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Preface

Jack: You’re quite perfect, Miss Fairfax.
Gwendolen: Oh! I hope I am not that. It would leave no room for
developments, and I intend to develop in many directions.

Oscar Wilde, The Importance of Being Earnest

The Z notation for specifying and designing software has evolved over the best
part of a decade, and it is now possible to identify a standard set of notations
which, although simple, capture the essential features of the method. This is the
aim of the reference manual in front of you, and it is written with the everyday
needs of readers and writers of Z specifications in mind. It is not a tutorial, for
a concise statement of general rules is often given rather than a presentation of
illustrative examples; nor is it a formal definition of the notation, for an informal
but rigorous style of presentation will be more accessible to Z users, who may
not be familiar with the special techniques of formal language definition.

It is perhaps worth recording here the causes which led to even this modest
step towards standardization of Z. The first of these is the growing trend towards
computer assistance in the writing and manipulation of Z specifications. While
the specifier’s tools amounted to little more than word-processing facilities, they
had enough inherent flexibility to make small differences in notation unimportant.
But tools are now being built which depend on syntactic analysis, and to some
extent on semantic analysis, of specifications. For these tools – syntax checkers,
structure editors, type checkers, and so on – to be useful and reliable, there must
be agreement on the grammatical rules of the language they support.

Communication between people is also helped by an agreed common notation,
and here I expect the part of this manual devoted to the standard ‘mathematical
tool-kit’ to be especially useful. In this part, I have given a formal definition of
each mathematical symbol, together with an informal description and a collection
of useful algebraic laws relating the symbol to others.

A third reason for standardization is the need to define a syllabus for training
courses in the use of Z. Whilst there is an important difference between learning
the Z language and learning to be effective in reading and writing Z specifications,
just as learning to program is much more than learning a programming language,
I hope that this description of the language will provide a useful check-list of
topics to be covered in courses.

Finally, as the use of Z increases, there will be a need for a reference point

vii



viii Preface

for contracts and research proposals which call for a specification to be written
in Z, and this manual is intended to fill that need also.

In selecting the language features and the mathematical symbols to be in-
cluded, I have tried to maintain a balance between comprehensiveness and sim-
plicity. On one hand, there is a need to promote common notations for as many
important concepts as possible; but on the other hand, there is little point in
including notations which are used so rarely that they will be forgotten before
they are needed. This observation principally affects the choice of symbols to be
included in the ‘mathematical tool-kit’.

Because one of the aims is increased stability of Z, I have felt obliged to
omit from the account certain aspects of Z which still appear to be tentative.
I found it difficult to reconcile the idea of overloading – that is, the possibility
that two distinct variables in the same scope might have identical names – with
the idea that common components are identified when schemas are joined, so
overloading is forbidden in the language described. The relative weakness of the
Z type system would, in any case, make overloading less useful than it is in other
languages.

More importantly, I have also felt unable to include a system of formal infer-
ence rules for deriving theorems about specifications. The principles on which
such a system might be based are clear enough, at least for the parts of Z which
mirror ordinary mathematical notation; but the practical usefulness of inference
rules seems to depend crucially on making them interact smoothly, and we have
not yet gained enough experience to do this.

How to use this book

Here is a brief summary of the contents of each chapter:
Chapter 1 is an overview of the Z notation and its use in specifying and devel-

oping programs. The chapter begins with a simple example of a Z specification;
this is followed by examples of the use of the schema calculus to modularize a
specification and the use of data refinement to relate specifications and designs.

Chapter 2 explains the concepts behind the Z language, such as schemas
and types. It contains definitions of the terms which are used later to explain
the constructs of Z. Although the presentation is informal, it assumes a basic
knowledge of naive set theory and predicate calculus.

Chapter 3 contains a description of the Z language itself. It is organized
according to the syntactic categories of the language, with separate sections on
declarations, predicates, expressions, and so on. Some more advanced features of
the language, generics and free types, are given their own sections at the end of
the chapter.

Chapter 4 describes a standard collection of mathematical symbols which are
useful in specifying information systems. It is divided into six sections, each
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dealing with a small mathematical theory such as sets, relations or sequences.
The chapter starts with a classified list of the symbols it defines, on pages 86
to 88.

Chapter 5 explains the conventions used in describing sequential programs
with Z specifications, including the processes of operation and data refinement,
by which abstract specifications can be developed into more concrete designs.

Chapter 6 contains a summary of the syntax of Z. It is here that the fine
details of Z syntax are presented, such as the relative binding powers of operators,
connectives and quantifiers.

Large parts of Chapters 3 and 4 are organized into ‘manual pages’ with a
fixed layout. Each manual page deals with a single construct or symbol, or a
small group of related ones. In Chapter 3, the pages may contain the following
items:

Name The constructs defined on the page are listed, and a short descriptive title
is given for each of them.

Syntax The syntax rules for each construct are given in Backus–Naur Form
(BNF).

Scope rules If variables are introduced by a construct, this item identifies the
region of text in the specification where they are visible. If the meaning of a
construct depends implicitly on the values of certain variables, these variables
are listed.

Type rules The type of each kind of expression is described in terms of the
types of its sub-expressions. Restrictions on the types of sub-expressions are
stated.

Description The meaning of each construct is explained informally.

Laws Some mathematical properties of the constructs and relationships with
other constructs are listed.

In Chapter 4, the format is a little different: each mathematical symbol is defined
formally in an item headed ‘Definition’, using the Z notation itself. Particular
emphasis is laid on the collection of mathematical laws obeyed by the symbols.
For brevity, the variables used in these laws are not declared explicitly if their
types are clear from the context. An item headed ‘Notation’ sometimes explains
special-purpose notations designed to make the symbols easier to use.

