional Requirements

Requirements dealing with NFRs are usually separated from the functionality re-
quirements. A usual way to represent them is by means of requirements sentences,
which are listed separately under different sections of the technical requirements sec-
tion. The IEEE standard 830 - Recommended Practice for Software Requirements
Specifications - is a good example, where Section 3.2 is used for specifying func-
tional requirements, while the rest of Section 3 is used to describe different types of
NFRs.

Some authors propose a structure around the requirements sentences as the one
proposed by [21] that is comprised of: identification number, NFR type, use case
related to it, description, rationale, originator, fit criterion, customer satisfaction, cus-
tomer dissatisfaction, priority, conflicts, supporting material, and history. All of these
are informal, textual information.

In the classic work with SADT [22], a requirements definition should answer three
types of questions: why a system is needed (context analysis), what system features
will serve to satisfy this context (system functional requirements), and how the system
is to be constructed (system non-functional requirements). Although there is no ex-
plicit reference to functionality oriented requirements versus quality requirements,
SADT’s actigrams can be used to indirectly address some of the NFR concerns. An
actigram can be associated with four types of information that interact with the activ-
ity: input, control, output and mechanism. The spirit of the control information is
much related to the idea of non-functionality, since the control arrow in SADT has the
purpose to constrain how the activity is performed. As such, SADT provides a way to
address quality attributes or constraints.

NFRs are also commonly represented by trees, expressing the concept of NFR
clustering or decomposition [4] and also by lists as well.

Some authors have used NFRs in conjunction with a more structured requirements
representation notation, e.g., the combination of NFRs with use cases or misuse cases
(for example, see [23], [24],[25], [26] and [27]).

NFRs are also represented as restrictions over different parts of a scenario, along
with time and location as the contextual information in the scenario description [28].
Here, the representation of a scenario is comprised of: title, goal, context, resources,
actors, episodes, exceptions and the attribute constraint, which applies to context,

 On Non-Functional Requirements in Software Engineering 371

resources and episodes. The entity context is further divided into geographical loca-
tion, time and pre-condition.

Among many proposals, however, the goal oriented approaches, as in [2] [3], were
the first to treat NFRs in more depth.

In KAOS [2], which perhaps pioneered in promoting goal-oriented requirements
engineering at least from a functional goal perspective, goals are: “… modelled by
intrinsic features such as their type and attributes, and by their links to other goals and
to other elements of a requirements model.” KAOS addresses both functional goals
and non-functional goals, which are formalized in terms of operators, such as
Achieve, Maintain and Avoid, and by activities based on temporal logic augmented
with some special temporal operators. For instance, KAOS offers special operators
for concepts, such as “sometime in the future” and “always in the future unless”.
Thanks to their formal nature, representations in KAOS are amenable to automatic
verification and reasoning. In KAOS, goals are characterized as a set of high level
constraints over states. For instance, an informal goal: {{Goal Maintain
[DoorsClosedWhileMoving]}} [2] can be expressed by the following formula:

{{∀ tr: Train, loc, loc’: Location At (tr, loc) ∧ o At (tr, loc’) ∧ loc <> loc’⇒
tr.Doors = 'closed' ∧ o (tr.Doors = 'closed')}}.

The above formula, where “o” is a temporal operator denoting next state, means that
while a train moves from one location to another location, its doors much be closed
during the move.

Although the KAOS’ representation language does not differentiate between func-
tional and non-functional goals, the KAOS graphical AND/OR graph makes the
differentiation. Goals that can be assigned to individual agents need no further de-
composition and can be “operationalized”, that is, they can be described in terms of
constraints.

Not unlike KAOS, the NFR Framework also promotes goal orientation, but with
the main emphasis on NFRs. In the NFR Framework, non-functional requirements are
treated as softgoals, i.e., goals that need to be addressed not absolutely but in a good-
enough sense. This is in recognition of the difficulties that are associated with both
the problem and the corresponding solution. Concerning the problem statement, it is
often times extremely difficult, if not impossible, to define an NFR term completely
unambiguously without using any other NFR term, which in turn will have to be de-
fined. Concerning the solution, it is also often times extremely difficult to explore a
complete list of possible solutions and choose the best, or optimal, solution, due to
various resource limitations such as the time, manpower and money available for such
an exploration.

