PART 0:

Theory of Computation Alphabets, Strings & Formal Languages Problems as Language Recognition Language Hierarchy: Computability & Complexity

Theory of Computation

Theory of Computation

- Theory of what can be computed and what cannot by real-world computers!
- Develop formal mathematical models of computation that reflect real-world computers.

Theory of Computation

• Central areas:

Formal Language Theory
Automata Theory
Computability Theory
Complexity Theory

Formal Language Theory

- Theory about formal languages.
- Formal languages?

- A set of strings over a given alphabet,

Formal Languages

- Types of Formal languages:
 - Regular languages
 - Context-free languages
 - Context-sensitive languages
 - Recursive languages (Turing-decidable)
 - Recursively enumerable languages (semidecidable/ Turing-recognizable)

- Formal languages are defined by formal grammars as language generators.
 - A set of formation rules that describe which strings formed from the alphabet of a formal language are syntactically valid.

Grammars

- Types of Grammars:
 - Regular Grammars
 - Context-Free Grammars
 - Context-Sensitive Grammars
 - Unrestricted Grammars

Automata

- Formal language theory uses separate formalisms, automata, to describe their recognizers as language recognizers.
 - A typical abstract machine consists of a definition in terms of input, output, and the set of allowable operations used to turn the former into the latter.

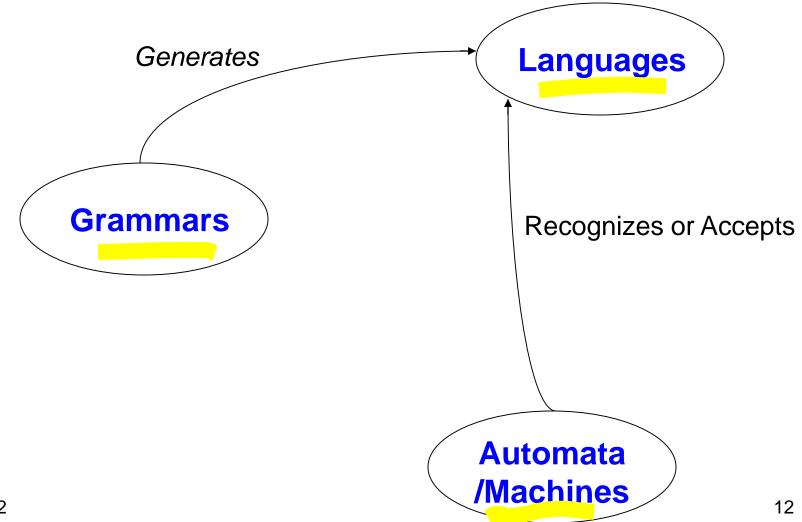
Automata

- Types of Automata:
 - FA (Finite Automata)
 PDA (Pushdown Automata)
 - LBA (Linear Bounded Automata)
 - TM (Turing Machines)

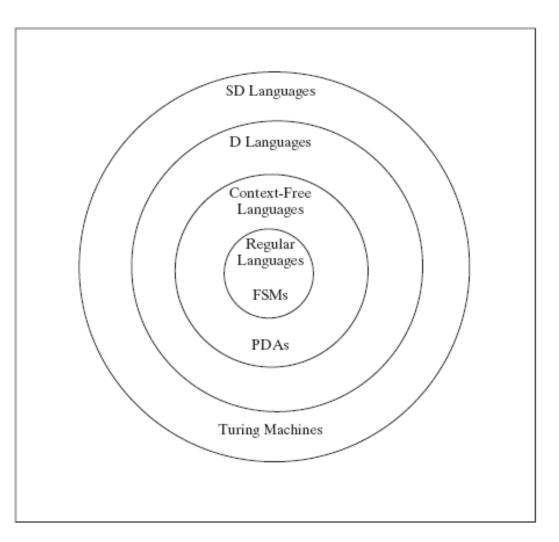
Automata Theory

- Study of abstract machines and problems they are able to solve.
 - An abstract machine, also called an abstract computer, is a theoretical model of a computer hardware or software system used in automata theory.
- Classify automata by the class of formal languages automata are able to recognize.

