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Theory of Computation

Alphabets, Strings & Formal Languages

Problems as Language Recognition

Language Hierarchy: Computability & Complexity
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Theory of Computation
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Theory of Computation

• Theory of what can be computed and 

what cannot by real-world computers!

• Develop formal mathematical models 

of computation that reflect real-world 

computers.
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Theory of Computation

• Central areas:

– Formal Language Theory

– Automata Theory

– Computability Theory

– Complexity Theory
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Formal Language Theory

• Theory about formal languages.

• Formal languages?

– A set of strings over a given alphabet.
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Formal Languages

• Types of Formal languages:

– Regular languages

– Context-free languages

– Context-sensitive languages

– Recursive languages (Turing-decidable)

– Recursively enumerable languages (semi-

decidable/ Turing-recognizable)
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Grammars

• Formal languages are defined by 

formal grammars as language 

generators.

– A set of formation rules that describe 

which strings formed from the alphabet of 

a formal language are syntactically valid.  

7CS612

Young
Pencil

Young
Pencil



Grammars

• Types of Grammars:

– Regular Grammars

– Context-Free Grammars

– Context-Sensitive Grammars

– Unrestricted Grammars
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Automata

• Formal language theory uses 

separate formalisms, automata, to 

describe their recognizers as 

language recognizers.

– A typical abstract machine consists of a 

definition in terms of input, output, and 

the set of allowable operations used to 

turn the former into the latter.
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Automata

• Types of Automata:

– FA (Finite Automata)

– PDA (Pushdown Automata)

– LBA (Linear Bounded Automata)

– TM (Turing Machines)
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Automata Theory  

• Study of abstract machines and 

problems they are able to solve. 

– An abstract machine, also called an 

abstract computer, is a theoretical model 

of a computer hardware or software 

system used in automata theory. 

• Classify automata by the class of formal 

languages automata are able to recognize. 
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Languages, Grammars & Automata/Machines

Languages

Grammars

Automata

/Machines

Generates

Recognizes or Accepts
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Languages, Grammars & Automata
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Languages, Grammars & Automata
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Languages, Grammars & Automata
SD

D

Context-sensitive

Context-free 

DCF

Regular

FSMs

DPDAs

NDPDAs

LBAs

Turing Machines
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Computability Theory

• Computability?

– What are the fundamental 

capabilities and limitations of 

computers?

– Classify problems as solvable and 

unsolvable.

– Unsolvability/Undecidability Theory
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Formal Models of Computation

• Both deal with formal models of 

computation: 

– Turing machines

– Recursive functions 

– Lambda calculus

– Production systems 
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• Decidable Languages  D 
• Solvable Languages

• Computable Languages

• Recursive Languages

• Turing Decidable Languages

•  D Turing Undecidable Languages

• Semi-Decidable Languages SD 
• Recursively Enumerable (R.E.) Languages

• Partially Decidable Languages

• Turing Recognizable Languages

•  SD Turing Unrecognizable Languages
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Complexity Theory

• Complexity?

– What makes some problems 

computationally hard and others 

easy?

• Time Complexity

• Space Complexity
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Complexity Theory

• Complexity?

– Classify solvable problems 

according to their degree of difficulty 

as easy ones and hard ones. 

– Intractability Theory
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Complexity Hierarchy

• P

• NP

• PSPACE

• EXPTIME
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Applications of Theory of 

Computation

• Appendices G, H, I, J, K, L, M, N O, P 

& Q

22CS612



Reading Assignment

Chapter 1:

Sections

1.1

1.2
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Alphabets, 

Strings

&

Formal Languages
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Alphabets & Strings

An alphabet  is a finite set of symbols 

or characters.

A string is a finite sequence, possibly 

empty, of symbols drawn from some 

alphabet . 

 is the empty string.
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Example 2.1

Alphabet name Alphabet symbols Example strings

The English 

alphabet

{a, b, c, …, z} , aabbcg, aaaaa

The binary 

alphabet

{0, 1} , 0, 001100

A star alphabet { ,  ,  , , , } , , 

A music 

alphabet {w, h, q, e, x, r, } , w l h h l hqq l
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Functions on Strings

Counting:  |s| is the number of symbols in s. 

|| = 0
|1001101| = 7

#c(s) is the number of times that c occurs in s.

#a(abbaaa) = 4.
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Functions on Strings

Concatenation: st is the concatenation of s and t.  