Several special pages in Chapter 4 consist entirely of laws of a certain kind:
for example, the laws which express the monotonicity with respect to ⊆ of var-
ious operations on sets and relations are collected on page 104 under the title
‘Monotonic operations’.

As well as the usual entries under descriptive terms, the general index at the
back of the book contains entries for each syntactic class of the language such
as Expression or Paragraph. These entries appear in sans-serif type, and refer to
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the syntax rules for the class. Each symbol defined as part of the mathematical
tool-kit has an entry, either under the symbol itself, if it is a word such as head ,
or under a descriptive name if it is a special symbol such as ⊕. These special
symbols also appear in the one-page ‘Index of symbols’.

The glossary at the back of the book contains concise definitions of the tech-
nical terms used in describing Z. Each term defined in the glossary is set in italic
type the first time it appears in the text.
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Preface to the second edition

This second edition remedies a number of defects. There are several language
constructs that I had omitted from the first edition as being of marginal use, but
turn out to be far more widely used than I had imagined. The most significant
of these is notation for the renaming of schema components, but there are many
other smaller changes. I have also made some additions to the library of mathe-
matical notation following suggestions from many people. Obviously, this process
of extension could go on for ever, and I have only adopted new notations when
they seem to be widely needed and to have a close relationship with the notation
that was already there. The purpose of the library is not to be an exhaustive list
of concepts that are used in specifications, but to provide a basic vocabulary that
readers and writers of Z specifications can have in common. All the substantive
changes to the language and library are listed in an appendix.

The new edition has also provided an opportunity to improve the exposition
in many small ways, and I am grateful to the many people who have written
with suggestions, or with questions that they could not answer from the account
of Z contained in the first edition. The biggest change is the introduction of an
explicit notation for bindings, the objects that inhabit schema types, and its use
in explaining the language constructs that involve schemas. I am grateful to Paul
Gardiner for persuading me that an explanation of non-generic schemas could be
given in this way.

Both the LaTEX style option that was used to print the Z specifications in
the book and a type-checking program that enforces the syntax, scope, and type
rules may be obtained from the author. For details, write to Mrs. A. Spivey, 34,
Westlands Grove, Stockton Lane, York, yo3 0ef.

Wolfson College, Oxford J. M. S.
September, 2001

You probably cannot afford elaborate equipment, and you certainly have no room
for it: but the right simple tools will stop you longing for the other, complicated
ones.

Katharine Whitehorn, Cooking in a Bedsitter
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CHAPTER 1

Tutorial Introduction

This chapter is an introduction to some of the features of the Z notation, and
to its use in specifying information systems and developing rigorously checked
designs. The first part introduces the idea of a formal specification using a simple
example: that of a ‘birthday book’, in which people’s birthdays can be recorded,
and which is able to issue reminders on the appropriate day. The behaviour of
this system for correct input is specified first, then the schema calculus is used to
strengthen the specification into one requiring error reports for incorrect input.

The second part of the chapter introduces the idea of data refinement as a
means of constructing designs which achieve a formal specification. Refinement
is presented through the medium of two examples: the first is a direct implemen-
tation of the birthday book from part one, and the second is a simple checkpoint
facility, which allows the current state of a database to be saved and later re-
stored. A Pascal-like programming language is used to show the code for some
of the operations in the examples.

1.1 What is a formal specification?

Formal specifications use mathematical notation to describe in a precise way the
properties which an information system must have, without unduly constraining
the way in which these properties are achieved. They describe what the system
must do without saying how it is to be done. This abstraction makes formal
specifications useful in the process of developing a computer system, because
they allow questions about what the system does to be answered confidently,
without the need to disentangle the information from a mass of detailed program
code, or to speculate about the meaning of phrases in an imprecisely-worded
prose description.

A formal specification can serve as a single, reliable reference point for those
who investigate the customer’s needs, those who implement programs to satisfy

1



2 Tutorial Introduction

those needs, those who test the results, and those who write instruction manuals
for the system. Because it is independent of the program code, a formal specifi-
cation of a system can be completed early in its development. Although it might
need to be changed as the design team gains in understanding and the perceived
needs of the customer evolve, it can be a valuable means of promoting a common
understanding among all those concerned with the system.

One way in which mathematical notation can help to achieve these goals is
through the use of mathematical data types to model the data in a system. These
data types are not oriented towards computer representation, but they obey a
rich collection of mathematical laws which make it possible to reason effectively
about the way a specified system will behave. We use the notation of predicate
logic to describe abstractly the effect of each operation of our system, again in a
way that enables us to reason about its behaviour.

The other main ingredient in Z is a way of decomposing a specification into
small pieces called schemas. By splitting the specification into schemas, we can
present it piece by piece. Each piece can be linked with a commentary which
explains informally the significance of the formal mathematics. In Z, schemas are
used to describe both static and dynamic aspects of a system. The static aspects
include:

• the states it can occupy;

• the invariant relationships that are maintained as the system moves from state
to state.

The dynamic aspects include:

• the operations that are possible;

• the relationship between their inputs and outputs;

• the changes of state that happen.

Later, we shall see how the schema language allows different facets of a system to
be described separately, then related and combined. For example, the operation
of a system when it receives valid input may be described first, then the de-
scription may be extended to show how errors in the input are handled. Or the
evolution of a single process in a complete system may be described in isolation,
then related to the evolution of the system as a whole.