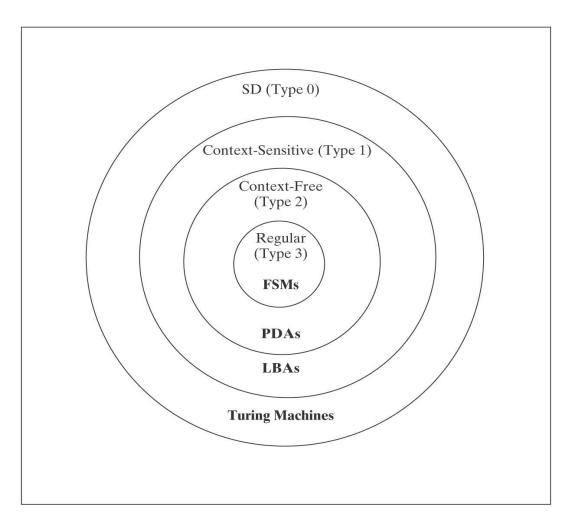
Languages, Grammars & Automata/Machines

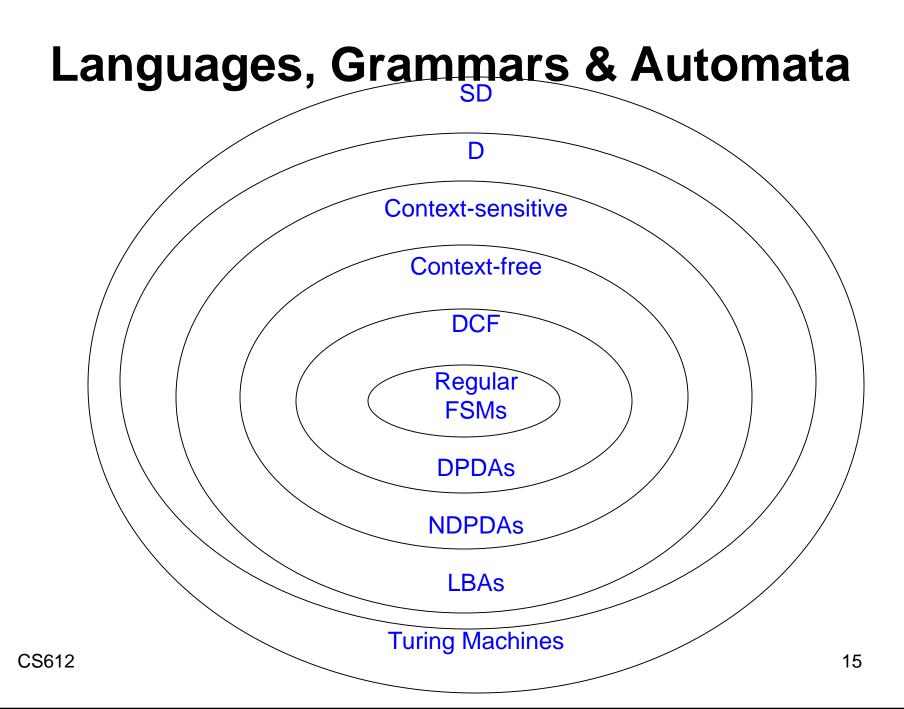


Languages, Grammars & Automata



Languages, Grammars & Automata





Computability Theory

Computability?

-What are the fundamental capabilities and limitations of computers?

-Classify problems as solvable and unsolvable.

– Unsolvability/Undecidability Theory

Formal Models of Computation

 Both deal with formal models of computation:

- Turing machines
- Recursive functions
- Lambda calculus
- Production systems

Computability Hierarchy

Decidable Languages D

- Solvable Languages
- Computable Languages
- Recursive Languages
- Turing Decidable Languages
- ¬ D Turing Undecidable Languages
- Semi-Decidable Languages SD
 - Recursively Enumerable (R.E.) Languages
 - Partially Decidable Languages
 - Turing Recognizable Languages
 - SD Turing Unrecognizable Languages

Complexity Theory

• Complexity?

–What makes some problems computationally hard and others easy?

- Time Complexity
- Space Complexity

Complexity Theory

• Complexity?

