
PART 0:
Theory of Computation

Alphabets, Strings & Formal Languages

Problems as Language Recognition

Language Hierarchy: Computability & Complexity

1CS612

Theory of Computation

2CS612

Theory of Computation

• Theory of what can be computed and

what cannot by real-world computers!

• Develop formal mathematical models

of computation that reflect real-world

computers.

3CS612

Young
Pencil

Young
Pencil

Young
Pencil

Young
Pencil

Theory of Computation

• Central areas:

– Formal Language Theory

– Automata Theory

– Computability Theory

– Complexity Theory

4CS612

Young
Pencil

Young
Pencil

Formal Language Theory

• Theory about formal languages.

• Formal languages?

– A set of strings over a given alphabet.

5CS612

Young
Pencil

Formal Languages

• Types of Formal languages:

– Regular languages

– Context-free languages

– Context-sensitive languages

– Recursive languages (Turing-decidable)

– Recursively enumerable languages (semi-

decidable/ Turing-recognizable)

6CS612

Young
Pencil

Young
Pencil

Grammars

• Formal languages are defined by

formal grammars as language

generators.

– A set of formation rules that describe

which strings formed from the alphabet of

a formal language are syntactically valid.

7CS612

Young
Pencil

Young
Pencil

Grammars

• Types of Grammars:

– Regular Grammars

– Context-Free Grammars

– Context-Sensitive Grammars

– Unrestricted Grammars

8CS612

Young
Pencil

Automata

• Formal language theory uses

separate formalisms, automata, to

describe their recognizers as

language recognizers.

– A typical abstract machine consists of a

definition in terms of input, output, and

the set of allowable operations used to

turn the former into the latter.

9CS612

Young
Pencil

Young
Pencil

Automata

• Types of Automata:

– FA (Finite Automata)

– PDA (Pushdown Automata)

– LBA (Linear Bounded Automata)

– TM (Turing Machines)

10CS612

Young
Pencil

Automata Theory

• Study of abstract machines and

problems they are able to solve.

– An abstract machine, also called an

abstract computer, is a theoretical model

of a computer hardware or software

system used in automata theory.

• Classify automata by the class of formal

languages automata are able to recognize.

11CS612

Young
Pencil

Young
Pencil

Languages, Grammars & Automata/Machines

Languages

Grammars

Automata

/Machines

Generates

Recognizes or Accepts

12CS612

Young
Pencil

Young
Pencil

Languages, Grammars & Automata

13CS612

Languages, Grammars & Automata

14CS612

Languages, Grammars & Automata
SD

D

Context-sensitive

Context-free

DCF

Regular

FSMs

DPDAs

NDPDAs

LBAs

Turing Machines
CS612 15

Computability Theory

• Computability?

– What are the fundamental

capabilities and limitations of

computers?

– Classify problems as solvable and

unsolvable.

– Unsolvability/Undecidability Theory

16CS612

Young
Pencil

Young
Pencil

Formal Models of Computation

• Both deal with formal models of

computation:

– Turing machines

– Recursive functions

– Lambda calculus

– Production systems

17CS612

Young
Pencil

• Decidable Languages D
• Solvable Languages

• Computable Languages

• Recursive Languages

• Turing Decidable Languages

•  D Turing Undecidable Languages

• Semi-Decidable Languages SD
• Recursively Enumerable (R.E.) Languages

• Partially Decidable Languages

• Turing Recognizable Languages

•  SD Turing Unrecognizable Languages

18CS612

Computability Hierarchy

Young
Pencil

Young
Pencil

Young
Pencil

Young
Pencil

Young
Pencil

Complexity Theory

• Complexity?

– What makes some problems

computationally hard and others

easy?

• Time Complexity

• Space Complexity

19CS612

Young
Pencil

Young
Pencil

Young
Pencil

Complexity Theory

• Complexity?

– Classify solvable problems

according to their degree of difficulty

as easy ones and hard ones.

