PART 1:

Automata:

Finite State Machines (Finite Automata)

Formal Language:

Regular Languages Non-regular Languages

Grammar:

Regular Expressions Regular Grammars

Finite State Machines (Finite Automata)

Languages, Grammars & Automata

Languages, Grammars & Automata

CS612

Regular Languages Regular Generates Language **Regular Expression** Accepts **Finite State** Machine

FSM (Finite Automaton)

- A computational model as an idealized small computer with limited memory – finite and small amount of memory!
- The simplest model of computation!

Deterministic FSM (DFSM or DFA)

Definition of a Deterministic FSM

A **DFSM (DFA)** $M = (K, \Sigma, \delta, s, A)$ where:

K is a finite set of states

- Σ is an alphabet of symbols
- $s \in K$ is the initial (starting) state
- $A \subseteq K$ is the set of accepting states, and

δ is the transition function from $(K \times \Sigma)$ to K

Example: DFSM

 $K = \\ \Sigma = \\ s \in K = \\ A \subseteq K =$

δ = Transition Diagram!

Configurations of DFSMs

A configuration of a DFSM *M* is an element of: $K \times \Sigma^*$

It captures the two things that can make a difference to *M*'s future behavior:

- its current state
- the input that is still left to read.

The *initial configuration* of a DFSM M, on input w, is: (s_M, w)

The Yields Relations

The *yields-in-one-step* relation |-_M:

w = *a w*' for some symbol *a* ∈ Σ, and
δ (*q*, *a*) = *q*'

$-_{M}^{*}$ is the *reflexive, transitive closure* of $|-_{M}^{*}$.

Computations Using DFSMs

A computation by *M* is a finite sequence of configurations $C_0, C_1, ..., C_n$ for some $n \ge 0$ such that:

- C_0 is an initial configuration,
- C_n is of the form (q, ε) , for some state $q \in K$,

•
$$C_0 \mid -_M C_1 \mid -_M C_2 \mid -_M \dots \mid -_M C_n$$
.

Accepting and Rejecting

A DFSM *M* accepts a string *w* iff:

 $(s, w) \mid -_{M}^{*} (q, \varepsilon)$, for some $q \in A$.

A DFSM *M* rejects a string *w* iff:

 $(s, w) \mid M^*(q, \varepsilon)$, for some $q \notin A$.

The *language accepted by* DFSM *M*, denoted *L(M)*, is the set of all strings <u>accepted</u> by *M*.

Examples and Designing DFSMs

$L = \{w \in \{a, b\}^* : every a is immediately followed by a b\}.$

DFSM?

$L = \{w \in \{a, b\}^* : every a region in w is of even length\}$

DFSM?

L = { $w \in \{0, 1\}^*$: w has odd parity - odd # of 1's}. DFSM?

L = { $w \in \{a, b\}^*$: w contains no more than one b}. DFSM?

L = { $w \in \{a, b\}^*$: no two consecutive characters are the same}.

 $L = FLOAT = \{w: w \text{ is the string representation}$ of a floating point number $\}$.

+3.0, 3.0, 0.3E1, 0.3E+1, -0.3E+1, -3E8

DFSM?

 $L = \{w \in \{a, b\}^* : w \text{ contains an even number of } a's and an odd number of b's\}$

 $L = \{w \in \{a - z\}^* : all five vowels, a, e, i, o, and u, occur in w in alphabetical order\}.$

DFSM?

 $L = \{w \in \{a, b\}^* : w \text{ does } \underline{not} \text{ contain the substring } aab\}.$

DFSM?

DFSM for ¬L:

$$\Sigma = \{a, b, c, d\}.$$

 $L_{\text{Missing}} = \{ w : \text{there is a symbol } a_i \in \Sigma \text{ not} \\ \text{appearing in } w \}.$

DFSM?

More Examples

$\mathsf{L}=\{\}=\varnothing$

DFSM?

$\mathsf{L}=\{\epsilon\}$

DFSM?

Theorem 5.1 Every DFSM *M*, on <u>any input</u> *s* of finite length, <u>halts</u> in |*s*| steps.

Regular Languages

A language is *regular* iff it is accepted by some DFSM.

RL = DFSM

Nondeterministic FSM (NDFSM or NDFA or NFA)

Determinism and Nondeterminism

- Deterministic computation on a deterministic machine
- Nonderetministic computation on a nondeterministic machines

Determinism of DFSM

- δ is the transition function from $(K \times \Sigma)$ to K
- Only one unique next state!
- No choices!
- No randomness!