 Classify solvable problems according to their degree of difficulty as easy ones and hard ones.
 Intractability Theory

Complexity Hierarchy

- P
- NP
- PSPACE
- EXPTIME

Applications of Theory of Computation

Appendices G, H, I, J, K, L, M, N O, P & Q

Reading Assignment

Chapter 1:

Sections 1.1 1.2

Alphabets, Strings & Formal Languages

Alphabets & Strings

An alphabet Σ is a finite set of symbols or characters.

A string is a finite sequence, possibly empty, of symbols drawn from some alphabet Σ .

 ϵ is the empty string.

Example 2.1

Alphabet name	Alphabet symbols	Example strings
The English alphabet	{a, b, c,, z}	ɛ, aabbcg, aaaaa
The binary alphabet	{0, 1}	ε, 0, 001100
A star alphabet	{★,�,☆,☆,☆,☆}	ε, ΟΟ, Ο★★☆★☆
A music alphabet	{₀, ∫, ∫, ♪, ♪, ♪, ♪, ●}, ●}	ε, , , , , , , , , , , , , , , , , , ,

Counting: |*s*| is the number of symbols in *s*.

 $\#_c(s)$ is the number of times that c occurs in s.

 $#_a(abbaaa) = 4.$

Concatenation: *st* is the concatenation of *s* and *t*.

If x = good and y = bye, then xy = goodbye.

$$|xy| = |x| + |y|.$$

$$\forall x \quad (x \in x : a = x) \quad x \forall$$

Concatenation is associative:

$$\forall s, t, w \quad ((st)w = s(tw))$$

Replication: For each string *w* and each natural number *i*, the string *wⁱ* is:

 $W^0 = \varepsilon$ $W^{i+1} = W^i W$

$$a^3 = aaa$$

(bye)² = byebye
 $a^0b^3 = bbb$

Reverse: For each string w, w^{R} is defined as:

if
$$|w| = 0$$
 then $w^{R} = w = \varepsilon$

if
$$|w| \ge 1$$
 then:
 $\exists a \in \Sigma \ (\exists u \in \Sigma^* \ (w = ua)).$
So define $w^R = a u^R$.

Relations on Strings

aaais a substring ofaaabbbaaaaaaaaais not a substring ofaaabbbaaaaaais a proper substring ofaaabbbaaa

- Every string is a substring of itself.
- ϵ is a substring of every string.

The Prefix Relations

s is a *prefix* of *t* iff: $\exists x \in \Sigma^* (t = sx)$.

s is a proper prefix of t iff: s is a prefix of t and $s \neq t$.

The prefixes of abba are: ϵ , a, ab, abb, abba.The proper prefixes of abba are: ϵ , a, ab, abb.

- Every string is a prefix of itself.
- ϵ is a prefix of every string.

The Suffix Relations

s is a suffix of t iff: $\exists x \in \Sigma^* (t = xs)$.

s is a proper suffix of t iff: s is a suffix of t and $s \neq t$.

The suffixes of abba are: ϵ , a, ba, bba, abba.The proper suffixes of abba are: ϵ , a, ba, bba.

- Every string is a suffix of itself.
- ϵ is a suffix of every string.

Formal Languages

A language is a (finite or infinite) set of strings over a finite alphabet Σ .

Example 2.2

 $\Sigma = \{a, b\}$ Some languages over Σ ?

- \varnothing = The empty language
- $\{\epsilon\}$ = The language containing only ϵ
- {a, b},
- {ε, a, aa, aaa, aaaa, aaaaa}
- The language Σ^* = The set of all possible strings over an alphabet Σ .

Example 2.3

$\mathsf{L} = \{x \in \{\mathsf{a}, \mathsf{b}\}^* : \mathsf{all a's precede all b's}\}$

 $\epsilon,$ a, aa, aabbb, and bb $\ ?$

aba, ba, and abc ?

$$\mathsf{L} = \{ x : \exists y \in \{ \mathsf{a}, \mathsf{b} \}^* : x = y \mathsf{a} \}$$

ϵ , bab, bca ?

English description?

strings that end in a

L = {x#y: x, y \in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}* and, when x and y are viewed as the decimal representations of natural numbers, square(x) = y}.

3#8,12,12#12#12 ?

?