Reflecting the sense of “good enough”, the NFR Framework introduces the notion
of satisficing, and, with this notion, a softgoal is said to satisfice (instead of satisfy)
another softgoal. The NFR Framework offers several different types of contributions
whereby a softgoal satisfices, or denies, another softgoal - MAKE, HELP, HURT and
BREAK are the prominent ones, as well as AND and OR (these also incorporate the
notion of “good enough” rather than “absolute satisfaction”). MAKE and HELP are
used to represent a softgoal positively satisficing another, while BREAK and HURT
to represent a softgoal negatively satisficing (or denying) another . While MAKE and

372 L. Chung and J.C.S. do Prado Leite

BREAK respectively reflect our level of confidence in one softgoal fully satisficing or
denying another, HELP and HURT respectively reflect our level of confidence in one
softgoal partially satisficing or denying another.

In the NFR Framework, each softgoal or contribution is associated with a label, in-
dicating the degree to which it is satisficed or denied. A label propogation procedure
is offered in the NFR Framework in order to determine the effect of various design
decisions, regardless of whether they are system-level or software-level. In addition to
a label, each softgoal or contribution can also be associated with a criticality value,
such as extremely critical, critical, and non-critical.

When using the NFR Framework, NFRs are posted as softgoals to be addressed or
achieved, and an iterative and interleaving process is applied in order to satisfice
them, through AND/OR decompositions, operationalizations and argumentations.
Throughout the process, a visual representation, SIG (softgoal interdependency
graph), is created and maintained which keeps track of softgoals and their inter-
dependencies, along with the impact of various decisions through labels. In this
sense, a SIG shows how various (design) decisions are rationalized.

In order to alleviate the difficulties associated with the search for knowledge for
dealing with NFRs , the NFR Framework offers methods for capturing knowledge of
ways to satisfice NFRs and correlation rules for knowledge of the side effects that
such methods induce.

As with goals in KAOS, softgoals in the NFR Framework are associated with, and
ultimately achieved, by the actions of agents – human, hardware or software. This is
consistent with the spirit of the reference model [29], in which (functional) require-
ments are satisfied through the collaboration between the software system behavior
and environment phenomena that are caused by agents in the environment, although
here we are also concerned with softgoals that (functional) requirements are intended
to help achieve together with environment phenomena. Note that requirements are
part of the solution to some problem in a piece of reality, and the notion of softgoals
can be used to represent anything non-functional, be it about the problem domain or
the solution.

The i* family: i* [30], Tropos [31] and GRL(Goal Requirements Language) [32]
inherited the concept of softgoal from the NFR Framework, aiming at dealing with
softgoals, or non-functionality related attributes, as a first class modeling concept.

As mentioned in Section 2, the last definition [12] presented was somewhat different
from the rest: an NFR is described as a justification of a design decision and as a con-
straint on the way in which a required functionality may be realized. This is exactly
why the proper identification and representation of NFRs play a key role in software
engineering, since software engineering is said to be all about decision-making.

As several authors have pointed out, NFRs do need to be transformed through
some means, methods or operations. This is also why a goal-oriented representation
is so well suited for NFRs - they are initially expressed in general terms as more ab-
stract requirements, but then gradually are further refined into more concrete terms
and details.

When NFRs eventually are operationalized, in terms of software operations, enti-
ties or constraints, they become the justification for why such operationalizations
exist in the software system, i.e., to serve the quality attributes specified as NFR
softgoals. If the software engineers are careful enough to maintain the history of the

 On Non-Functional Requirements in Software Engineering 373

software construction, they will then be able to explain and justify why such opera-
tionalizations exist. It goes without saying that this argument is also valid for func-
tionality as well, but the key point here is that the choice on a specific operation to
reify a quality concern affects how the overall functionality is achieved. Put differ-
ently, different sorts of design decisions are made throughout a software development
process, and NFRs act as the criteria for such design decisions (See [33] for a
discussion about these design decisions in the context of use cases). As argued in
[12], an NFR is not just an after-the-fact justification, but constrains how functionality
is realized.

So, if the software engineer uses quality attributes up front during the software de-
velopment process, there will be a network of explanations, bounded by the usage of
rationality, linking the results of decisions with the quality attributes. Work on design
rationale [34], drawing on earlier work on the Ibis idea [35], focuses on the justifica-
tion of decisions, but without taking into consideration pre-existing factors that lead to
the decision. Work on design rationale can benefit from better ways of dealing with
the dynamic and contextual nature of software design and with the limitations of
working with the myriad of possible alternatives and their justifications [36].