– Intractability Theory

20CS612

Young
Pencil

Complexity Hierarchy

• P

• NP

• PSPACE

• EXPTIME

21CS612

Young
Pencil

Applications of Theory of

Computation

• Appendices G, H, I, J, K, L, M, N O, P

& Q

22CS612

Reading Assignment

Chapter 1:

Sections

1.1

1.2

23CS612

Alphabets,

Strings

&

Formal Languages

24CS612

Alphabets & Strings

An alphabet  is a finite set of symbols

or characters.

A string is a finite sequence, possibly

empty, of symbols drawn from some

alphabet .

 is the empty string.

25CS612

Young
Pencil

Example 2.1

Alphabet name Alphabet symbols Example strings

The English

alphabet

{a, b, c, …, z} , aabbcg, aaaaa

The binary

alphabet

{0, 1} , 0, 001100

A star alphabet { ,  ,  , , , } , , 

A music

alphabet {w, h, q, e, x, r, } , w l h h l hqq l

26CS612

Functions on Strings

Counting: |s| is the number of symbols in s.

|| = 0
|1001101| = 7

#c(s) is the number of times that c occurs in s.

#a(abbaaa) = 4.

27CS612

Functions on Strings

Concatenation: st is the concatenation of s and t.

If x = good and y = bye, then xy = goodbye.

|xy| = |x| + |y|.

x (x  =  x = x)

Concatenation is associative:

s, t, w ((st)w = s(tw))

28CS612

Functions on Strings

Replication: For each string w and each natural

number i, the string wi is:

w0 = 

wi+1 = wi w

a3 = aaa

(bye)2 = byebye

a0b3 = bbb

29CS612

Functions on Strings

Reverse: For each string w, wR is defined as:

if |w| = 0 then wR = w = 

if |w|  1 then:

a   (u  * (w = ua)).

So define wR = a u R.

30CS612

Relations on Strings

aaa is a substring of aaabbbaaa

aaaaaa is not a substring of aaabbbaaa

aaa is a proper substring of aaabbbaaa

• Every string is a substring of itself.

•  is a substring of every string.

31CS612

The Prefix Relations

s is a prefix of t iff: x  * (t = sx).

s is a proper prefix of t iff: s is a prefix of t and s  t.

The prefixes of abba are: , a, ab, abb, abba.

The proper prefixes of abba are: , a, ab, abb.

• Every string is a prefix of itself.

•  is a prefix of every string.

32CS612

The Suffix Relations

s is a suffix of t iff: x  * (t = xs).

s is a proper suffix of t iff: s is a suffix of t and s  t.

The suffixes of abba are: , a, ba, bba, abba.

The proper suffixes of abba are: , a, ba, bba.

• Every string is a suffix of itself.

•  is a suffix of every string.

33CS612

Formal Languages

A language is a (finite or infinite) set of

strings over a finite alphabet .

34CS612

Young
Pencil

Example 2.2

 = {a, b}

Some languages over ?

•  = The empty language

• {} = The language containing only 
• {a, b},

• {, a, aa, aaa, aaaa, aaaaa}

• The language * = The set of all possible

strings over an alphabet .

35CS612

Example 2.3

L = {x  {a, b}* : all a’s precede all b’s}

, a, aa, aabbb, and bb ?

aba, ba, and abc ?

36CS612

Example 2.4

L = {x : y  {a, b}* : x = ya}

a, aa, aaa, bbaa, ba ?

, bab, bca ?

English description?

strings that end in a

37CS612

Example 2.5

L = {x#y: x, y  {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}* and,

when x and y are viewed as the decimal

representations of natural numbers,

square(x) = y}.

3#9, 12#144 ?

3#8, 12, 12#12#12 ?

?

38CS612

Example 2.6 & 2.7

L = {} = 

L = {}

L = *

39CS612

Example 2.9

L = {w: w is a C program that halts on all inputs}.

40CS612

Example 2.10

L = {w  {a, b}*: no prefix of w contains b}

= { , a, aa, aaa, aaaa, … }

L = {w  {a, b}*: no prefix of w starts with b}

= {w  {a, b}*: the first char of w is a}  {}

L = {w  {a, b}*: every prefix of w starts with b}

= 

41CS612

Example 2.11

L = {an : n  0}

42CS612

Languages Are Sets

Defining Languages?