We shall also see how schemas can be used to describe a transformation from
one view of a system to another, and so explain why an abstract specification is
correctly implemented by another containing more details of a concrete design.
By constructing a sequence of specifications, each containing more details than
the last, we can eventually arrive at a program with confidence that it satisfies
the specification.
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1.2 The birthday book

The best way to see how these ideas work out is to look at a small example. For
a first example, it is important to choose something simple, and I have chosen
a system so simple that it is usually implemented with a notebook and pencil
rather than a computer. It is a system which records people’s birthdays, and is
able to issue a reminder when the day comes round.

In our account of the system, we shall need to deal with people’s names and
with dates. For present purposes, it will not matter what form these names and
dates take, so we introduce the set of all names and the set of all dates as basic
types of the specification:

[NAME ,DATE ].

This allows us to name the sets without saying what kind of objects they contain.
The first aspect of the system to describe is its state space, and we do this with
a schema:

BirthdayBook
known : NAME
birthday : NAME DATE

known = dom birthday

Like most schemas, this consists of a part above the central dividing line, in which
some variables are declared, and a part below the line which gives a relationship
between the values of the variables. In this case we are describing the state space
of a system, and the two variables represent important observations which we
can make of the state:

• known is the set of names with birthdays recorded;

• birthday is a function which, when applied to certain names, gives the birth-
days associated with them.

The part of the schema below the line gives a relationship which is true in every
state of the system and is maintained by every operation on it: in this case, it
says that the set known is the same as the domain of the function birthday – the
set of names to which it can be validly applied. This relationship is an invariant
of the system.

In this example, the invariant allows the value of the variable known to be
derived from the value of birthday : known is a derived component of the state,
and it would be possible to specify the system without mentioning known at all.
However, giving names to important concepts helps to make specifications more
readable; because we are describing an abstract view of the state space of the
birthday book, we can do this without making a commitment to represent known
explicitly in an implementation.
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One possible state of the system has three people in the set known, with their
birthdays recorded by the function birthday :

known = { John,Mike,Susan }

birthday = { John $→ 25–Mar,
Mike $→ 20–Dec,
Susan $→ 20–Dec }.

The invariant is satisfied, because birthday records a date for exactly the three
names in known.

Notice that in this description of the state space of the system, we have not
been forced to place a limit on the number of birthdays recorded in the birthday
book, nor to say that the entries will be stored in a particular order. We have
also avoided making a premature decision about the format of names and dates.
On the other hand, we have concisely captured the information that each person
can have only one birthday, because the variable birthday is a function, and that
two people can share the same birthday as in our example.

So much for the state space; we can now start on some operations on the
system. The first of these is to add a new birthday, and we describe it with a
schema:

AddBirthday
∆BirthdayBook
name? : NAME
date? : DATE

name? /∈ known

birthday ′ = birthday ∪ {name? $→ date?}

The declaration ∆BirthdayBook alerts us to the fact that the schema is describ-
ing a state change: it introduces four variables known, birthday , known ′ and
birthday ′. The first two are observations of the state before the change, and the
last two are observations of the state after the change. Each pair of variables is
implicitly constrained to satisfy the invariant, so it must hold both before and af-
ter the operation. Next come the declarations of the two inputs to the operation.
By convention, the names of inputs end in a question mark.

The part of the schema below the line first of all gives a pre-condition for
the success of the operation: the name to be added must not already be one of
those known to the system. This is reasonable, since each person can only have
one birthday. This specification does not say what happens if the pre-condition
is not satisfied: we shall see later how to extend the specification to say that an
error message is to be produced. If the pre-condition is satisfied, however, the
second line says that the birthday function is extended to map the new name to
the given date.
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We expect that the set of names known to the system will be augmented with
the new name:

known ′ = known ∪ {name?}.
In fact we can prove this from the specification of AddBirthday , using the invari-
ants on the state before and after the operation:

known ′ = dom birthday ′ [invariant after]
= dom(birthday ∪ {name? $→ date?}) [spec. of AddBirthday ]
= dom birthday ∪ dom {name? $→ date?} [fact about ‘dom’]
= dom birthday ∪ {name?} [fact about ‘dom’]
= known ∪ {name?}. [invariant before]

Stating and proving properties like this one is a good way of making sure the
specification is accurate; reasoning from the specification allows us to explore the
behaviour of the system without going to the trouble and expense of implementing
it. The two facts about ‘dom’ used in this proof are examples of the laws obeyed
by mathematical data types:

dom(f ∪ g) = (dom f ) ∪ (dom g)
dom{a $→ b} = {a}.

Chapter 4 contains many laws like these.
Another operation might be to find the birthday of a person known to the

system. Again we describe the operation with a schema:

FindBirthday
ΞBirthdayBook
name? : NAME
date! : DATE

name? ∈ known

date! = birthday(name?)

This schema illustrates two new notations. The declaration ΞBirthdayBook in-
dicates that this is an operation in which the state does not change: the values
known ′ and birthday ′ of the observations after the operation are equal to their
values known and birthday beforehand. Including ΞBirthdayBook above the line
has the same effect as including ∆BirthdayBook above the line and the two
equations

known ′ = known
birthday ′ = birthday

below it. The other notation is the use of a name ending in an exclamation mark
for an output: the FindBirthday operation takes a name as input and yields the
corresponding birthday as output. The pre-condition for success of the operation
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is that name? is one of the names known to the system; if this is so, the output
date! is the value of the birthday function at argument name?.

The most useful operation on the system is the one to find which people have
birthdays on a given date. The operation has one input today?, and one output,
cards!, which is a set of names: there may be zero, one, or more people with
birthdays on a particular day, to whom birthday cards should be sent.