Example 2.6 & 2.7

$\mathsf{L}=\{\}=\varnothing$

$\mathsf{L} = \{ \varepsilon \}$

$L = \Sigma^*$

 $L = \{w: w \text{ is a } C \text{ program that halts on all inputs}\}.$

- $L = \{w \in \{a, b\}^*: no \text{ prefix of } w \text{ contains } b\}$ $= \{\varepsilon, a, aa, aaa, aaaa, \dots \}$
- $L = \{w \in \{a, b\}^*: no \text{ prefix of } w \text{ starts with } b\}$ $= \{w \in \{a, b\}^*: the \text{ first char of } w \text{ is } a\} \cup \{\epsilon\}$
- $L = \{w \in \{a, b\}^*: every \text{ prefix of } w \text{ starts with } b\}$ $= \emptyset$

 $L = \{a^n : n \ge 0\}$

Languages Are Sets

Defining Languages?

Language Generator (Enumerator)
Language Recognizer

Enumeration

- Arbitrary order
- More useful: *lexicographic order*
 - Shortest first
 - Within a length, dictionary order

 $L = \{x \in \{a, b\}^* : all a's precede all b's\}$

The *lexicographic enumeration* of L?

ɛ, a, b, aa, ab, bb, aaa, aab, abb, bbb, aaaa, aaab, aabb, abbb, bbbb, aaaaa, ...

Cardinality of Languages/Sets

- Finite
 - S has a natural number of elements.

Infinite

- Countably infinite
 - S has the same number of elements as there are integers.

Uncountably infinite

• S has more elements than there are integers.

Finite Sets

A set A is finite and has cardinality $n \in \mathbb{N}$ iff either:

- $A = \emptyset$, or
- there is a bijection from {1, 2, ... n} to A, for some n.

A set is infinite iff it is not finite.

The Cardinality of the Power Set

If S is a finite set, the cardinality of the power set of S $\mathcal{P}(S)$ is $2^{|S|}$.

The *power set* of S is the set of all subsets of S.

Example:

$$\begin{split} S &= \{1, 2, 3\} \\ \mathcal{P}(S) &= \\ \{ \varnothing, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\} \}. \end{split}$$

Countably Infinite Sets

A is countably infinite and also has cardinality \aleph_0 iff there exists some bijection $f : \mathbb{N} \to A$.

A set is countable iff it is either finite or countably infinite.

To prove that a set A is countably infinite, it suffices to find a bijection from \mathbb{N} to it.

Enumerations

An enumeration of a set *A* is simply a list of the elements of *A* in some order.

Each element of A must occur in the enumeration exactly once!

Enumerating Countably Infinite Sets

Theorem A.1 A set A is **countably infinite** iff there exists **an infinite enumeration** of it.

Not all infinite sets are countably infinite!

The Cardinality of the Power Set

Theorem A.4 If S is a <u>countably infinite</u> set, the power set of S $\mathcal{P}(S)$ is infinite, but not countably infinite. $\mathcal{P}(S)$ is called <u>uncountably</u> <u>infinite</u>!

Proof Idea:

Proof by Contradiction

The Diagonalization Method

The Diagonalization Method

	Elem 1 of S	Elem 2 of S	Elem 3 of S	Elem 4 of <i>S</i>	Elem 5 of S	
Elem 1 of $\mathcal{P}(S)$	1 (1)					
Elem 2 of $\mathcal{P}(S)$		1 (2)				
Elem 3 of $\mathcal{P}(S)$	1	1	(3)			
Elem 4 of $\mathcal{P}(S)$			1	(4)		
Elem 5 of $\mathcal{P}(S)$	1		1		(5)	

A set that is not in the table:

$$\neg(1)$$
 $\neg(2)$ $\neg(3)$ $\neg(4)$ $\neg(5)$

How Large is a Language?

- The smallest language over any Σ is \emptyset , with cardinality 0.
- The largest is Σ^* . How big is it?

How Large is a Language?

Theorem 2.2 If $\Sigma \neq \emptyset$ then Σ^* is countably infinite.

Proof Idea: Proof by Construction

The elements of Σ^* can be lexicographically enumerated by the following procedure:

- Enumerate all strings of length 0, then length 1, then length 2, and so forth.
- Within the strings of a given length, enumerate them in dictionary order.

