
Requirements definition and management
White paper
October 2009

Getting requirements right: avoiding
the top 10 traps.

Contents

Getting requirements right: avoiding the top 10 traps.
Page 2

2	 Don’t get caught

4	 Trap 1: scope creep

5	 Trap 2: asking customers what

they want

6	 Trap 3: inability to adapt to

change

7	 Trap 4: failure to communicate

effectively

8	 Trap 5: failure to communicate

frequently

9	 Trap 6: unwieldy documents

and too much information

11	 Trap 7: hidden project artifacts

12	 Trap 8: ambiguous requirements

13	 Trap 9: failure to measure and

assess requirements processes

14	 Trap 10: isolating your

requirements

15	 Conclusion

Don’t get caught

A trap is a position or situation from which it is difficult or impossible to escape.
Getting caught in software development requirement traps can have dire conse-
quences for the survival of your business. The traps of bad requirements definition
and management result in cost overruns, missed deadlines, poorly designed prod-
ucts and, ultimately, a failure to deliver what the customer needs.

Unfortunately, requirement traps are all too common, and their influence is
considerable. The State of the IT Union Survey1 explored the development
management practices that teams applied to either stay out of trouble or address
problems after they are discovered. The online survey of respondents reveals how
often development teams anticipate that they’ll fall into traps. They pad budgets
and schedules. They change initial estimates to match actual results. And they
request additional resources. Figure 1 reveals the lengths teams and team leaders
will go to deal with these traps.

Getting requirements right: avoiding the top 10 traps.
Page 3

Highlights

Development teams anticipate the traps of requirements management and intentionally subvert the
creation of accurate budgets and timelines.

Products today increasingly depend on software to deliver their value. A brake
sensor on a car, a home appliance, a medical device—these products all contain
software that plays an increasingly important role. The products are becoming
smarter, and they involve more people and teams outside the typical value chain.
Smarter management of the requirements process—the foundation of effective
software delivery—is increasingly important for delivering these smart products.

This white paper presents 10 common and devastating mistakes that project teams
make in defining and managing requirements. More important, it discusses how
to avoid these traps so you can get your requirements right and develop the right
product on time and within budget.

Indicated that their project teams will extend the
schedule so as to deliver on the promised scope

Descope towards the end of the project to
meet the deadline

Have a flexible budget from the beginning of the project

Change the original schedule to reflect the actual results

Pad the budget

Have a flexible schedule from the beginning of the project

Have a flexible scope from the beginning of the project

Will ask for extra funds

Avoid “scope creep” whenever possible via a “change management” process

Change the original estimate to reflect the actual results

Take a stage-gate approach to funding

72%

10%

12%

13%

18%

18%

26%

32%

34%

39%

63%

10 20 30 40 50 60 70 80

State of the IT Union Survey2

Poor requirements management

results in inconsistent project

outcomes.

Getting requirements right: avoiding the top 10 traps.
Page 4

Highlights
Trap 1: scope creep

Scope creep usually involves features being added to previously approved product
designs without corresponding increases in resources, schedule or budget. The
potential causes vary depending on the organization, the project and the indi-
viduals, but creep tends to occur when project requirements are not defined and
managed properly.

Uncontrolled growth can also occur when development teams create solutions
before determining what the business really needs. The business requirements
of a project are typically seen by development teams as being too high level
and vague and not applicable to them. They want to focus on detailed product
requirements. However, business requirements are real requirements, and they
need to be sufficiently detailed to avoid scope creep. By meeting the product
requirements and not the business ones, teams fail to develop solutions that
provide value and will overcompensate by adding features.

Avoid the trap

Map detailed, real business requirements to product features that satisfy •	
those requirements and provide value.
While accommodating change, be vigilant about focusing on business require-•	
ments and reprioritization.
Identify and work with stakeholders early and often to understand the busi-•	
ness requirements, stakeholder priorities and the effect on stakeholders when
changes occur.

The payoff

Avoiding scope creep makes planning easier, helps keep budgets intact and helps
keep projects on schedule. Most important of all, it helps generate desired return
on investment (ROI).

Capturing business requirements

can control scope creep.