Remind
ΞBirthdayBook
today? : DATE
cards! : NAME

cards! = {n : known | birthday(n) = today? }

Again the Ξ convention is used to indicate that the state does not change. This
time there is no pre-condition. The output cards! is specified to be equal to the
set of all values n drawn from the set known such that the value of the birthday
function at n is today?. In general, y is a member of the set { x : S | . . . x . . . }
exactly if y is a member of S and the condition . . . y . . ., obtained by replacing x
with y , is satisfied:

y ∈ { x : S | . . . x . . . } ⇔ y ∈ S ∧ (. . . y . . .).

So, in our case,

m ∈ {n : known | birthday(n) = today? }
⇔ m ∈ known ∧ birthday(m) = today? .

A name m is in the output set cards! exactly if it is known to the system and
the birthday recorded for it is today?.

To finish the specification, we must say what state the system is in when it
is first started. This is the initial state of the system, and it also is specified by
a schema:

InitBirthdayBook
BirthdayBook

known =

This schema describes a birthday book in which the set known is empty: in
consequence, the function birthday is empty too.

What have we achieved in this specification? We have described in the same
mathematical framework both the state space of our birthday-book system and
the operations which can be performed on it. The data objects which appear in
the system were described in terms of mathematical data types such as sets and
functions. The description of the state space included an invariant relationship
between the parts of the state – information which would not be part of a program
implementing the system, but which is vital to understanding it.
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The effects of the operations are described in terms of the relationship which
must hold between the input and the output, rather than by giving a recipe to
be followed. This is particularly striking in the case of the Remind operation,
where we simply documented the conditions under which a name should appear
in the output. An implementation would probably have to examine the known
names one at a time, printing the ones with today’s date as it found them, but
this complexity has been avoided in the specification. The implementor is free
to use this technique, or any other one, as he or she chooses.

1.3 Strengthening the specification

A correct implementation of our specification will faithfully record birthdays and
display them, so long as there are no mistakes in the input. But the specification
has a serious flaw: as soon as the user tries to add a birthday for someone already
known to the system, or tries to find the birthday of someone not known, it says
nothing about what happens next. The action of the system may be perfectly
reasonable: it may simply ignore the incorrect input. On the other hand, the
system may break down: it may start to display rubbish, or perhaps worst of all,
it may appear to operate normally for several months, until one day it simply
forgets the birthday of a rich and elderly relation.

Does this mean that we should scrap the specification and begin a new one?
That would be a shame, because the specification we have describes clearly and
concisely the behaviour for correct input, and modifying it to describe the han-
dling of incorrect input could only make it obscure. Luckily there is a bet-
ter solution: we can describe, separately from the first specification, the errors
which might be detected and the desired responses to them, then use the opera-
tions of the Z schema calculus to combine the two descriptions into a stronger
specification.

We shall add an extra output result ! to each operation on the system. When
an operation is successful, this output will take the value ok , but it may take
the other values already known and not known when an error is detected. The
following free type definition defines REPORT to be a set containing exactly
these three values:

REPORT ::= ok | already known | not known.

We can define a schema Success which just specifies that the result should be ok ,
without saying how the state changes:

Success
result ! : REPORT

result ! = ok
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The conjunction operator ∧ of the schema calculus allows us to combine this
description with our previous description of AddBirthday :

AddBirthday ∧ Success.

This describes an operation which, for correct input, both acts as described by
AddBirthday and produces the result ok .

For each error that might be detected in the input, we define a schema which
describes the conditions under which the error occurs and specifies that the ap-
propriate report is produced. Here is a schema which specifies that the report
already known should be produced when the input name? is already a member
of known:

AlreadyKnown
ΞBirthdayBook
name? : NAME
result ! : REPORT

name? ∈ known
result ! = already known

The declaration ΞBirthdayBook specifies that if the error occurs, the state of the
system should not change.

We can combine this description with the previous one to give a specification
for a robust version of AddBirthday :

RAddBirthday =̂ (AddBirthday ∧ Success) ∨ AlreadyKnown.

This definition introduces a new schema called RAddBirthday , obtained by com-
bining the three schemas on the right-hand side. The operation RAddBirthday
must terminate whatever its input. If the input name? is already known, the state
of the system does not change, and the result already known is returned; other-
wise, the new birthday is added to the database as described by AddBirthday ,
and the result ok is returned.

We have specified the various requirements for this operation separately, and
then combined them into a single specification of the whole behaviour of the
operation. This does not mean that each requirement must be implemented sep-
arately, and the implementations combined somehow. In fact, an implementation
might search for a place to store the new birthday, and at the same time check
that the name is not already known; the code for normal operation and error
handling might be thoroughly mingled. This is an example of the abstraction
which is possible when we use a specification language free from the constraints
necessary in a programming language. The operators ∧ and ∨ cannot (in general)
be implemented efficiently as ways of combining programs, but this should not
stop us from using them to combine specifications if that is a convenient thing
to do.
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The operation RAddBirthday could be specified directly by writing a single
schema which combines the predicate parts of the three schemas AddBirthday ,
Success and AlreadyKnown. The effect of the schema ∨ operator is to make a
schema in which the predicate part is the result of joining the predicate parts
of its two arguments with the logical connective ∨. Similarly, the effect of the
schema ∧ operator is to take the conjunction of the two predicate parts. Any
common variables of the two schemas are merged: in this example, the input
name?, the output result !, and the four observations of the state before and after
the operation are shared by the two arguments of ∨.

