
Modern SRS Package Template

This template provides an outline for a Modern Software Requirements

Specification (SRS) Package applying both traditional document-based
techniques and use-case modeling. For large systems, optional

packaging is recommended at the feature (or other appropriate
subsystem grouping) level. For example, if feature-level packaging is
used, this specification will include or reference all software

requirements related to the implementation of that feature. In some

cases, a Modern SRS Package may be specified as one or more
documents, for which this outline serves as an annotated template

starting point. In other cases, the package is a logical construct that

may consist of only one physical document, with references to other
model- or tool-based physical representations (UML models, use cases,

requirements tool repositories, or other) of the data described herein.

Company Name
Division Name, if appropriate

Project Name
Software Requirements Specification
Document Number, if appropriate

© 2004 Company Name

Revision History
Date Revision Description Author

mm/dd/yyyy 1.0 Initial version Author name

Table of Contents
1 Introduction

1.1 Purpose
Specify the purpose of this SRS. The SRS should fully describe the

external behavior of the application or subsystem identified, as well as
nonfunctional requirements, design constraints, and other factors

necessary to provide a complete, comprehensive description of the
software requirements.

1.2. Scope

This section provides a brief description of the software application
that the SRS applies to, the features or other subsystem grouping,

what use-case model(s) it is associated with, and anything else that is
affected or influenced by this document.

1.3 References

Provide a list of project-related references or applicable documents

that bear on this project.

1.4 Assumptions and Dependencies
This section describes any key technical feasibility, subsystem, or

component availability or other project-related assumptions on which
the viability of the software described by this SRS may be based.

2 Use-Case Model Survey

This section provides an overview of the use-case model. The survey is

used by people interested in the behavior of the system, such as the
customer, users, architects, use case authors, designers, use case

designers, testers, managers, reviewers, and writers. This section lists
for each use case

• The use case name.

• A brief description explaining the use case's function and role in the

system.
• A list of actors for the use case (Primary and secondary, active and

passive). The aggregation of these actors is further defined in the

accompanying actor survey.
• Diagram of the use-case model. A diagram of the entire use-case

model is included here.

3 Actor Survey

All of the actors mentioned in the use-case model survey are reported
here. For each actor, you should list

• The actor's name

• A brief description of the actor

4 Requirements

4.1 Functional Requirements
This section describes the functional requirements of the system for

those requirements that are expressed in the natural-language style.
For many applications, this may constitute the bulk of the package,

and thought should be given to the organization of this section. This
section is typically organized by feature, but alternative organization

methods, by user or by subsystem, may also be appropriate.
Where application development tools (requirements tools, modeling

tools, and so on) are used to capture the functionality, this section of
the document will refer to the availability of that data and will indicate

the location and name of the tool used to capture the data.

4.2 Nonfunctional Requirements
Most nonfunctional requirements are typically recorded in natural

language in this section of the specification. However, nonfunctional

requirements may also be included with a specific use case
specification.

4.2.1 Usability

This section should include all of those requirements that affect
usability. These often include:

• Specify the required training time for normal users and power users

to become productive at particular operations.

• Specify measurable task times for typical tasks; alternatively, base

usability requirements of the new system on other systems that the
users know and like.

• Specify requirements to conform to common usability standards, such

as IBM's CUA standards or the GUI standards published by Microsoft

for Windows 98/2000/XP.

4.2.2 Reliability

Requirements for system reliability should be specified here.

• Availability: Specify percent of time available (xx.xx%), hours of use,

maintenance access, degraded-mode operations, and so on.

• Mean time between failures (MTBF): This is usually specified in hours

but could also be specified in terms of days, months, or years.

• Mean time to repair (MTTR): How long is the system allowed to be

out of operation after it has failed?

• Accuracy: Specify precision (resolution) and accuracy (by some

known standard) that is required in the system's output.

• Maximum bugs or defect rate: Usually expressed in terms of

bugs/KLOC (thousands of lines of code) or bugs per function-point.

• Bugs or defect levels: Categorized in terms of minor, significant, and

critical bugs. The requirement(s) must define what is meant by a
"critical" bug (such as complete loss of data or complete inability to

use certain parts of the functionality of the system).

4.2.3 Performance
The performance characteristics of the system should be outlined in

this section. Include specific response times. Where applicable,
reference related use cases by name.

• Response time for a transaction (average, maximum)

• Throughput (transactions per second)

• Capacity (the number of customers or transactions the system can

accommodate)

• Degradation modes (the acceptable mode of operation when the

system has been degraded)

• Resource utilization (memory, disk, communications)

4.2.4 Supportability
This section indicates any requirements that will enhance the

supportability or maintainability of the system being built, including
coding standards, naming conventions, class libraries, maintenance

access, and maintenance utilities.

5 Online User Documentation and Help System Requirements

Describes the requirements, if any, for online user documentation,
help systems, help notices, and so on.

6 Design Constraints

This section should indicate any design constraints on the system

being built. Design constraints represent design decisions that have
been mandated and must be adhered to. Examples include software

languages, software process requirements, prescribed use of
developmental tools, architectural and design constraints, purchased

components, and class libraries.

7 Purchased Components

This section describes any purchased components to be used with the

system, any applicable licensing or usage restrictions, and any
associated compatibility/interoperability or interface standards.

8 Interfaces

This section defines the interfaces that must be supported by the
application. This section should contain adequate specificity, protocols,

ports, and logical addresses, and so on, so that the software can be
developed and verified against the interface requirements.