This enumeration is infinite since there is no longest string in Σ^* . Since there exists an infinite enumeration of Σ^* , it is countably CS6 ipfinite.

How Large is a Language?

- So the smallest language has cardinality <u>0</u>.
- The largest is <u>countably infinite</u>.

✓ So every language is either finite or countably infinite.

How Many Languages Are There?

Theorem 2.3 If $\Sigma \neq \emptyset$ then the set of languages over Σ is <u>uncountably infinite</u>.

Proof Idea:

The set of languages defined on Σ is $\mathcal{P}(\Sigma^*)$. Σ^* is countably infinite.

If S is a countably infinite set, $\mathcal{P}(S)$ is uncountably infinite.

So $\mathcal{P}(\Sigma^*)$ is uncountably infinite.

Functions on Languages

- Set operations
 - Union
 - Intersection
 - Complement
- Language operations
 - Concatenation
 - Kleene star

- $\Sigma = \{a, b\}$ L₁ = {strings with an even number of a's} L₂ = {strings with no b's}
- $L_1 \cup L_2 =$
- $L_1 \cap L_2 =$
- $L_2 L_1 =$

•
$$\neg$$
 (L₂ – L₁) =

Concatenation of Languages

If L_1 and L_2 are languages over Σ :

$$\mathsf{L}_{1}\mathsf{L}_{2} = \{\mathsf{W} \in \Sigma^{*} : \exists \mathsf{S} \in \mathsf{L}_{1} \ (\exists \mathsf{t} \in \mathsf{L}_{2} \ (\mathsf{w} = \mathsf{st}))\}$$

- $\begin{array}{l} L_1 = \{ \texttt{cat}, \texttt{dog}, \texttt{mouse}, \texttt{bird} \} \\ L_2 = \{\texttt{bone}, \texttt{food} \} \end{array}$
- $L_1 L_2 =$

Concatenation of Languages

 $\{\epsilon\}$ is the identity for concatenation:

$$\mathsf{L}\{\varepsilon\} = \{\varepsilon\}\mathsf{L} = \mathsf{L}$$

 \varnothing is a zero for concatenation:

 $\mathsf{L} \varnothing = \varnothing \mathsf{L} = \varnothing$

Concatenation of Languages

$$\begin{array}{l} L_1 = \{ a^n : n \ge 0 \} \\ L_2 = \{ b^n : n \ge 0 \} \end{array}$$

- $\bullet \quad L_1 \ L_2 = \{ \texttt{a}^n \texttt{b}^m : n, \ m \geq 0 \}$
- $\bullet \quad L_1L_2 \neq \left\{ a^n b^n : n \geq 0 \right\}$

Kleene Star

$$L^{*} = \{\varepsilon\} \cup \\ \{w \in \Sigma^{*} : \exists k \ge 1 \\ (\exists w_{1}, w_{2}, \dots w_{k} \in L \ (w = w_{1} \ w_{2} \dots w_{k}))\}$$

 $L = \{ dog, cat, fish \}$

L* =

{ɛ, dog, cat, fish, dogdog, dogcat, fishcatfish, fishdogdogfishcat, ...}

The + Operator

$L^+ = L L^*$

$L^+ = L^* - \{\epsilon\}$ iff $\epsilon \notin L$

L⁺ is the closure of L under concatenation.

Language Syntax & Semantics

Meaning = Semantics

A semantic interpretation function assigns meanings to the strings of a language.

Reading Assignment

Chapter 2:

Sections 2.1 2.2

Appendix A: Sections A.2 A.6

In-Class Exercises

Chapter 2:

Problems as Language Recognition

Language Hierarchy: Computability & Complexity

A Framework for Analyzing Problems

- A single framework in which we can analyze a very diverse set of problems.
- The framework we will use is

Language Recognition

Decision Problems

A decision problem is simply a problem for which the answer is yes or no (True or False).

A decision procedure answers a decision problem.

- Must halt on all input.

Language Recognition Decision Problems

The language recognition problem:

Given a language L and a string w, is w in L? \sim

• The single framework into which any computational problem can be cast!

Two Ways to Describe a Problem

- As a problem
 - The problem view!
- As a language
 - The language view!