RAddBirthday
∆BirthdayBook
name? : NAME
date? : DATE
result ! : REPORT

(name? /∈ known ∧
birthday ′ = birthday ∪ {name? $→ date?} ∧
result ! = ok) ∨

(name? ∈ known ∧
birthday ′ = birthday ∧
result ! = already known)

In order to write RAddBirthday as a single schema, it has been necessary to write
out explicitly that the state doesn’t change when an error is detected, a fact that
was implicitly part of the declaration ΞBirthdayBook before.

A robust version of the FindBirthday operation must be able to report if the
input name is not known:

NotKnown
ΞBirthdayBook
name? : NAME
result ! : REPORT

name? /∈ known
result ! = not known

The robust operation either behaves as described by FindBirthday and reports
success, or reports that the name was not known:

RFindBirthday =̂ (FindBirthday ∧ Success) ∨ NotKnown.

The Remind operation can be called at any time: it never results in an error, so
the robust version need only add the reporting of success:

RRemind =̂ Remind ∧ Success.
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The separation of normal operation from error-handling which we have seen
here is the simplest but also the most common kind of modularization possible
with the schema calculus. More complex modularizations include promotion or
framing, where operations on a single entity – for example, a file – are made
into operations on a named entity in a larger system – for example, a named
file in a directory. The operations of reading and writing a file might be de-
scribed by schemas. Separately, another schema might describe the way a file
can be accessed in a directory under its name. Putting these two parts to-
gether would then result in a specification of operations for reading and writing
named files.

Other modularizations are possible: for example, the specification of a sys-
tem with access restrictions might separate the description of who may call an
operation from the description of what the operation actually does. There are
also facilities for generic definitions in Z which allow, for example, the notion of
resource management to be specified in general, then applied to various aspects
of a complex system.

1.4 From specifications to designs

We have seen how the Z notation can be used to specify software modules, and
how the schema calculus allows us to put together the specification of a module
from pieces which describe various facets of its function. Now we turn our at-
tention to the techniques used in Z to document the design of a program which
implements the specification.

The central idea is to describe the concrete data structures which the pro-
gram will use to represent the abstract data in the specification, and to derive
descriptions of the operations in terms of the concrete data structures. We call
this process data refinement, and it is fully explained in Chapter 5. Often, a
data refinement will allow some of the control structure of the program to be
made explicit, and this is achieved by one or more steps of operation refinement
or algorithm development.

For simple systems, it is possible to go from the abstract specification to the
final program in one step, a method sometimes called direct refinement. In more
complex systems, however, there are too many design decisions for them all to
be recorded clearly in a single refinement step, and the technique of deferred
refinement is appropriate. Instead of a finished program, the first refinement
step results in a new specification, and this is then subjected to further steps
of refinement until a program is at last reached. The result is a sequence of
design documents, each describing a small collection of related design decisions.
As the details of the data structures are filled in step by step, so more of the
control structure can be filled in, leaving certain sub-tasks to be implemented
in subsequent refinement steps. These sub-tasks can be made into subroutines
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in the final program, so the step-wise structure of the development leads to a
modular structure in the program.

Program developments are often documented by giving an idealized account
of the path from specification to program. In these accounts, the ideas all appear
miraculously at the right time, one after another. There are no mistakes, no
false starts, no decisions taken which are later revised. Of course, real program
developments do not happen like that, and the earlier stages of a development
are often revised many times as later stages cast new light on the system. In
any case, specifications are seldom written without at least a rough idea of how
they might be implemented, and it is very rare to find that something similar has
not been implemented before. This does not mean that the idealized accounts
are worthless, however. They are often the best way of presenting the decisions
which have been made and the relationships between them, and such an account
can be a valuable piece of documentation.

The rest of this chapter concentrates on data refinement in Z, although the
results of the operation refinement which might follow it are shown. Two ex-
amples of data refinement are presented. The first shows direct refinement; the
birthday book we specified in Section 1.2 is implemented using a pair of arrays.
In the second example, deferred refinement is used to show the implementation
of a simple checkpoint–restart mechanism. The implementation uses two sub-
modules for which specifications in Z are derived as part of the refinement step.
This demonstrates the way in which mathematics can help us to explore design
decisions at a high level of abstraction.

1.5 Implementing the birthday book

The specification of the birthday book worked with abstract data structures cho-
sen for their expressive clarity rather than their ability to be directly represented
in a computer. In the implementation, the data structures must be chosen with
an opposite set of criteria, but they can still be modelled with mathematical data
types and documented with schemas.

In our implementation, we choose to represent the birthday book with two
arrays, which might be declared by

names : array [1 . . ] of NAME ;
dates : array [1 . . ] of DATE ;

I have made these arrays ‘infinite’ for the sake of simplicity. In a real system
development, we would use the schema calculus to specify a limit on the number
of entries, with appropriate error reports if the limit is exceeded. Finite arrays
could then be used in a more realistic implementation; but for now, this would
just be a distraction, so let us pretend that potentially infinite arrays are part of
our programming language. We shall, in any case, only use a finite part of them
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at any time. These arrays can be modelled mathematically by functions from
the set 1 of strictly positive integers to NAME or DATE :

names : 1 NAME
dates : 1 DATE .

The element names[i ] of the array is simply the value names(i) of the function,
and the assignment names[i ] := v is exactly described by the specification

names ′ = names ⊕ {i $→ v}.
The right-hand side of this equation is a function which takes the same value as
names everywhere except at the argument i , where it takes the value v .

We describe the state space of the program as a schema. There is another
variable hwm (for ‘high water mark’); it shows how much of the arrays is in use.

BirthdayBook1
names : 1 NAME
dates : 1 DATE
hwm :

∀ i , j : 1 . . hwm •
i ,= j ⇒ names(i) ,= names(j )

The predicate part of this schema says that there are no repetitions among the
elements names(1), . . . , names(hwm).