Getting requirements right: avoiding the top 10 traps.
Page 5

Highlights
Trap 2: asking customers what they want

This seems counterintuitive. Teams are supposed to talk to customers and give
them what they want in a product. But customers tend to talk about features, not
what they truly need. The truth is that people often don’t know what they want.
And when customers don’t know what they want and developers don’t understand
the problem, poorly conceived solutions—and products—can result.

Avoid the trap

Ask customers why they need a particular solution. It may lead to a •	
better understanding of their expectations and better discussions about
specific requirements.
Guide the discussion away from focusing on features—ask customers what •	
they want the software to do. Create a separate discussion for how resulting
products will be used.
Identify the right stakeholders. The target audience or end user may not be •	
the person who is responsible for the project or invested in its outcome. Find—
and listen to—the right mix of users, customers, executives who fund the
project, government representatives who impose regulations, project teams,
support teams and others.

The payoff

Asking customers what outcome they are seeking helps you determine the true
and realistic product requirements that will deliver value to them.

Guide discussions away from

focusing on features.

Asking customers about outcomes

helps determine requirements.

Getting requirements right: avoiding the top 10 traps.
Page 6

Highlights
Trap 3: inability to adapt to change

Setting requirements in stone early in development can be a recipe for disaster
that results in an enormous waste in resources and an inability to stay on sched-
ule. As recent changes in the global economy illustrate, outside influences can
quickly change project requirements. Organizations have quickly changed their
focus to doing more with less. Speculative or experimental pet projects are off the
table, replaced by those with strong potential ROI. Yet in any economy, there
are always new requirements to contend with as business priorities change, new
government regulations are enacted and new stakeholders are identified. Project
teams need to accommodate those changes.

Avoid the trap

Expect and plan for requirements that change throughout your develop-•	
ment process.
Reprioritize requirements based on shifting circumstances such as business •	
need, customer importance, estimated effort and cost.
Have a fine-grain plan that you adjust at regular intervals.•	
Keep your stakeholders informed as changes occur—get their input for prioriti-•	
zation and the rationale behind it.

The payoff

Accommodating and planning for change in project requirements helps miti-
gate risk and decreases costly rework.

Uncertainties and outside factors

may influence requirements.

Plan for change in order to

reduce risks.

Getting requirements right: avoiding the top 10 traps.
Page 7

Highlights
Trap 4: failure to communicate effectively

Ineffective communication is often a root cause of project failure. The perspective
of development teams, customers, end users and executives is different for each
group, as are their needs for communication. If you don’t express requirements
using methods your stakeholders can easily understand, you can’t possibly gain
consensus on requirements.

Avoid the trap

Know your audience and communicate in ways that help them understand the •	
information. Make use of diagrams, user stories, sketching and storyboards.
Create glossaries, document templates and feedback forms that are clear, •	
concise and easy to use.
Use prototyping to help stakeholders visualize the solution. This can either aug-•	
ment text or completely replace it depending on the level of detail required.
Elicit feedback from all of your stakeholder representatives, and remember •	
that one or two people tend to be the most vocal. Don’t make the mistake of
overlooking others’ feedback.
Always respond to feedback, preferably with some clear statement of status such •	
as, “Will incorporate,” “Placed this on a wish list” or “Unable to accommodate
this now.” If you ask for input, acknowledge it.

The payoff

Effective communication makes the most efficient use of everyone’s valuable
time and helps avoid misunderstandings that derail projects.

Communicate with stakeholders in

ways they can easily understand.

Effective communication helps

optimize time and effort.

Getting requirements right: avoiding the top 10 traps.
Page 8

Highlights
Trap 5: failure to communicate frequently

Failure to communicate with stakeholders early and often leads to one primary
problem: rework. Developing a product for customers without consulting them
while that product is being developed is just asking for trouble. The biggest
reason it happens is that we often think we know what our customers want well
enough that we don’t need to consult them. And stakeholders usually have dif-
ferent priorities.

Sometimes teams don’t communicate with stakeholders because they prefer to
avoid confrontations. But if you want a positive end result and minimum risk and
rework, it is important to collaborate with stakeholders not just at the beginning of
a project but throughout the entire process, from start to finish.

Avoid the trap

Identify key stakeholders, including customers. Choose a representative from •	
each group to communicate with regularly.
For large, in-person stakeholder workshops, consider using a skilled facilitator. •	
Good facilitators are worth their weight in gold in keeping everyone on track for
attaining the meeting objectives.
Establish regular checkpoints with your stakeholders. Determine at the •	
beginning of the project how often you need to check in, and also schedule
time for keeping stakeholders up-to-date as unexpected changes occur.
Make it easy for your stakeholders to provide feedback. When they do, let •	
others see their feedback to generate better discussions.