• Language Generator (Enumerator)

• Language Recognizer

43CS612

Young
Pencil

Young
Pencil

Enumeration

• Arbitrary order

• More useful: lexicographic order

− Shortest first

− Within a length, dictionary order

44CS612

Young
Pencil

Example 2.12

L = {x  {a, b}* : all a’s precede all b’s}

The lexicographic enumeration of L?

, a, b, aa, ab, bb, aaa, aab,

abb, bbb, aaaa, aaab, aabb,

abbb, bbbb, aaaaa, …

45CS612

Cardinality of Languages/Sets

• Finite
– S has a natural number of elements.

• Infinite
 Countably infinite

• S has the same number of elements as there are

integers.

 Uncountably infinite
• S has more elements than there are integers.

46CS612

Young
Pencil

Young
Pencil

Finite Sets

A set A is finite and has cardinality n  ℕ iff

either:

• A = , or

• there is a bijection from {1, 2, … n} to A,

for some n.

A set is infinite iff it is not finite.

CS612 47

The Cardinality of the Power Set

If S is a finite set, the cardinality of the power
set of S P(S) is 2|S|.

The power set of S is the set of all subsets of

S.

Example:

S = {1, 2, 3}

P(S) =

{, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

CS612 48

Countably Infinite Sets

A is countably infinite and also has cardinality

0 iff there exists some bijection f : ℕ A.

A set is countable iff it is either finite or

countably infinite.

To prove that a set A is countably infinite, it

suffices to find a bijection from ℕ to it.

CS612 49

Young
Pencil

Young
Pencil

Young
Pencil

Enumerations

An enumeration of a set A is simply a list of

the elements of A in some order.

Each element of A must occur in the

enumeration exactly once!

CS612 50

Young
Pencil

Enumerating Countably Infinite Sets

Theorem A.1 A set A is countably infinite iff

there exists an infinite enumeration of it.

Not all infinite sets are countably infinite!

CS612 51

Young
Pencil

Young
Pencil

The Cardinality of the Power Set

Theorem A.4 If S is a countably infinite set,
the power set of S P(S) is infinite, but not

countably infinite. P(S) is called uncountably

infinite!

Proof Idea:

Proof by Contradiction

The Diagonalization Method

CS612 52

Young
Pencil

Young
Pencil

The Diagonalization Method

Elem 1 of

S

Elem 2 of

S

Elem 3 of

S

Elem 4 of S Elem 5 of

S

…….

Elem 1 of
P(S)

1

(1)

…..

Elem 2 of
P(S)

1

(2)

…..

Elem 3 of
P(S)

1 1 (3) …..

Elem 4 of
P(S)

1 (4) …..

Elem 5 of
P(S)

1 1 (5) …..

… …..

A set that is not in the table:

(1) (2) (3) (4) (5) …..

CS612 53

How Large is a Language?

• The smallest language over any  is , with

cardinality 0.

• The largest is *. How big is it?

54CS612

Young
Pencil

How Large is a Language?

Theorem 2.2 If    then * is countably

infinite.

Proof Idea:
Proof by Construction

The elements of * can be lexicographically enumerated by the

following procedure:
– Enumerate all strings of length 0, then length 1, then length

2, and so forth.

– Within the strings of a given length, enumerate them in

dictionary order.

This enumeration is infinite since there is no longest string in *.

Since there exists an infinite enumeration of *, it is countably

infinite. 55CS612

How Large is a Language?

• So the smallest language has cardinality 0.

• The largest is countably infinite.

 So every language is either finite or

countably infinite.

56CS612

Young
Pencil

How Many Languages Are There?

Theorem 2.3 If    then the set of

languages over  is uncountably infinite.

Proof Idea:

The set of languages defined on  is P(*).

* is countably infinite.

If S is a countably infinite set, P(S) is uncountably infinite.

So P(*) is uncountably infinite.