The idea of this representation is that each name is linked with the date
in the corresponding element of the array dates. We can document this with a
schema Abs that defines the abstraction relation between the abstract state space
BirthdayBook and the concrete state space BirthdayBook1:

Abs
BirthdayBook
BirthdayBook1

known = { i : 1 . . hwm • names(i) }

∀ i : 1 . . hwm •
birthday(names(i)) = dates(i)

This schema relates two points of view on the state of the system. The observa-
tions involved are both those of the abstract state – known and birthday – and
those of the concrete state – names, dates and hwm. The first predicate says
that the set known consists of just those names which occur somewhere among
names(1), . . . , names(hwm). The set { y : S • . . . y . . . } contains those values
taken by the expression . . . y . . . as y takes values in the set S , so known contains
a name n exactly if n = names(i) for some value of i such that 1 ≤ i ≤ hwm.
We can write this in symbols with an existential quantifier:

n ∈ known ⇔ (∃ i : 1 . . hwm • n = names(i)).
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The second predicate says that the birthday for names(i) is the corresponding
element dates(i) of the array dates.

Several concrete states may represent the same abstract state: in the example,
the order of the names and dates in the arrays does not matter, so long as names
and dates correspond properly. The order is not used in determining which
abstract state is represented by a concrete state, so two states which have the
same names and dates in different orders will represent the same abstract state.
This is quite usual in data refinement, because efficient representations of data
often cannot avoid including superfluous information.

On the other hand, each concrete state represents only one abstract state.
This is usual, because we don’t expect to find superfluous information in the
abstract state that does not need to be represented in the concrete state. It does
sometimes happen that one concrete state represents several abstract states, but
this is often a sign of a badly-written specification that has a bias towards a
particular implementation.

Having explained what the concrete state space is, and how concrete states
are related to abstract states, we can begin to implement the operations of the
specification. To add a new name, we increase hwm by one, and fill in the name
and date in the arrays:

AddBirthday1
∆BirthdayBook1
name? : NAME
date? : DATE

∀ i : 1 . . hwm • name? ,= names(i)

hwm ′ = hwm + 1
names ′ = names ⊕ {hwm ′ $→ name?}
dates ′ = dates ⊕ {hwm ′ $→ date?}

This schema describes an operation which has the same inputs and outputs as
AddBirthday , but operates on the concrete instead of the abstract state. It is a
correct implementation of AddBirthday , because of the following two facts:

1. Whenever AddBirthday is legal in some abstract state, the implementation
AddBirthday1 is legal in any corresponding concrete state.

2. The final state which results from AddBirthday1 represents an abstract state
which AddBirthday could produce.

Why are these two statements true? The operation AddBirthday is legal exactly
if its pre-condition name? /∈ known is satisfied. If this is so, the predicate

known = { i : 1 . . hwm • names(i) }
from Abs tells us that name? is not one of the elements names(i):

∀ i : 1 . . hwm • name? ,= names(i).
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This is the pre-condition of AddBirthday1.
To prove the second fact, we need to think about the concrete states before

and after an execution of AddBirthday1, and the abstract states they represent
according to Abs. The two concrete states are related by AddBirthday1, and we
must show that the two abstract states are related as prescribed by AddBirthday :

birthday ′ = birthday ∪ {name? $→ date?}.

The domains of these two functions are the same, because

dom birthday ′ = known ′ [invariant after]
= { i : 1 . . hwm ′ • names ′(i) } [from Abs ′]
= { i : 1 . . hwm • names ′(i) } ∪ {names ′(hwm ′)} [hwm ′ = hwm + 1]
= { i : 1 . . hwm • names(i) } ∪ {name?}

[names ′ = names ⊕ {hwm ′ $→ name?}]
= known ∪ {name?} [from Abs]
= dom birthday ∪ {name?}. [invariant before]

There is no change in the part of the arrays which was in use before the operation,
so for all i in the range 1 . . hwm,

names ′(i) = names(i) ∧ dates ′(i) = dates(i).

For any i in this range,

birthday ′(names ′(i))
= dates ′(i) [from Abs ′]
= dates(i) [dates unchanged]
= birthday(names(i)). [from Abs]

For the new name, stored at index hwm ′ = hwm + 1,

birthday ′(name?)
= birthday ′(names ′(hwm ′)) [names ′(hwm ′) = name?]
= dates ′(hwm ′) [from Abs ′]
= date? . [spec. of AddBirthday1]

So the two functions birthday ′ and birthday ∪ {name? $→ date?} are equal, and
the abstract states before and after the operation are guaranteed to be related
as described by AddBirthday .

The description of the concrete operation uses only notation which has a
direct counterpart in our programming language, so we can translate it directly
into a subroutine to perform the operation:
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procedure AddBirthday(name : NAME ; date : DATE );
begin

hwm := hwm + 1;
names[hwm] := name;
dates[hwm] := date

end;

The second operation, FindBirthday , is implemented by the following opera-
tion, again described in terms of the concrete state:

FindBirthday1
ΞBirthdayBook1
name? : NAME
date! : DATE

∃ i : 1 . . hwm •
name? = names(i) ∧ date! = dates(i)

The predicate says that there is an index i at which the names array contains
the input name?, and the output date! is the corresponding element of the array
dates. For this to be possible, name? must in fact appear somewhere in the array
names: this is the pre-condition of the operation.