Casting Problems as Language Recognition Decision Problems

- Everything is a string.
- Problems that don't look like decision problems can be recast into new problems that do look like that.
- Define problems as languages to be decided!

Problem: Given a search string *w* and a web document *d*, do they match? In other words, should a search engine, on input *w*, consider returning *d*?

The language to be decided:

 $L = \{\langle w, d \rangle : d \text{ is a candidate match for the query } w \}$

Problem: Given an English question q and a web document d , does d contain the answer to q?

The language to be decided:

 $L = \{ \langle q, d \rangle : d \text{ contains the answer to } q. \}$

Problem: Given a program *p*, written in some some standard programming language, is *p* guaranteed to halt on all inputs?

The language to be decided:

$$HP_{ALL} = \{p : p \text{ halts on all inputs}\}$$

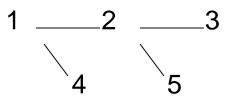
Problem: Given a nonnegative integer *n*, is it prime?

The language to be decided:

PRIMES = {*w* : *w* is the binary encoding of a prime number}.

Problem: Given an undirected graph *G*, is it connected?

Instance of the problem:



Encoding of the problem: Let *V* be a set of binary numbers, one for each vertex in *G*. Then we construct $\langle G \rangle$ as follows:

- Write | V| as a binary number,
- Write a list of edges,
- Separate all such binary numbers by "/".

101/1/10/10/11/1/100/10/101

The language to be decided:

CONNECTED = { $w \in \{0, 1, /\}^*$: w =

 $n_1/n_2/...n_i$, where each n_i is a binary string and *w* encodes a CS612 connected graph, as described above}.

Problem: Given two nonnegative integers, compute their product.

Encoding of the problem: Transform computing into verification.

The language to be decided:

L = {w of the form: $<integer_1>x<integer_2>=<integer_3>$, where: $<integer_n>$ is any well formed integer, and $integer_3 = integer_1 * integer_2$ } 12x9=108 12=1212x8=108

Problem: Given a list of integers, sort it.

Encoding of the problem: Transform the sorting problem into one of examining a pair of lists.

The language to be decided:

$$L = \{w_1 \ \# \ w_2: \exists n \ge 1 \\ (w_1 \text{ is of the form } < int_1, int_2, \dots int_n >, \\ w_2 \text{ is of the form } < int_1, int_2, \dots int_n >, \text{ and} \\ w_2 \text{ contains the same objects as } w_1 \text{ and} \\ w_2 \text{ is sorted}\}$$

$$1, 5, 3, 9, 6 \# 1, 3, 5, 6, 9 \in L$$

$$1, 5, 3, 9, 6 \# 1, 2, 3, 4, 5, 6, 7 \notin L$$

Problem: Given a database and a query, execute the query.

Encoding of the problem: Transform the query execution problem into evaluating a reply for correctness.

The language to be decided:

 $L = \{d \# q \# a :$

d is an encoding of a database, *q* is a string representing a query, and *a* is the correct result of applying *q* to *d*}

(name, age, phone), (John, 23, 567-1234) (Mary, 24, 234-9876) # (select name age=23) # (John) $\in L$

The Traditional Problems and their Language Formulations are Equivalent

By equivalent we mean that either problem can be *reduced to* the other.

If we have a machine to solve one, we can use it to build a machine to do the other.

The Reduction Method

The Reduction Method

A reduction is a way of converting one problem/language P to another problem/language P' in such a way that a solution to the second problem S' can be used to solve the first problem/language S.

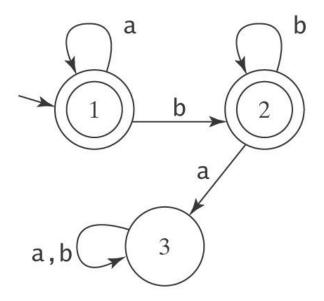
P ≤ *P*' means that *P* is **reducible** to *P*' *L* ≤ *L*' means that *L* is **reducible** to *L*'

 Note that reduction says nothing about solving P or P' alone, but only about the solvability of P in the presence of a solution to P'!