Integration of functionality and other qualities is said to be essential. Although no
one would dispute that truism, few have proposed or advocated a process that really
intertwines these two classes of requirements. Goal-oriented methods, such as the
NFR Framework, KAOS and the i* family, are the few exceptions that make the con-
sideration of non-functionality as a first class concept, being intertwined with the
functionality, as they are reified. However, it shouldn’t come as a surprise that each
approach has its own particular ways of doing this interweaving of functionality and
quality attributes, with several distinct variations and without necessarily keeping the
development history.

So what? In a nutshell, the point we are trying to make is twofold: not only non-
functional requirements need to be stated up front, but they can help the software
engineer make design decisions, while also justifying such decisions. However, in
order to take this into consideration, it is necessary that quality attributes not be con-
sidered just as a separate set of requirements, but with the consideration of the func-
tionality throughout the development process.

The NFR Framework and the i* family have an intrinsic characteristic that sets
them apart from other NFR methods - the reliance on a qualitative approach towards
NFRs or softgoals. In the heart of the NFR Framework lies the concept that softgoals
are idealizations and, as such, without all its defining properties necessarily estab-
lished. This characteristic is similar to the notion of “bounded rationality” put
forward by Herbert Simon [37] when explaining his understanding of the process
designers use to make a decision given incomplete information. This qualitative
characteristic is built on the ideas of contribution and correlation among softgoals as
explained earlier. By means of contributions, a softgoal may be decomposed up to
the level of operationalization, and, by correlations, different softgoals may interfere
among themselves. A network of such contributions and correlations makes it possi-
ble to carry out different sorts of qualitative reasoning. The semantics of such a net-
work is given by relationships over three dimensions a) decompositions over an
AND/OR tree, b) contributions among sub-trees and c) correlations among different
softgoals, all leading to the formation of a softgoal interdependency graph (SIG).

374 L. Chung and J.C.S. do Prado Leite

While the NFR Framework’s focus is on NFRs, as described at the end of Section
2, NFRs exist in relation to functional things. UML is a functionally-oriented Object-
Oriented analysis and design language, and one of the first works to detail how the
NFR Framework could help attain better UML models is described in [38], which
presents a process for linking NFR graphs with UML models. The central idea is to
qualitatively realize softgoals in the UML models. The realization for UML classes,
for instance, was based on introducing attributes to classes, methods, or constraints
over the attributes.

In i* [30], the links among softgoals and operations (tasks or resources) are more
explicit, since modeling is carried out simultaneously in the context of the Strategic
Rationale (SR) diagram. In a SR diagram, means-ends relationships (i* specialization
operator) can show how choices (tasks) are related to different softgoals, while also
showing the pros and cons of each selection.

The NFR Framework presented in this Section accommodates any classification
scheme that was discussed in Section 3, through AND/OR decompositions, and goes
beyond by offering those concepts of operationalizations and argumentations, to-
gether with positive/negative correlations. In terms of these concepts, the NFR
Framework helps rationalize design decisions – both system-level and software-level.
For representation of NFRs, it recognizes NFRs as softgoals and relatioships between
them as partial/full positive/negative contributions.

5 Future Directions

There have been several pieces of work that further explored the concepts of soft-
goals, while shaping some scenario for future directions. We classify them in six
areas: software variability, requirements analysis, requirements elicitation, require-
ments reusability, requirements traceability and aspect-oriented development. Each
of these areas has explored particular aspects of the idea of a SIG (Softgoal Interde-
pendency Graph).

When dealing with software product lines, the idea of variability is critical, since, at
some parts of a product line, architecture variation points will exist to enable the pro-
duction of different alternatives necessary to compose different products out of a single
common architecture. The works of [39] [40] [41] explored the fact that the alternatives
are intrinsic in SIG models, since they are AND/OR graphs. Using a goal-oriented
approach to product lines brings a seamless way of producing product line architectures,
since features are not only identified, but also justified, in terms of softgoals.

One of the major advantages of the qualitative approach of a SIG is that it facili-
tates analysis. The very idea that there can be different types of relationships among
softgoals and between softgoals and operationalizations in a SIG brings the opportu-
nity to conduct analysis, by propagating the impact of decisions along the correlation
contribution relationships. Using the concept of label propagation over a SIG graph, it
is possible to evaluate how a given operationalization of an NFR will impact the
whole graph. The original process was devised in the NFR Framework [3] and varia-
tions followed [42] [43]. Using the idea of label propagation, different types of
analysis could be performed early on before committing to an architecture or to code,
as seen in the exploration of security concerns [44], in visually choosing operationali-
zations [45], and in casting an i* model analysis as a SAT problem [46].