If x = good and y = bye, then xy = goodbye. 

|xy| = |x| + |y|.

x  (x  =  x = x)

Concatenation is associative:

s, t, w   ((st)w = s(tw))
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Functions on Strings

Replication:  For each string w and each natural 

number i, the string wi is:

w0 = 

wi+1 = wi w

a3 = aaa

(bye)2 = byebye

a0b3 = bbb
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Functions on Strings

Reverse: For each string w, wR is defined as:

if |w| = 0 then wR = w = 

if |w|  1 then:

a   (u  * (w = ua)). 

So define wR = a u R.
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Relations on Strings

aaa is a substring of        aaabbbaaa

aaaaaa is not a substring of aaabbbaaa

aaa is a proper substring of aaabbbaaa

• Every string is a substring of itself.  

•  is a substring of every string.  
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The Prefix Relations

s is a prefix of t iff:     x  * (t = sx).

s is a proper prefix of t iff:    s is a prefix of t and s  t.

The prefixes of abba are: , a, ab, abb, abba.

The proper prefixes of abba are: , a, ab, abb.

• Every string is a prefix of itself.

•  is a prefix of every string. 
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The Suffix Relations

s is a suffix of t iff:     x  * (t = xs).

s is a proper suffix of t iff:    s is a suffix of t and s  t.

The suffixes of abba are: , a, ba, bba, abba.

The proper suffixes of abba are: , a, ba, bba.

• Every string is a suffix of itself.  

•  is a suffix of every string.
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Formal Languages

A language is a (finite or infinite) set of 

strings over a finite alphabet .
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Example 2.2

 = {a, b}

Some languages over ?

•  = The empty language

• {} = The language containing only 
• {a, b}, 

• {, a, aa, aaa, aaaa, aaaaa}

• The language * = The set of all possible 

strings over an alphabet . 
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Example 2.3

L = {x  {a, b}* : all a’s precede all b’s}

, a, aa, aabbb, and bb ? 

aba, ba, and abc ? 
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Example 2.4

L = {x : y  {a, b}* : x = ya}

a, aa, aaa, bbaa, ba ?

, bab, bca ? 

English description?

strings that end in a
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Example 2.5

L = {x#y: x, y  {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}* and, 

when x and y are viewed as the decimal 

representations of natural numbers, 

square(x) = y}.

3#9, 12#144 ?

3#8, 12, 12#12#12 ?

# ?
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Example 2.6 & 2.7

L = {} = 

L =  {}

L = *
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Example 2.9

L = {w: w is a C program that halts on all inputs}. 
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Example 2.10

L = {w  {a, b}*: no prefix of w contains b}

= { , a, aa, aaa, aaaa, … }

L = {w  {a, b}*: no prefix of w starts with b}

= {w  {a, b}*: the first char of w is a}  {}

L = {w  {a, b}*: every prefix of w starts with b}

= 
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Example 2.11

L = {an : n  0}
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Languages Are Sets

Defining Languages?

• Language Generator (Enumerator)

• Language Recognizer
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Enumeration

• Arbitrary order

• More useful: lexicographic order

− Shortest first

− Within a length, dictionary order
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Example 2.12

L = {x  {a, b}* : all a’s precede all b’s}

The lexicographic enumeration of L?

, a, b, aa, ab, bb, aaa, aab, 

abb, bbb, aaaa, aaab, aabb, 

abbb, bbbb, aaaaa, …
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Cardinality of Languages/Sets

• Finite
– S has a natural number of elements.

• Infinite
 Countably infinite

• S has the same number of elements as there are 

integers.

 Uncountably infinite
• S has more elements than there are integers.
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Finite Sets

A set A is finite and has cardinality n  ℕ iff 

either:

• A = , or 

• there is a bijection from {1, 2, … n} to A, 

for some n.

A set is infinite iff it is not finite.  
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The Cardinality of the Power Set

If S is a finite set, the cardinality of the power 
set of S P(S) is 2|S|. 

The power set of S is the set of all subsets of 

S. 

Example: 

S = {1, 2, 3}

P(S) = 

{, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
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Countably Infinite Sets

A is countably infinite and also has cardinality 

0 iff there exists some bijection f : ℕ A.  

A set is countable iff it is either finite or 

countably infinite. 

To prove that a set A is countably infinite, it 

suffices to find a bijection from ℕ to it. 
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Enumerations

An enumeration of a set A is simply a list of 

the elements of A in some order.

Each element of A must occur in the 

enumeration exactly once!
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Enumerating Countably Infinite Sets

Theorem A.1 A set A is countably infinite iff 

there exists an infinite enumeration of it.

Not all infinite sets are countably infinite!
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The Cardinality of the Power Set

Theorem A.4 If S is a countably infinite set, 
the power set of S P(S) is infinite, but not 

countably infinite. P(S) is called uncountably 

infinite!