The payoff

Regular communication reduces risks, increases team productivity and avoids
rework. Ultimately it helps deliver the product the customer really wants.

Stakeholders often have differing

priorities.

Regular communication helps

deliver product value.

Getting requirements right: avoiding the top 10 traps.
Page 9

Highlights
Trap 6: unwieldy documents and too much information

Do you have time to review and give feedback on a 200-page document? Probably
not—and most likely, neither do your stakeholders. Doing more work than neces-
sary and adding unnecessary detail to documentation costs both time and money.
It is unproductive for the person creating it and a hindrance to the people looking
for information they need to get their work done. Two common missteps include
adding too much detail to requirements too early in the process and requiring
more traceability than is necessary to facilitate effective lifecycle management.

Think quality, not quantity. Better to add just enough detail to your require-
ments and identify just enough traceability to get the job done—not the entire
job, but the next piece or iteration that needs to be completed.

Avoid the trap

Large, dense documents are not very consumable by stakeholders. Invest •	
in communication tools that efficiently gather and disseminate require-
ments information.
Use visual techniques to model business and product requirements. Business •	
process diagrams and use case diagrams, storyboards and sketches can help
cut through text-heavy clutter.
Provide a glossary of industry terms, acronyms and domain-specific terms to •	
facilitate communication.

When it comes to documentation,

think quality, not quantity.

Give users glossaries to help avoid

confusion.

Getting requirements right: avoiding the top 10 traps.
Page 10

Highlights
Create transparency of feedback. When your stakeholders are able to review •	
each other’s feedback, the discussion is richer, problems come to light, missing
requirements are identified and necessary details get filled in.
Add just enough information to your documents so the rest of your team •	
members can complete their work.

Remember that requirements management is an ongoing process. There will •	
be other opportunities to add more detail to requirements and to capture
more traceability later when it may be more appropriate.

The payoff

Focused documentation and feedback loops increase the efficiency of all stake-
holders. Reduction of extraneous details in both requirements and traceability
increases quality by focusing on the most important information—while post
poning further detail until it’s needed.

Focused documentation and

feedback helps increase efficiency

and accuracy.

Getting requirements right: avoiding the top 10 traps.
Page 11

Highlights
Trap 7: hidden project artifacts

Developers and testers often aren’t aware of the project vision or can’t locate
the documentation for the architecture or the business requirements—that is,
if they’re created at all. Without easy access to these foundational documents,
how can we possibly expect them to deliver models, code and tests that solve
the right customer problems? We can’t. Transparency to all project artifacts is
critical to the success of any software project.

Avoid the trap

Keep all project artifacts in a central repository that is accessible by project •	
team members. Having to search multiple sources for relevant documents is
frustrating and time-consuming.
Make sure documents are categorized and managed in such a way that they •	
are easy to find.
Ensure that when changes occur, the team is informed. Automatic notifica-•	
tions can help deliver this information.

The payoff

Accessibility and management of information and transparency of project arti-
facts reduces rework, diminishes waste and promotes reuse because it makes
collaboration and communication easier.

Keep a central repository for

project artifacts.

Centralized management of informa-

tion can facilitate collaboration.

Getting requirements right: avoiding the top 10 traps.
Page 12

Highlights
Trap 8: ambiguous requirements

Ambiguous requirements are the result of unclear or missing critical informa-
tion. This leads to confusion and rework. Project teams spend too much time
trying to get clarification so they can design, code and test. It’s very difficult
for architects to develop relevant models, developers to write defect-free code
and testers to develop the right test cases without clear requirements. Unfortu-
nately, reworking requirements is so common that it can become an accepted
practice—rework is just built into the schedule and budget.

Ambiguity also tends to push risks into the next phase of the project. Require-
ments then have to be reworked, and that poses problems to project schedule
and cost. This trap is especially damaging to fixed-cost projects.

What causes ambiguity? Poor writing, inaccurate information and the assump-
tion that the audience understands just as much as you do.