 On Non-Functional Requirements in Software Engineering 375

Eliciting requirements requires use of different sets of techniques, but most of them
are centered on discovering functionality only. Work on goal elicitation needs to con-
sider both functionality and other qualities. Work in this regard includes a proposal
on an elicitation scheme that departs from an extended lexicon [47], repertory grid
techniques to help the clarification of naming during the elicitation process [48], and
Personal Construct Theory to elicit contribution among softgoal [49].

The NFR Framework [3] has identified that NFR catalogues, composed of SIG
graphs, were an important aspect of building software using the softgoal concept.
Later work [50] explored the ideas further on stressing the aspect of reusability, while
proposing a method for maintaining a softgoal organization aimed for reuse. The idea
of a goal centric traceability based on softgoal graphs is explored in [51] [52], in
which the softgoal network is used as a baseline for explaining changes over software
evolution.

The relationship among the quality attributes and aspect-oriented development has
been explored in [53] and [54]. Later on, others have identified the important role the
NFR Framework - in particular, softgoals - plays in dealing with early aspects [27],
[55] [56] [57] [58] [59] (See [60] for a survey on the topic).

Although these recent results helped further understanding of the general concept
of quality requirements and opened new paths for future research, other issues need
further advance as well, such as the integration of NFRs into other requirements mod-
els, such as the reference model [29] and the four variable model [61] which have had
significant influences in the area of requirements engineering. Although these models
address performance or accuracy concerns, they are essentially functional models
and without the notion of goals. As briefly mentioned in Section 4, for example, the
reference model states that (functional) requirements are satisfied through the collabo-
ration between the functional behavior of the software system and the (functional)
phenomena in the environment. KAOS [2] goes beyond these functional models and
introduces general types of softgoals for the overall system, while addressing
performance, accuracy and security concerns for the software system.

We also agree with [11] on the need for further empirical research on the use of
NFRs during requirements engineering and on the usage of ethnographical studies on
how software teams deal with quality issues as requirements. We understand that this
research should be conducted with real projects, both in lab situations as well as on
industry projects, to improve our knowledge on dealing with quality issues early on.

Acknowledgements. We appreciate the comments from Barbara Paech on an earlier
draft, which significantly helped us improve the paper in a more understandable manner.

References

1. Mylopoulos, J., Chung, L., Nixon, B.: Representing and Using Nonfunctional Require-
ments: A Process-Oriented Approach. IEEE Trans. Softw. Eng. 18(6), 483–497 (1992),
http://dx.doi.org/10.1109/32.142871

2. van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour. In: Pro-
ceedings of the 5th IEEE international Symposium on Requirements Engineering, August
27-31, 2001, p. 249. IEEE Computer Society, Washington (2001)

376 L. Chung and J.C.S. do Prado Leite

3. Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software
Engineering. International Series in Software Engineering, vol. 5, p. 476. Springer, Hei-
delberg (1999)

4. Barbacci, M., Longstaff, T.H., Klein, M.H., Weinstock, C.B.: Quality Attributes, Techni-
cal Report CMU/SEI-95-TR-021, ESC-TR-95-021 (December 1995)

5. IEEE Standard 1061-1992 Standard for a Software Quality Metrics Methodology. Institute
of Electrical and Electronics Engineers, New York (1992)

6. Freeman, P.A.: Software Perspectives: The System is the Message. Addison-Wesley,
Reading (1987)

7. QFD Institute, Quality Function Deployment, http://www.qfdi.org/
8. Hauser Jr., Clausing, D.: The house of quality. Harvard Business Review 66(3), 63–73

(1988)
9. Yeh, R.T., Zave, P., Conn, A.P., Cole, G.E.: Software Requirements Analysis — New Di-

rections and Perspectives. In: Vick, C.R., Ramamoorthy, C.V. (eds.) Handbook of Soft-
ware Engineering, Van Nostrand Reinhold Co. (1984)

10. Glinz, M.: On Non-Functional Requirements. In: 15th IEEE International Requirements
Engineering Conference (RE 2007), pp. 21–26 (2007)