57CS612

Young
Pencil

Functions on Languages

• Set operations
• Union

• Intersection

• Complement

• Language operations
• Concatenation

• Kleene star

58CS612

Example 2.13

 = {a, b}

L1 = {strings with an even number of a’s}

L2 = {strings with no b’s}

• L1  L2 =

• L1  L2 =

• L2 – L1 =

•  (L2 – L1) =
59CS612

Concatenation of Languages

If L1 and L2 are languages over :

L1L2 = {w  * : s  L1 (t  L2 (w = st))}

60CS612

Example 2.14

L1 = {cat, dog,mouse,bird}

L2 = {bone,food}

L1 L2 =

61CS612

Concatenation of Languages

{} is the identity for concatenation:

L{} = {}L = L

 is a zero for concatenation:

L  =  L = 

62CS612

Concatenation of Languages

L1 = {an: n  0}

L2 = {bn : n  0}

• L1 L2 = {anbm : n, m  0}

• L1L2  {anbn : n  0}

63CS612

Kleene Star

L* = {} 

{w  * : k  1

(w1, w2, … wk  L (w = w1 w2 … wk))}

64CS612

Example 2.15

L = {dog, cat, fish}

L* =
{, dog, cat, fish, dogdog,

dogcat, fishcatfish,

fishdogdogfishcat, …}

65CS612

The + Operator

L+ = L L*

L+ = L* - {} iff   L

L+ is the closure of L under concatenation.

66CS612

Language Syntax & Semantics

Meaning = Semantics

A semantic interpretation function assigns

meanings to the strings of a language.

67CS612

Young
Pencil

Reading Assignment

Chapter 2:

Sections

2.1

2.2

Appendix A:
Sections

A.2

A.6
68CS61

In-Class Exercises

Chapter 2:

1

2

3

4

69CS612

Problems as Language

Recognition

Language Hierarchy:

Computability & Complexity

70CS612

A Framework for Analyzing

Problems

• A single framework in which we can

analyze a very diverse set of problems.

• The framework we will use is

Language Recognition

71CS612

A decision problem is simply a problem for

which the answer is yes or no (True or False).

A decision procedure answers a decision

problem.
– Must halt on all input.

Decision Problems

72CS612

• The language recognition problem:

Given a language L and a string w, is w in L?

• The single framework into which any

computational problem can be cast!

Language Recognition Decision

Problems

73CS612

Young
Pencil

Young
Pencil

Young
Pencil

Two Ways to Describe a Problem

• As a problem

− The problem view!

• As a language

− The language view!

74CS612

Young
Pencil

Young
Pencil

Casting Problems as Language

Recognition Decision Problems

• Everything is a string.

• Problems that don’t look like decision

problems can be recast into new problems

that do look like that.

• Define problems as languages to be decided!

75CS612

Young
Pencil

Young
Pencil

Example 3.1

Problem: Given a search string w and a web

document d, do they match? In other words,

should a search engine, on input w, consider

returning d?

The language to be decided:

L = {<w, d> : d is a candidate match for the query w}

76CS612

Example 3.2

Problem: Given an English question q and a

web document d , does d contain the answer

to q?

The language to be decided:

L = {<q, d> : d contains the answer to q.}

77CS612

Example 3.3

Problem: Given a program p, written in some

some standard programming language, is p

guaranteed to halt on all inputs?

The language to be decided:

HPALL = {p : p halts on all inputs}

78CS612

Example 3.4

Problem: Given a nonnegative integer n, is it

prime?

The language to be decided:

PRIMES =

{w : w is the binary encoding of a prime number}.

79CS612

Problem: Given an undirected graph G, is it connected?

Instance of the problem:

1 2 3

4 5

Encoding of the problem: Let V be a set of binary numbers, one for

each vertex in G. Then we construct G as follows:

• Write |V| as a binary number,

• Write a list of edges,

• Separate all such binary numbers by “/”.

101/1/10/10/11/1/100/10/101

The language to be decided:

CONNECTED = {w  {0, 1, /}* : w =

n1/n2/…ni, where each ni is a binary string and w encodes a

connected graph, as described above}.