Computational Hierarchy of Languages

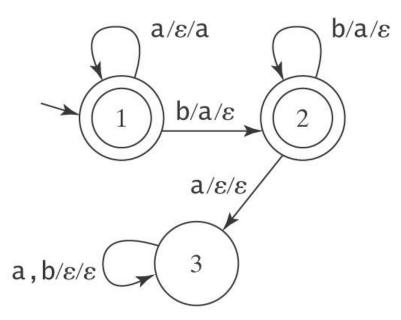
Regular Languages & Finite State Machines

An FSM to accept a*b*:



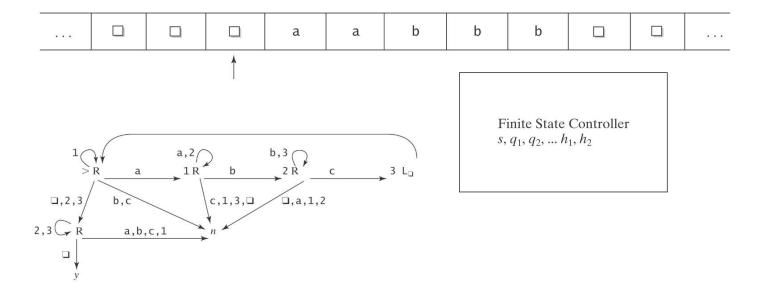
Context-Free Languages & Pushdown Automata

A PDA to accept $A^nB^n = \{a^nb^n : n \ge 0\}$



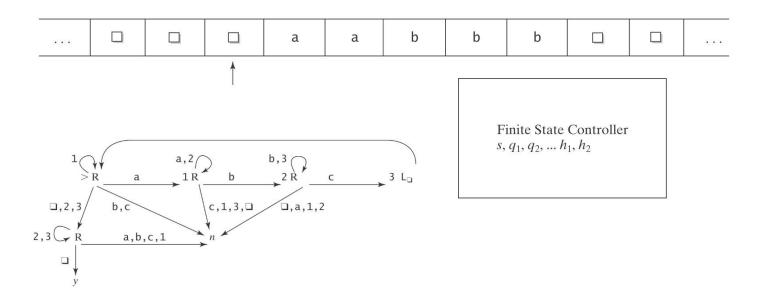
Context-Sensitive Languages & Linear Bounded Automata

An LBA to accept $A^nB^nC^n = \{a^nb^n c^n: n \ge 0\}$



Decidable & Semi-Decidable Languages & Turing Machines

A Turing Machine to accept $A^nB^nC^n = \{a^nb^n c^n: n \ge 0\}$



Computability Hierarchy

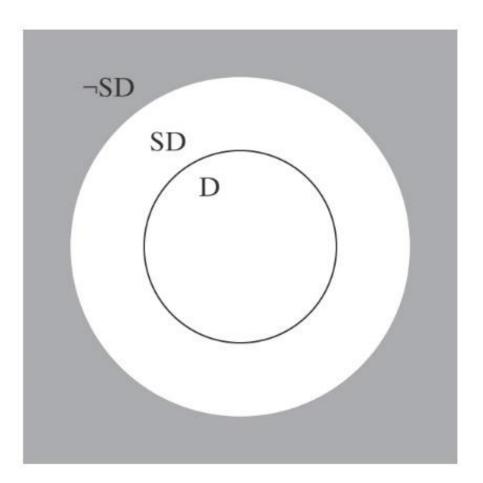
Decidable Languages D

- Solvable Languages
- Computable Languages
- Recursive Languages
- Turing Decidable Languages
- D Turing Undecidable Languages

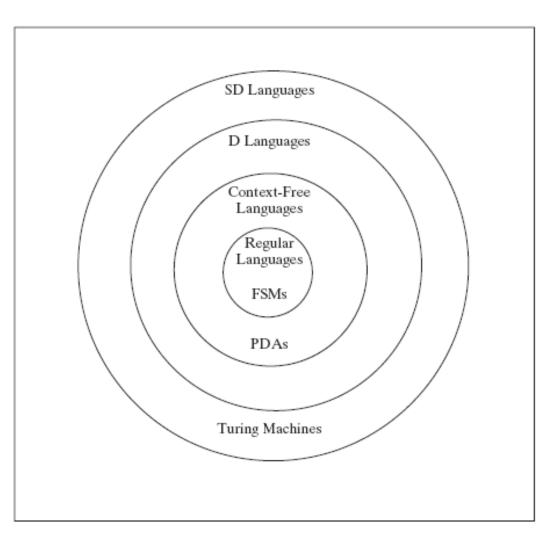
Semi-Decidable Languages SD

- Recursively Enumerable (R.E.) Languages
- Partially Decidable Languages
- Turing Recognizable Languages
- ¬ SD Turing Unrecognizable Languages