11. Paech, B., Kerkow, D.: Non-Functional Requirements Engineering - Quality is Essential.
In: 10th Anniversary International Workshop on Requirements Engineering: Foundation
for Software Quality, REFSQ 2004 (2004), http://www.sse.uni-essen.de/
refsq/downloads/toc-refsq04.pdf

12. Landes, D., Studer, R.: The Treatment of Non-Functional Requirements in MIKE. In: Bo-
tella, P., Schäfer, W. (eds.) ESEC 1995. LNCS, vol. 989, pp. 294–306. Springer, Heidel-
berg (1995)

13. A lexical database of English, http://wordnet.princeton.edu/
14. ISO/IEC 9126-1:2001(E): Software Engineering - Product Quality - Part 1: Quality Model

(2001)
15. Jureta, I.J., Faulkner, S., Schobbens, P.-Y.: A more expressive softgoal conceptualization

for quality requirements analysis. In: Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006.
LNCS, vol. 4215, pp. 281–295. Springer, Heidelberg (2006)

16. Roman, G.-C.: A Taxonomy of Current Issues in Requirements Engineering. IEEE Com-
puter, 14–21 (April 1985)

17. Boehm, B.W., Brown, J.R., Kaspar, H., Lipow, M., MacLeod, G.J., Merritt, M.J.: Charac-
teristics of Software Quality. North-Holland, Amsterdam (1978)

18. Grady, R., Caswell, D.: Software Metrics: Establishing a Company-wide Program. Pren-
tice-Hall, Englewood Cliffs (1987)

19. Bowen, T.P., Wigle, G.B., Tsai, J.T.: Specification of Software Quality Attributes, Report
RADC-TR-85-37, vol. I (Introduction), vol. II (Software Quality Specification Guide-
book), vol. III (Software Quality Evaluation Guidebook), Rome Air Development Center,
Griffiss Air Force Base, NY (February 1985)

20. Bass, L., Nord, R., Wood, W., Zubrow, D.: Risk Themes Discovered Through Architecture
Evaluations, Technical Report CMU/SEI-2006-TR-012, ESC-TR-2006-012 (2006)

21. Robertson, S., Robertson, J.: The Volere requirements process, Mastering the Require-
ments Process. Addison-Wesley, London (1999)

22. Ross, D.T.: Structured Analysis (SA): A Language for Communicating Ideas. IEEE Trans.
Softw. Eng. 3(1), 16–34 (1977),

 http://dx.doi.org/10.1109/TSE.1977.229900
23. Chung, L., Supakkul, S.: Representing nFRs and fRs: A goal-oriented and use case driven

approach. In: Dosch, W., Lee, R.Y., Wu, C. (eds.) SERA 2004. LNCS, vol. 3647, pp. 29–
41. Springer, Heidelberg (2006)

24. Herrmann, A., Paech, B.: MOQARE: misuse-oriented quality requirements engineering.
Requir. Eng. 13(1), 73–86 (2008)

 On Non-Functional Requirements in Software Engineering 377

25. Cysneiros, L.M., do Prado Leite, J.C.: Using UML to reflect non-functional requirements.
In: Stewart, D.A., Johnson, J.H. (eds.) Proceedings of the 2001 Conference of the Centre
For Advanced Studies on Collaborative Research. IBM Centre for Advanced Studies Con-
ference, vol. 2. IBM Press (2001)

26. Alexander, I.: Misuse cases help to elicit non-functional requirements. Computing & Con-
trol Engineering Journal 14(1), 40–45 (2003)

27. de Sousa, T.G.M.C., Castro, J.F.B.: Towards a Goal-Oriented Requirements Methodology
Based on the Separation of Concerns Principle. In: Anais do WER 2003 - Workshop em En-
genharia de Requisitos, Piracicaba-SP, Brasil, November 27-28, 2003, pp. 223–239 (2003),
http://wer.inf.puc-rio.br/WERpapers/artigos/artigos_WER03/
georgia_souza.pdf

28. Leite, J.C., Hadad, G., Doorn, J., Kaplan, G.: A Scenario Construction Process. Require-
ments Engineering Journal 5(1), 38–61 (2000)

29. Gunter, C., Gunter, E., Jackson, M., Zave, P.: A Reference Model for Requirements and
Specifcations. IEEE Software, 37–43 (2000)