Example 3.6

80CS612

Problem: Given two nonnegative integers,

compute their product.

Encoding of the problem: Transform computing into

verification.

The language to be decided:

L = {w of the form:
<integer1>x<integer2>=<integer3>, where:

<integern> is any well formed integer, and

integer3 = integer1  integer2}

12x9=108

12=12

12x8=108

Example 3.8

81CS612

Problem: Given a list of integers, sort it.

Encoding of the problem: Transform the sorting

problem into one of examining a pair of lists.

The language to be decided:

L = {w1 # w2: n1

(w1 is of the form <int1, int2, … intn>,

w2 is of the form <int1, int2, … intn>, and

w2 contains the same objects as w1 and

w2 is sorted)}

1,5,3,9,6#1,3,5,6,9  L

1,5,3,9,6#1,2,3,4,5,6,7  L

Example 3.9

82CS612

Problem: Given a database and a query, execute the query.

Encoding of the problem: Transform the query execution problem

into evaluating a reply for correctness.

The language to be decided:

L = {d # q # a:

d is an encoding of a database,

q is a string representing a query, and

a is the correct result of applying q to d}

(name, age, phone), (John, 23, 567-1234)

(Mary, 24, 234-9876)#(select name age=23)#

(John)  L

Example 3.10

83CS612

By equivalent we mean that either problem can

be reduced to the other.

If we have a machine to solve one, we can use

it to build a machine to do the other.

The Reduction Method

The Traditional Problems and their

Language Formulations are Equivalent

84CS612

Young
Pencil

A reduction is a way of converting one

problem/language P to another

problem/language P in such a way that a

solution to the second problem S can be

used to solve the first problem/language S.

• P  P means that P is reducible to P

• L  L means that L is reducible to L

• Note that reduction says nothing about solving P or P

alone, but only about the solvability of P in the presence of

a solution to P!

The Reduction Method

85CS612

Young
Pencil

Young
Pencil

Computational Hierarchy of

Languages

86CS612

Regular Languages & Finite State

Machines

An FSM to accept a*b*:

87CS612

Young
Pencil

Context-Free Languages &

Pushdown Automata

A PDA to accept AnBn = {anbn : n  0}

88CS612

Young
Pencil

Context-Sensitive Languages &

Linear Bounded Automata

An LBA to accept AnBnCn= {anbn cn: n  0}

89CS612

Young
Pencil

Decidable & Semi-Decidable

Languages & Turing Machines

A Turing Machine to accept AnBnCn= {anbn cn:

n  0}

90CS612

Young
Pencil

Young
Pencil

• Decidable Languages D
• Solvable Languages

• Computable Languages

• Recursive Languages

• Turing Decidable Languages

•  D Turing Undecidable Languages

• Semi-Decidable Languages SD
• Recursively Enumerable (R.E.) Languages

• Partially Decidable Languages

• Turing Recognizable Languages

•  SD Turing Unrecognizable Languages

91CS612

Computability Hierarchy

Young
Pencil

92CS612

Computability Hierarchy

Languages, Grammars & Automata

93CS612

Languages, Grammars & Automata

94CS612

Languages, Grammars & Automata
SD

D

Context-sensitive

Context-free

DCF

Regular

FSMs

DPDAs

NDPDAs

LBAs

Turing MachinesCS612 95

Complexity Hierarchy of Decidable

Languages

96CS612

Complexity Hierarchy of Decidable

Languages

• The class of decidable languages

• The resources (time & space) required by
the best decision procedures?

97CS612

Young
Pencil

Tractability Hierarchy of Decidable

Languages

• P

• NP

• PSPACE

• EXPTIME

P  NP  PSPACE  EXPTIME

98CS612

Young
Pencil

Young
Pencil

Young
Pencil

Reading Assignment

Chapter 3:

Sections

3.1

3.2

3.3

3.4

99CS612

In-Class Exercises

Chapter 3:

1

2

3

4

100CS612

In-Class Exercises

Chapter 4:

1

2

101CS612