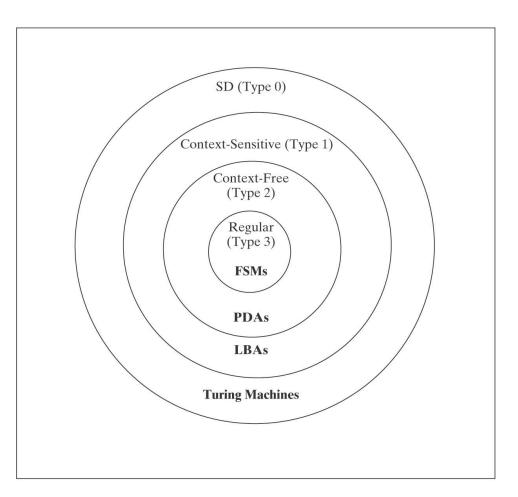
Computability Hierarchy

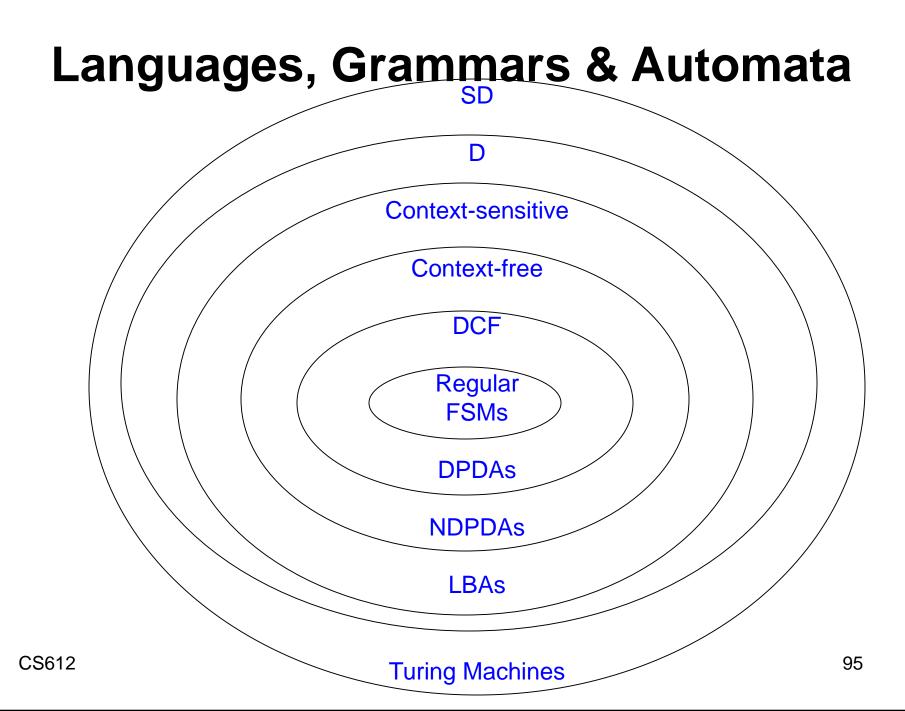


Languages, Grammars & Automata



Languages, Grammars & Automata





Complexity Hierarchy of Decidable Languages

Complexity Hierarchy of Decidable Languages

- The class of decidable languages
- The resources (time & space) required by the best decision procedures?

Tractability Hierarchy of Decidable Languages

- P
- NP
- PSPACE
- EXPTIME

$\mathsf{P} \subseteq \mathsf{NP} \subseteq \mathsf{PSPACE} \subseteq \mathsf{EXPTIME}$

Reading Assignment

Chapter 3:

Sections 3.1 3.2 3.3 3.4

In-Class Exercises

Chapter 3:

In-Class Exercises

Chapter 4:

12