30. Yu, E.S.K.: Towards modelling and reasoning support for early-phase requirements engi-
neering. In: Proceedings of the Third IEEE International Symposium on Requirements En-
gineering, pp. 226–235 (1997)

31. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information systems
engineering: the Tropos project. Information Systems 27(6), 365–389 (2002)

32. Amyot, D., Mussbacher, G.: URN: Towards a new standard for the visual description of
requirements. In: Sherratt, E. (ed.) SAM 2002. LNCS, vol. 2599, pp. 21–37. Springer,
Heidelberg (2003)

33. Dutoit, A.H., Paech, B.: Rationale-based use case specification. Requirements engineer-
ing 7(1), 1–3 (2002)

34. Potts, C., Bruns, G.: Recording the reasons for design decisions. In: Proceedings of the
10th international Conference on Software Engineering. International Conference on Soft-
ware Engineering, Singapore, April 11-15, 1988, pp. 418–427. IEEE Computer Society
Press, Los Alamitos (1988)

35. Kunz, W., Rittel, H.W.J.: Issues as Elements of Information Systems, Working Paper No.
131 (July 1970); Studiengruppe für Systemforschung, Heidelberg, Germany (reprinted,
May 1979)

36. Dutoit, A.H., McCall, R., Mistrík, I., Paech, B. (eds.): Rationale Management in Software
Engineering. Springer, Heidelberg (2006)

37. Simon, H.A.: The Sciences of the Artificial, 3rd edn. The MIT Press, Cambridge, MA
(1977)

38. Cysneiros, L.M., Leite, J.C.: Nonfunctional Requirements: From Elicitation to Conceptual
Models. IEEE Trans. Softw. Eng. 30(5), 328–350 (2004),

 http://dx.doi.org/10.1109/TSE.2004.10
39. Liaskos, S., Lapouchnian, A., Yu, Y., Yu, E.S.K., Mylopoulos, J.: On Goal-based Vari-

ability Acquisition and Analysis. In: RE 2006, pp. 76–85 (2006)
40. Yu, Y., Lapouchnian, A., Liaskos, S., Mylopoulos, J., Leite, J.C.: From goals to high-

variability software design. In: An, A., Matwin, S., Raś, Z.W., Ślęzak, D. (eds.) Founda-
tions of Intelligent Systems. LNCS, vol. 4994, pp. 1–16. Springer, Heidelberg (2008)

41. González-Baixauli, B., Laguna, M.A., Leite, J.C.: Using Goal-Models to Analyze Variabil-
ity. In: First International Workshop on Variability Modelling of Software-Intensive Sys-
tems, VaMoS 2007, Proceedings, Limerick, Ireland, January 16-18, 2007, pp. 101–107,
Lero Technical Report 2007-01 2007 (2007)

42. Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: Reasoning with Goal Models.
In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, pp.
167–181. Springer, Heidelberg (2002)

378 L. Chung and J.C.S. do Prado Leite

43. Kaiya, H., Horai, H., Saeki, M.: AGORA: Attributed Goal-Oriented Requirements Analy-
sis Method. In: Proceedings of the 10th Anniversary IEEE Joint international Conference
on Requirements Engineering, September 09-13, 2002, pp. 13–22. IEEE Computer Soci-
ety, Washington (2002)

44. Liu, L., Yu, E., Mylopoulos, J.: Security and Privacy Requirements Analysis within a So-
cial Setting. In: Proceedings of the 11th IEEE international Conference on Requirements
Engineering, September 08-12, 2003, IEEE Computer Society, Washington (2003)

45. Gonzalez-Baixauli, B., Leite, J.C., Mylopoulos, J.: Visual Variability Analysis for Goal
Models. In: Proceedings of the Requirements Engineering Conference, 12th IEEE interna-
tional, September 06-10, 2004, pp. 198–207. IEEE Computer Society, Washington (2004),
http://dx.doi.org/10.1109/RE.2004.56

46. Horkoff, J., Yu, E.S.K.: Qualitative, Interactive, Backward Analysis of i* Models. In: iStar
2008, pp. 43–46 (2008)

47. Oliveira, A.P.A., Leite, J.C., Cysneiros, L.M.: AGFL - Agent Goals from Lexicon - Elicit-
ing Multi-Agent Systems Intentionality. In: iStar 2008, pp. 29–32 (2008)

48. Niu, N., Easterbrook, S.M.: Managing Terminological Interference in Goal Models with
Repertory Grid. In: RE 2006, pp. 296–299 (2006)