Since neither the abstract nor the concrete operation changes the state, there
is no need to check that the final concrete state is acceptable, but we need to
check that the pre-condition of FindBirthday1 is sufficiently liberal, and that
the output date! is correct. The pre-conditions of the abstract and concrete
operations are in fact the same: that the input name? is known. The output is
correct because for some i , name? = names(i) and date! = dates(i), so

date! = dates(i) [spec. of FindBirthday1]
= birthday(names(i)) [from Abs]
= birthday(name?). [spec. of FindBirthday1]

The existential quantifier in the description of FindBirthday1 leads to a loop in
the program code, searching for a suitable value of i :

procedure FindBirthday(name : NAME ; var date : DATE );
var i : INTEGER;

begin
i := 1;
while names[i ] ,= name do i := i + 1;
date := dates[i ]

end;

The operation Remind poses a new problem, because its output cards is a
set of names, and cannot be directly represented in the programming language.
We can deal with it by introducing a new abstraction relation, showing how
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it can be represented by an array and an integer. Since this decision about
representation affects the interface between the birthday book module we are
developing and a program that uses it, this abstraction relation will form part of
the documentation of that interface. Here is a schema AbsCards that defines the
abstraction relation:

AbsCards
cards : NAME
cardlist : 1 NAME
ncards :

cards = { i : 1 . . ncards • cardlist(i) }

The concrete operation can now be described: it produces as outputs cardlist
and ncards:

Remind1
ΞBirthdayBook1
today? : DATE
cardlist ! : 1 NAME
ncards! :

{ i : 1 . . ncards! • cardlist !(i) }
= { j : 1 . .hwm | dates(j ) = today? • names(j ) }

The set on the right-hand side of the equation contains all the names in the
names array for which the corresponding entry in the dates array is today?. The
program code for Remind uses a loop to examine the entries one by one:

procedure Remind(today : DATE ;
var cardlist : array [1 . . ] of NAME ;
var ncards : INTEGER);

var j : INTEGER;
begin

ncards := 0; j := 0;
while j < hwm do begin

j := j + 1;
if dates[j ] = today then begin

ncards := ncards + 1;
cardlist [ncards] := names[j ]

end
end

end;

The initial state of the program has hwm = 0:
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InitBirthdayBook1
BirthdayBook1

hwm = 0

Nothing is said about the initial values of the arrays names and dates, be-
cause they do not matter. If the initial concrete state satisfies this description,
and it is related to the initial abstract state by the abstraction schema Abs,
then

known = { i : 1 . . hwm • names(i) } [from Abs]
= { i : 1 . . 0 • names(i) } [from InitBirthdayBook1]
= , [1 . . 0 = ]

so the initial abstract state is as described by InitBirthdayBook . This description
of the initial concrete state can be used to write a subroutine to initialize our
program module:

procedure InitBirthdayBook ;
begin

hwm := 0
end;

In this direct refinement, we have taken the birthday book specification and in
a single step produced a program module which implements it. The relationship
between the state of the book as described in the specification and the values of
the program variables which represent that state was documented with an ab-
straction schema, and this allowed descriptions of the operations in terms of the
program variables to be derived. These operations were simple enough to imple-
ment immediately, but in a more complex example, rules of operation refinement
could be used to check the code against the concrete operation descriptions.

1.6 A simple checkpointing scheme

This example shows how refinement techniques can be used at a high level in
the design of systems, as well as in detailed programming. What we shall call a
database is simply a function from addresses to pages of data. We first introduce
ADDR and PAGE as basic types:

[ADDR,PAGE ].

We define DATABASE as an abbreviation for the set of all functions from ADDR
to PAGE :

DATABASE == ADDR PAGE .
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We shall be looking at a system which – from the user’s point of view – contains
two versions of a database. Here is a schema describing the state space:

CheckSys
working : DATABASE
backup : DATABASE

This schema has no predicate part: it specifies that the two observations working
and backup may be any databases at all, and need not be related in any way.

Most operations affect only the working database. For example, it is possible
to access the page at a specified address:

Access
ΞCheckSys
a? : ADDR
p! : PAGE

p! = working(a?)

This operation takes an address a? as input, and produces as its output p! the
page stored in the working database at that address. Neither version of the
database changes in the operation.

It is also possible to update the working database with a new page:

Update
∆CheckSys
a? : ADDR
p? : PAGE

working ′ = working ⊕ {a? $→ p?}
backup′ = backup

In this operation, both an address a? and a page p? are supplied as input, and
the working database is updated so that the page p? is now stored at address a?.
The page previously stored at address a? is lost.

There are two operations involving the back-up database. We can take a copy
of the working database: this is the CheckPoint operation:

CheckPoint
∆CheckSys

working ′ = working
backup′ = working

We can also restore the working database to the state it had at the last checkpoint:
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Restart
∆CheckSys

working ′ = backup
backup′ = backup

This completes the specification of our system, and we can begin to think of how
we might implement it. A first idea might be really to keep two copies of the
database, so implementing the specification directly. But experience tells us that
copying the entire database is an expensive operation, and that if checkpoints
are taken frequently, then the computer will spend much more time copying than
it does accessing and updating the working database.

A better idea for an implementation might be to keep only one complete copy
of the database, together with a record of the changes made since creation of this
master copy. The master copy consists of a single database:

Master
master : DATABASE

The record of changes made since the last checkpoint is a partial function from
addresses to pages: it is partial because we expect that not every page will have
been updated since the last checkpoint.