8.1 User Interfaces

Describe the user interfaces that are to be implemented by the
software.

8.2 Hardware Interfaces
Define any hardware interfaces that are to be supported by the

software, including logical structure, physical addresses, and expected
behavior.

8.3 Software Interfaces

Describe software interfaces to other components of the software
system. These may be purchased components, components reused

from another application, or components being developed for
subsystems outside of the scope of this SRS but with which this

software application must interact.

8.4 Communications Interfaces
Describe any communications interfaces to other systems or devices,

such as local area networks or remote serial devices.

9 Licensing Requirements

Define any licensing enforcement requirements or other usage

restriction requirements that are to be exhibited by the software.

10 Legal, Copyright, and Other Notices

Describe any necessary legal disclaimers, warranties, copyright

notices, patent notice, wordmark, trademark, or logo compliance
issues for the software.

11 Applicable Standards

Describe by reference any standards (and the specific sections of any
such standards) that apply to the system being described. For

example, this could include legal, quality, and regulatory standards, as
well as industry standards for usability, interoperability,

internationalization, operating system compliance, and so on.

Index

The index is provided to assist the reader in locating key concepts and

topics that occur throughout the document.

Glossary

Describe any terms that are unique to this application context and any

definitions, acronyms, abbreviations, or other project or company-
specific shorthand that is necessary for an understanding of this

document and the application.

Appendixes

You should insert appendixes here as appropriate. Note that the

following template appendix is provided specifically to allow you to
record use cases. Feel free to insert as many appendixes as you need.

Appendix: Use Case Specifications

This appendix contains references the elaborated use cases for the
system. The following template is provided as a starting point.

Revision History
Date Issue Description Author

dd/mmm/yy x.x Details Author name

Note that the revision history is provided for each use case included in

the appendixes. The current revision history block should be on the
first page of each use case appendix.

Table of Contents

Normally, a use case specification will not be long enough to warrant a
table of contents for the use case. But this element may be required if

the use case presents unusual problems in finding portions of the
specification.

Use Case Name
Brief Description

The role and purpose of the use case: A single paragraph should

suffice for this description.

Participating Actors (Primary, secondary, active and non-activet)

Insert the name only, and refer to the ID number of the actor in this

document

Actor ID Actor Name Role

(Primary,
secondary)

Active/Non-

Active

Pre-conditions (Numbered List)

Precondition of a use case is the state of the system that must be

present prior to a use case being performed.

Flow of Events
Basic Flow

This use case starts when the actor does something. An actor always

initiates use cases. The use case should describe what the actor does
and what the system does in response. The use case should be

phrased in the form of a dialogue between the actor and the system.

Actor A System Actor B

1

 2
2.1

2.2

 3

The use case should describe what happens inside the system but not
how or why.

A glossary is often useful to keep the complexity of the use case
manageable; you may want to define customer information there, to

keep the use case from drowning in details.

Simple alternatives may be presented within the text of the use case.
If it takes only a few sentences to describe what happens when there

is an alternative, do it directly within the flow-of-events section. If the
alternative flows are more complex, use a separate section. For

example, an alternative flow describes how to describe more complex
alternatives.

Use notation: A1 A2, to represent Alternative flow 1 or Alternative flow
2 respectively.

A picture is sometimes worth a thousand words, although there is no

substitute for clean, clear prose. If doing so improves clarity, feel free
to include graphical depictions of user interfaces, process flows, or

other figures into the use case.
If a technical method, such as an activity diagram is useful to present

a complex decision process, by all means use it!
Similarly for state-dependent behavior, a state-transition diagram

often clarifies the behavior of a system better than do pages upon
pages of text.

Use the right presentation medium for your problem, but be wary of
using terminology, notation, or figures that your audience may not

understand.
Remember that your purpose is to clarify, not to obscure.

Alternative Flows

1. First alternative flow: More complex alternatives should be described

in a separate section, which is referred to in the basic flow-of-events
section. Think of the alternative flow sections as alternative behavior;

each alternative flow represents alternative behavior (many times,

because of exceptions that occur in the main flow). They may be as

long as necessary to describe the events associated with the
alternative behavior. When an alternative flow ends, the events of the

main flow of events are resumed unless otherwise stated.
Alternative flows may, in turn, be broken down into subsections.

2. Second alternative flow: There may be, and most likely will be, a

number of alternative flows in a use case. Keep each alternative
separate, to improve clarity. Using alternative flows improves the

readability of the use case, as well as prevents use cases from being
decomposed into hierarchies of use cases. Keep in mind that use cases

are just textual descriptions and that their main purpose is to

document the behavior of a system in a clear, concise, and
understandable way.

Special Requirements (Numbered List)

These are typically nonfunctional requirements that are specific to a

use case but are not easily or naturally specified in the text of the use
case's event flow. Examples of special requirements include legal and

regulatory requirements, application standards, and quality attributes
of the system to be built, including usability reliability, performance, or

supportability requirements. Other requirements, such as operating

systems and environments, compatibility requirements, and design
constraints, should also be captured in this section.

Post-conditions (Numbered List)

Post-condition of a use case is a list of possible states the system can

be in immediately after a use case has finished.

Extension Points (Numbered List)

Extension points of the use case.
Name of extension point: Definition of the location of the extension

point in the flow of events.