49. González-Baixauli, B., Leite, J.C., Laguna, M.A.: Eliciting Non-Functional Requirements
Interactions Using the Personal Construct Theory. In: RE 2006, pp. 340–341 (2006)

50. Cysneiros, L.M., Werneck, V., Kushniruk, A.: Reusable Knowledge for Satisficing Usabil-
ity Requirements. In: RE 2005, pp. 463–464 (2005)

51. Cleland-Huang, J., Settimi, R., BenKhadra, O., Berezhanskaya, E., Christina, S.: Goal-
centric traceability for managing non-functional requirements. In: Proceedings of the 27th
international Conference on Software Engineering, ICSE 2005, St. Louis, MO, USA, May
15-21, 2005, pp. 362–371. ACM, New York (2005),

 http://doi.acm.org/10.1145/1062455.1062525
52. Cleland-Huang, J., Marrero, W., Berenbach, B.: Goal-Centric Traceability: Using Virtual

Plumblines to Maintain Critical Systemic Qualities. IEEE Trans. Softw. Eng. 34(5), 685–
699 (2008), http://dx.doi.org/10.1109/TSE.2008.45

53. Grundy, J.C.: Aspect-Oriented Requirements Engineering for Component-Based Software
Systems. In: Proceedings of the 4th IEEE international Symposium on Requirements En-
gineering, RE, June 07-11, 1999, pp. 84–91. IEEE Computer Society, Washington (1999)

54. Moreira, A., Araújo, J., Brito, I.: Crosscutting quality attributes for requirements engineer-
ing. In: Proceedings of the 14th international Conference on Software Engineering and
Knowledge Engineering, SEKE 2002, Ischia, Italy, July 15-19, 2002, vol. 27, pp. 167–174.
ACM, New York (2002), http://doi.acm.org/10.1145/568760.568790

55. Yu, Y., Leite, J.C., Mylopoulos, J.: From Goals to Aspects: Discovering Aspects from Re-
quirements Goal Models. In: 12th IEEE international Proceedings of the Requirements
Engineering Conference, September 06-10, 2004, pp. 38–47. IEEE Computer Society,
Washington (2004), http://dx.doi.org/10.1109/RE.2004.23

56. Brito, I., Moreira, A.: Integrating the NFR framework in a RE model. In: EA-AOSD 2004:
Workshop on Early Aspects: Aspect-Oriented Requirements Engineering and Architecture
Design, held in conjunction with the 3rd International Conference on Aspect-Oriented
Software Development, Lancaster, UK, March 22-26 (2004),
http://trese.cs.utwente.nl/workshops/early-aspects-2004/
Papers/BritoMoreira.pdf

57. Alencar, F., Silva, C., Moreira, A., Araújo, J., Castro, J.: Identifying Candidate Aspects
with I-star Approach. In: Early Aspects 2006: Traceability of Aspects in the Early Life
Cycle, pp. 4–10 (2006)

 On Non-Functional Requirements in Software Engineering 379

58. de Padua Albuquerque Oliveira, A., Cysneiros, L.M., do Prado Leite, J.C., Figueiredo,
E.M., Lucena, C.J.: Integrating scenarios, i*, and AspectT in the context of multi-agent
systems. In: Proceedings of the 2006 Conference of the Center For Advanced Studies on
Collaborative Research, CASCON 2006, Toronto, Ontario, Canada, October 16-19, 2006,
p. 16. ACM, New York (2006), http://doi.acm.org/10.1145/1188966.
1188988

59. da Silva, L.F., Leite, J.C.: Generating Requirements Views: A Transformation-Driven Ap-
proach. ECEASST 3 (2006)

60. Yu, Y., Niu, N., González-Baixauli, B., Mylopoulos, J., Easterbrook, S., Leite, J.C.: Re-
quirements Engineering and Aspects. In: Design Requirements Engineering: A Ten-Year
Perspective. Lecture Notes in Business Information Processing, pp. 432–452. Springer,
Heidelberg (2009)

61. Parnas, D.L., Madey, J.: Functional Documentation for Computer Systems. Science of
Computer Programming 25(1), 41–61 (1995)

	On Non-Functional Requirements in Software Engineering
	Introduction
	What are Non-Functional Requirements?
	Some Classification Schemes
	Representations of Non-Functional Requirements
	Future Directions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