Avoid the trap

Use a writing reference, such as Elements of Style by William Strunk Jr. and •	
E.B. White—which has long been considered the authoritative reference on
writing crisp, clear text—before and during requirements creation.
Create a glossary, and make sure every acronym and technical term is included.•	
Pretend you are writing for a student just out of college or someone who •	
recently joined the company. Don’t assume the audience will know every
term and understand every concept.
Augment text with visuals. It’s a great way to express both simple and com-•	
plex concepts.
Step back. After writing any draft document, put it down for a while and •	
read it later. Fresh perspective can reveal ambiguities.

The payoff

Clear, understandable requirements are the foundation of your software project.

Ambiguity pushes risks onto the

next phase of projects.

Set aside a first draft and come

back to it later with a fresh

perspective.

Getting requirements right: avoiding the top 10 traps.
Page 13

Highlights
Trap 9: failure to measure and assess requirements processes

Defining and managing requirements can be a complex task. Missing and
ambiguous requirements can easily result in missed schedules, cost overruns
and decreased productivity and quality as downstream project deliverables fail
to provide value to stakeholders. Don’t wait for disaster to strike—assess your
project status on a regular basis.

Organizations must have the ability to review, assess and improve their require-
ments process. Having accurate insight into data, processes and practices is a key
component of success. Measuring project and process outcomes allows for
continual process improvements across the software delivery lifecycle, which
reduces project failures and lowers business costs.

Avoid the trap

As part of your process, conduct a “lessons learned” feedback session at the •	
end of each development iteration or release.
Also do a “lessons remembered” session before starting a new project. To •	
encourage continual improvement, you need to not only capture lessons
learned at the end of an iteration or release but also reinforce those lessons
as you move forward.
Define and collect metrics that ensure your success. For example, measure •	
the impact of changes to your requirements, test case coverage, priority, cost
and effort of business, and product requirements. As you become more expe-
rienced with measurement, you’ll find just the right combination of metrics
that allows you to continually improve your requirements process.

The payoff

Ongoing measurement of project performance reveals small problems before
they become big issues.

Measuring outcomes allows for

continual process improvements.

Getting requirements right: avoiding the top 10 traps.
Page 14

Highlights
Trap 10: isolating your requirements

Viewing requirements as isolated entities, failing to capture relationships
between requirements and other artifacts, and failing to recognize dependencies
between requirements leads to increased project risk and rework. Reprioritizing
one requirement without considering its effect on other requirements results in
increased project risk and costs.

For example, a risky trap that organizations often succumb to is not capturing
the relationship between project requirements, business requirements and other
downstream deliverables such as models, test cases and defects. When you fall
into this trap, you deliver a product that doesn’t satisfy stakeholder needs.

Avoid the trap

Identify relationships between requirements and then manage them together.•	
Create the right level of traceability between requirements and downstream •	
deliverables that balances the traceability needed for effective lifecycle man-
agement with support for productivity.
As you make changes to requirements and reprioritize them, consider the effect •	
of these changes to related requirements and your downstream deliverables.
Use tools that allow you to easily visualize the relationships you’ve identified.•	

The payoff

Identifying and managing relationships between requirements and other artifacts
mitigates project risk; helps ensure alignment between your business require-
ments, product requirements and downstream deliverables; and results in lower
development costs.

Changes in one requirement may

have significant downstream impact.

Identifying and managing relation-

ships between requirements helps

lower risk.

Getting requirements right: avoiding the top 10 traps.
Page 15

Highlights
Conclusion

There are many traps in software. Some of the most expensive ones occur in
the requirements space because that is where the foundation for your entire
project is laid. Lack of planning, lack of communication and collaboration with
stakeholders, ineffective requirements elicitation, and requirement management
techniques all lead to problems that can paralyze your software project. When
we don’t measure how we’re doing and continually make improvements, the risk
escalates quickly and the project gets out of control—something you may never
recover from.

IBM Rational® software requirements solutions incorporate many best prac-
tices that help you avoid these common traps and enjoy the payoffs.

IBM Rational Requirements Composer software, for example, facilitates team
collaboration. It is a requirements definition and management solution, perfect
for teams that want to focus on business and product requirements definition
and only require basic requirements management. The software supports textual
and visual techniques designed to elicit, elaborate and validate requirements in a
collaborative manner with stakeholders. It also provides capabilities for managing
complex requirements information and as well as some process guidance.