Proof Idea: 

Proof by Contradiction

The Diagonalization Method
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The Diagonalization Method

Elem 1 of

S

Elem 2 of

S

Elem 3 of

S

Elem 4 of S Elem 5 of

S

…….

Elem 1 of
P(S)

1

(1)

…..

Elem 2 of
P(S)

1

(2)

…..

Elem 3 of
P(S)

1 1 (3) …..

Elem 4 of
P(S)

1 (4) …..

Elem 5 of
P(S)

1 1 (5) …..

… …..

A set that is not in the table:

(1) (2) (3) (4) (5) …..
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How Large is a Language?

• The smallest language over any  is , with 

cardinality 0.

• The largest is *.  How big is it?
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How Large is a Language?

Theorem 2.2 If    then * is countably 

infinite.

Proof Idea:
Proof by Construction

The elements of * can be lexicographically enumerated by the 

following procedure:
– Enumerate all strings of length 0, then length 1, then length 

2, and so forth.

– Within the strings of a given length, enumerate them in 

dictionary order.

This enumeration is infinite since there is no longest string in *.  

Since there exists an infinite enumeration of *, it is countably 

infinite.  55CS612



How Large is a Language?

• So the smallest language has cardinality 0. 

• The largest is countably infinite.

 So every language is either finite or 

countably infinite.
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How Many Languages Are There?

Theorem 2.3 If    then the set of 

languages over  is uncountably infinite.

Proof Idea:

The set of languages defined on  is P(*).  

* is countably infinite. 

If S is a countably infinite set, P(S) is uncountably infinite.  

So P(*) is uncountably infinite.  
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Functions on Languages

• Set operations
• Union

• Intersection

• Complement

• Language operations
• Concatenation

• Kleene star

58CS612



Example 2.13

 = {a, b}

L1 = {strings with an even number of a’s}

L2 = {strings with no b’s}

• L1  L2 =

• L1  L2 =

• L2 – L1 =

•  (L2 – L1) =
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Concatenation of Languages

If L1 and L2 are languages over :

L1L2 = {w  * : s  L1 (t  L2 (w = st))}
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Example 2.14

L1 = {cat, dog,mouse,bird}           

L2 = {bone,food}

L1 L2 =
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Concatenation of Languages

{} is the identity for concatenation:

L{} = {}L = L

 is a zero for concatenation:

L  =  L = 
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Concatenation of Languages

L1 = {an:  n  0}       

L2 = {bn : n  0}

• L1 L2 = {anbm : n, m  0}

• L1L2  {anbn : n  0}
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Kleene Star

L* = {} 

{w  * : k  1 

(w1, w2,  … wk  L (w = w1 w2 … wk))}
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Example 2.15

L = {dog, cat, fish}

L* = 
{, dog, cat, fish, dogdog, 

dogcat, fishcatfish, 

fishdogdogfishcat, …}
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The + Operator

L+ = L L*

L+ = L* - {}   iff    L

L+ is the closure of L under concatenation.
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Language Syntax & Semantics

Meaning = Semantics

A semantic interpretation function assigns 

meanings to the strings of a language.

67CS612

Young
Pencil



Reading Assignment

Chapter 2:

Sections

2.1

2.2

Appendix A:
Sections

A.2

A.6
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In-Class Exercises

Chapter 2:

1

2

3

4
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Problems as Language 

Recognition

Language Hierarchy: 

Computability & Complexity
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A Framework for Analyzing 

Problems

• A single framework in which we can 

analyze a very diverse set of problems.

• The framework we will use is 

Language Recognition
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A decision problem is simply a problem for 

which the answer is yes or no (True or False).  

A decision procedure answers a decision 

problem.
– Must halt on all input.

Decision Problems
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•  The language recognition problem:  

Given a language L and a string w, is w in L?

• The single framework into which any 

computational problem can be cast!

Language Recognition Decision 

Problems
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Two Ways to Describe a Problem

• As a problem

− The problem view!

• As a language

− The language view!
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Casting Problems as Language 

Recognition Decision Problems

• Everything is a string.

• Problems that don’t look like decision 

problems can be recast into new problems 

that do look like that.

• Define problems as languages to be decided!

75CS612

Young
Pencil

Young
Pencil



Example 3.1

Problem: Given a search string w and a web 

document d, do they match?  In other words, 

should a search engine, on input w, consider 

returning d?

The language to be decided: 

L = {<w, d> : d is a candidate match for the query w}
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Example 3.2

Problem: Given an English question q and a 

web document d , does d contain the answer 

to q?