Changes
changes : ADDR PAGE

The concrete state space is described by putting these two parts together:

CheckSys1
Master
Changes

How does this concrete state space mirror our original abstract view? The mas-
ter database is what we described as the back-up, and the working database
is master ⊕ changes, the result of updating the master copy with the recorded
changes. We can record this relationship with an abstraction schema:

Abs
CheckSys
CheckSys1

backup = master
working = master ⊕ changes

The notation master ⊕ changes denotes a function which agrees with master
everywhere except in the domain of changes, where it agrees with changes.
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How can we implement the four operations? Accessing a page at address a?
should return a page from the working copy of the database, and according to
the abstraction relation,

working(a?) = (master ⊕ changes)(a?),

so a valid specification of Access1 is as follows:

Access1
ΞCheckSys1
a? : ADDR
p! : PAGE

p! = (master ⊕ changes)(a?)

But we can do a little better than this: if a? ∈ dom changes, then

(master ⊕ changes)(a?)

is equal to changes(a?) and if a? /∈ dom changes, then it is equal to master(a?).
So we can use operation refinement to develop the operation further; it is imple-
mented by

procedure Access(a : ADDR; var p : PAGE );
var r : REPORT ;

begin
GetChange(a, p, r);
if r ,= ok then

ReadMaster(a, p)
end;

What are the operations GetChange and ReadMaster? We need give only their
specifications here, and can leave their implementation to a later stage in the
development. GetChange operates only on the changes part of the state; it
checks whether a given page is present, returning a report and, if possible, the
page itself:

GetChange
ΞChanges
a? : ADDR
p! : PAGE
r ! : REPORT

(a? ∈ dom changes ∧
p! = changes(a?) ∧
r ! = ok) ∨

(a? /∈ dom changes ∧
r ! = not present)
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As you will see, this is a specification which could be structured nicely with the
schema ∨ operator. The ReadMaster operation simply returns a page from the
master database:

ReadMaster
ΞMaster
a? : ADDR
p! : PAGE

p! = master(a?)

For the Update operation, we want backup ′ = backup, so

master ′ = backup′ = backup = master .

Also working ′ = working ⊕ {a? $→ p?}, so we want

master ′ ⊕ changes ′ = (master ⊕ changes) ⊕ {a? $→ p?}.

Luckily, the overriding operator ⊕ is associative: it satisfies the law

(f ⊕ g) ⊕ h = f ⊕ (g ⊕ h).

If we let changes ′ = changes ⊕ {a? $→ p?}, then

working ′ = working ⊕ {a? $→ p?} [spec. of Update]
= (master ⊕ changes) ⊕ {a? $→ p?} [from Abs]
= master ⊕ (changes ⊕ {a? $→ p?}) [associativity of ⊕]
= master ′ ⊕ changes ′, [spec. of Update1]

and the abstraction relation is maintained. So the specification for Update1 is

Update1
∆CheckSys1
a? : ADDR
p? : PAGE

master ′ = master
changes ′ = changes ⊕ {a? $→ p?}

This is implemented by an operation MakeChange which has the same effect as
described here, but operates only on the Changes part of the state.

For the CheckPoint operation, we want backup ′ = working , so we immediately
see that

master ′ = backup′ = working = master ⊕ changes.

We also want working ′ = working , so

master ′ ⊕ changes ′ = master ⊕ changes = master ′.
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This equation is solved by setting changes ′ = , since the empty function is a
right identity for ⊕, as expressed by the law

f ⊕ = f .

So a specification for CheckPoint1 is

CheckPoint1
∆CheckSys1

master ′ = master ⊕ changes
changes ′ =

This can be refined to the code

MultiWrite(changes); ResetChanges

where MultiWrite updates the master database, and ResetChanges sets changes
to .

Finally, for the operation Restart1, we have backup ′ = backup, so we need
master ′ = master , as for Update. Again, we want

master ′ ⊕ changes ′ = master ′,

this time because working ′ = backup, so we choose changes ′ = as before:

Restart1
∆CheckSys1

master ′ = master
changes ′ =

This can be refined to a simple call to ResetChanges.
Now we have found implementations for all the operations of our original

specification. In these implementations, we have used two new sets of opera-
tions, which we have specified with schemas but not yet implemented. One set,
ReadMaster and MultiWrite, operates on the master part of the concrete state,
and the other, containing MakeChange, GetChange, and ResetChanges, operates
only on the changes part of the state. The result is two new specifications for
what are in effect modules of the system, and in later stages they can be devel-
oped independently. Perhaps the master function would be represented by an
array of pages stored on a disk, and changes by a hash table held in main store.

In mathematics, we can describe data structures with equal ease, whether
they are held in primary or secondary storage. Operations are described in
terms of their function, and it makes no difference whether their execution takes
microseconds or hours to finish. Of course, the designer must be very closely
concerned with the capabilities of the equipment to be used, and it is vital to
distinguish primary storage, which though fast has limited capacity, from the
slower but larger secondary storage. But we regard it as a strength and not a
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weakness of the mathematical method that it does not reflect this distinction. By
modelling only the functional characteristics of a software module, a mathemat-
ical specification technique encourages a healthy separation of concerns: it helps
the designer to focus his or her attention on functional aspects, and to compare
different designs, even if they differ widely in performance.

The rest of this book is a reference manual for the notation and ideas used
in the examples we have looked at here. In Chapter 2, an outline is given of
the mathematical world of sets, relations and functions in which Z operates,
and the way Z specifications describe objects in this world. These concepts are
applied in Chapter 3, where an account of the Z language is given. The language
is made usable by the library of definitions which is implicitly a part of every Z
specification, described in Chapter 4 on ‘the mathematical tool-kit’. This chapter
contains many laws of the kind we have used in reasoning about the examples.
Chapter 5 covers the conventions by which Z specifications are used to describe
sequential programs, and the rules for developing concrete representations of
data types from their mathematical specifications. The final chapter contains a
summary of the syntax of the Z language described in the manual.