IBM Rational RequisitePro® software in the IT space and IBM Rational DOORS®
software in the system space provide traceability and impact analysis that keeps
analysts, architects, developers and testers aligned to business needs and require-
ments throughout the software delivery lifecycle.

IBM Rational software requirements

solutions can help you avoid com-

mon software development traps.

Becoming familiar with the traps identified here, recognizing them within your
organization and avoiding them—preferably at the beginning of your software
projects—will help you not only survive in business but also go on to increase
marketshare and ROI as you serve the needs of your customers and other stake-
holders; help your project delivery teams increase their productivity, quality and
reuse; and enable innovation.

For more information

To learn more about IBM Rational requirement solutions for software develop-
ment, contact your IBM representative or IBM Business Partner, or visit:

ibm.com/software/rational/offerings/irm

Rational Requirements Composer software:

ibm.com/software/awdtools/rrc/

Rational Requirements Composer free trial download:

https://jazz.net/projects/rational-requirements-composer/

Software delivery best practices e-kit: Do more with less:

ibm.com/services/forms/preLogin.do?lang=en_US&source=swg-rtl_sdekit

Top 10 software delivery secrets to doing more with less:

ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/raw14139usen/
RAW14139USEN.PDF

ROI calculators:

ibm.com/software/rational/offerings/testing/roi/

Read our RDM blog:

rationalrdm.wordpress.com

Follow us on Twitter: @RationalRDM

Become a Rational Requirements Composer Facebook fan:

http://www.facebook.com/home.php?#/pages/Rational-Requirements-
Composer/47378244431?ref=ts

© Copyright IBM Corporation 2009

IBM Corporation
Software Group
Route 100
Somers, NY 10589
U.S.A.

Produced in the United States of America
October 2009
All Rights Reserved

IBM, the IBM logo, ibm.com, and Rational are
trademarks or registered trademarks of International
Business Machines Corporation in the United States,
other countries, or both. If these and other IBM
trademarked terms are marked on their first occur-
rence in this information with a trademark symbol
(® or ™), these symbols indicate U.S. registered or
common law trademarks owned by IBM at the time
this information was published. Such trademarks
may also be registered or common law trademarks
in other countries. A current list of IBM trademarks is
available on the Web at “Copyright and trademark
information” at ibm.com/legal/copytrade.shtml

Other company, product, or service names may
be trademarks or service marks of others.

References in this publication to IBM products or
services do not imply that IBM intends to make them
available in all countries in which IBM operates.

The information contained in this documentation
is provided for informational purposes only. While
efforts were made to verify the completeness and
accuracy of the information contained in this docu-
mentation, it is provided “as is” without warranty of
any kind, express or implied. In addition, this infor-
mation is based on IBM’s current product plans and
strategy, which are subject to change by IBM without
notice. IBM shall not be responsible for any dam-
ages arising out of the use of, or otherwise related
to, this documentation or any other documentation.
Nothing contained in this documentation is intended
to, nor shall have the effect of, creating any warran-
ties or representations from IBM (or its suppliers or
licensors), or altering the terms and conditions of the
applicable license agreement governing the use of
IBM software.

IBM customers are responsible for ensuring their
own compliance with legal requirements. It is the
customer’s sole responsibility to obtain advice of
competent legal counsel as to the identification
and interpretation of any relevant laws and regula-
tory requirements that may affect the customer’s
business and any actions the customer may need
to take to comply with such laws.

1, 2 Scott W. Ambler, “State of the IT Union Survey,”
 Ambysoft, July 2009, http://www.ambysoft.com/	
 surveys/stateOfITUnion200907.html

RAW14154-USEN-00

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/software/rational/offerings/irm
http://www.ibm.com/software/awdtools/rrc/
https://jazz.net/projects/rational-requirements-composer/
http://www.ibm.com/services/forms/preLogin.do?lang=en_US&source=swg-rtl_sdekit
ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/raw14139usen/RAW14139USEN.PDF
ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/raw14139usen/RAW14139USEN.PDF
http://www.ibm.com/software/rational/offerings/testing/roi/
http://www.rationalrdm.wordpress.com
http://www.facebook.com/home.php?#/pages/Rational-Requirements-Composer/47378244431?ref=ts
http://www.facebook.com/home.php?#/pages/Rational-Requirements-Composer/47378244431?ref=ts