The language to be decided: 

L = {<q, d> : d contains the answer to q.}
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Example 3.3

Problem: Given a program p, written in some 

some standard programming language, is p

guaranteed to halt on all inputs?

The language to be decided: 

HPALL = {p : p halts on all inputs}
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Example 3.4

Problem: Given a nonnegative integer n, is it 

prime?

The language to be decided: 

PRIMES = 

{w : w is the binary encoding of a prime number}.
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Problem:  Given an undirected graph G, is it connected?  

Instance of the problem: 

1           2            3

4           5

Encoding of the problem: Let V be a set of binary numbers, one for 

each vertex in G.  Then we construct G as follows:

• Write |V| as a binary number,

• Write a list of edges,

• Separate all such binary numbers by “/”.

101/1/10/10/11/1/100/10/101

The language to be decided: 

CONNECTED = {w  {0, 1, /}* : w = 

n1/n2/…ni, where each ni is a binary string and w encodes a    

connected graph, as described above}.

Example 3.6
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Problem: Given two nonnegative integers, 

compute their product.

Encoding of the problem: Transform computing into 

verification.

The language to be decided:

L = {w of the form:
<integer1>x<integer2>=<integer3>, where: 

<integern> is any well formed integer, and

integer3 = integer1  integer2}

12x9=108

12=12

12x8=108

Example 3.8
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Problem: Given a list of integers, sort it.

Encoding of the problem: Transform the sorting 

problem into one of examining a pair of lists. 

The language to be decided:

L = {w1 # w2: n1

(w1 is of the form <int1, int2, … intn>, 

w2 is of the form <int1, int2, … intn>, and

w2 contains the same objects as w1 and 

w2 is sorted)}

1,5,3,9,6#1,3,5,6,9  L

1,5,3,9,6#1,2,3,4,5,6,7  L

Example 3.9

82CS612



Problem: Given a database and a query, execute the query.

Encoding of the problem: Transform the query execution problem 

into evaluating a reply for correctness.

The language to be decided:

L = {d # q # a:

d is an encoding of a database,

q is a string representing a query, and

a is the correct result of applying q to d}

(name, age, phone), (John, 23, 567-1234)

(Mary, 24, 234-9876)#(select name age=23)#

(John)    L

Example 3.10
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By equivalent we mean that either problem can 

be reduced to the other.

If we have a machine to solve one, we can use 

it to build a machine to do the other.

The Reduction Method

The Traditional Problems and their 

Language Formulations are Equivalent
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A reduction is a way of converting one 

problem/language P to another 

problem/language P in such a way that a 

solution to the second problem S can be 

used to solve the first problem/language S.

• P  P means that P is reducible to P

• L  L means that L is reducible to L

• Note that reduction says nothing about solving P or P

alone, but only about the solvability of P in the presence of 

a solution to P!

The Reduction Method
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Computational Hierarchy of 

Languages
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Regular Languages & Finite State 

Machines

An FSM to accept a*b*:
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Context-Free Languages & 

Pushdown Automata

A PDA to accept AnBn = {anbn : n  0}
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Context-Sensitive Languages & 

Linear Bounded Automata

An LBA to accept AnBnCn= {anbn cn: n  0}
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Decidable & Semi-Decidable 

Languages & Turing Machines

A Turing Machine to accept AnBnCn= {anbn cn: 

n  0}
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• Decidable Languages  D 
• Solvable Languages

• Computable Languages

• Recursive Languages

• Turing Decidable Languages

•  D Turing Undecidable Languages

• Semi-Decidable Languages SD 
• Recursively Enumerable (R.E.) Languages

• Partially Decidable Languages

• Turing Recognizable Languages

•  SD Turing Unrecognizable Languages
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Languages, Grammars & Automata
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Languages, Grammars & Automata
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Languages, Grammars & Automata
SD

D

Context-sensitive

Context-free 

DCF

Regular

FSMs

DPDAs

NDPDAs

LBAs

Turing MachinesCS612 95



Complexity Hierarchy of Decidable 

Languages
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Complexity Hierarchy of Decidable 

Languages

• The class of decidable languages

• The resources (time & space) required by 
the best decision procedures?
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Tractability Hierarchy of Decidable 

Languages

• P

• NP

• PSPACE

• EXPTIME

P  NP  PSPACE  EXPTIME 
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Reading Assignment

Chapter 3:

Sections

3.1

3.2

3.3

3.4
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In-Class Exercises

Chapter 3:

1

2

3

4 
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In-Class Exercises

Chapter 4:

1

2
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