Sources of Nondeterminism

Multiple edgesEpsilon edges

Nondeterminism of NDFSM

- δ is the transition relation from $(K \times \Sigma)$ to K
- The next state is chosen at random!
- All next states are chosen in parallel and pursued simultaneously!

Definition of an NDFSM

A NDFSM (NDFA) $M = (K, \Sigma, \Delta, s, A)$ where: K is a finite set of states

 Σ is an alphabet

- $s \in K$ is the initial state
- $A \subseteq K$ is the set of accepting states, and
- Δ is the transition relation. It is a finite subset of $(K \times (\Sigma \cup \{\epsilon\})) \times K$

Example: NDFSM

 $K = \\ \Sigma = \\ s \in K = \\ A \subseteq K = \\ \Delta =$

Accepting by an NDFSM

- Maccepts a string w iff <u>at least one</u> of its computations accepts, i.e., there exists some path along which w drives M to some element of A.
- *M* rejects a string *w* iff <u>none</u> of its computations accepts.

The language accepted by NDFSM *M*, denoted *L(M)*, is the set of all strings <u>accepted</u> by *M*.

Analyzing Nondeterministic FSMs

Two approaches:

✓ Explore a search tree:

✓ Follow all paths in parallel!

L = { $w \in \{a, b\}^*$: w is made up of an optional a followed by aa followed by zero or more b's}.

NDFSM?

L = { $w \in \{a, b\}^*$: $w = aba \underline{or} |w|$ is even}. NDFSM?

$$\Sigma = \{a, b, c, d\}.$$

 $L_{\text{Missing}} = \{ w : \text{there is a symbol } a_i \in \Sigma \text{ not} \\ appearing in w \}$

 $L = \{ w \in \{a, b, c\}^* : \exists x, y \in \{a, b, c\}^* (w = x abcabb y) \}.$

NDFSM?

 $L = \{ w \in \{a, b, c\}^* : \exists x, y \in \{a, b, c\}^* (w = x abcabb y) \}.$

DFSM?

 $L = \{ w \in \{a, b\}^* : \exists x, y \in \{a, b\}^* ((w = x \text{ abbaa } y) \\ \lor (w = x \text{ baba } y)) \}.$

NDFSM?

$L = \{w \in \{a, b\}^* : the fourth to the last character is a\}$

NDFSM?

Analyzing Nondeterministic FSMs

Does this NDFSM accept baaba ?

Handling ε-Transitions via ε-Closure

ε -closure:

- eps(q) = The set of states that are reachable from q by following 0 or more ε– transitions.
- $eps(q) = \{ p \in K : (q, w) \mid -*_M (p, w) \}$
- eps(q) is the closure of {q} under the relation {(p, r) : there is a transition (p, ε, r) ∈ Δ}.

An Algorithm to Compute eps(q)

```
eps(q: state) =
```

```
result = \{q\};
```

while

there exists some $p \in result$ and some $r \notin result$ and some transition $(p, \varepsilon, r) \in \Delta$

do

Insert *r* into *result;* return *result;*

NDFSM:

$$eps(q_0) =$$

 $eps(q_1) =$
 $eps(q_2) =$
 $eps(q_3) =$

Equivalence of NDFSMs and DFSMs

NDFSM = DFSM

RL = DFSM = NDFSM

Equivalence of NDFSMs and DFSMs

Theorem 5.2 If there is a DFSM for L, there is an NDFSM for L.

Equivalence of NDFSMs and DFSMs

Theorem 5.3 If there is an NDFSM for L, there is a DFSM for L.

Proof Idea: Proof by Construction

The Subset Construction

Given a NDFSM $M = (K, \Sigma, \Delta, s, A)$, we construct DFSM $M = (K', \Sigma, \delta', s', A')$, where

$$K' = \mathscr{G}(K)$$

$$s' = eps(s)$$

$$A' = \{Q \subseteq K' : Q \cap A \neq \emptyset\}$$

 $\delta'(Q, a) = \bigcup \{eps(p): p \in K \text{ and } (q, a, p) \in \Delta \text{ for some } q \in Q\}$

An Algorithm for Constructing the DFSM from NDFSM

1. Compute the eps(q)'s.

- 2. Compute s' = eps(s).
- 3. Compute δ' .
- 4. Compute K' = a subset of $\mathcal{P}(K)$.
- 5. Compute $A' = \{Q \in K' : Q \cap A \neq \emptyset\}$.

The Algorithm ndfsmtodfsm

ndfsmtodfsm(M: NDFSM) =

```
1. For each state q in K_M do:
         1.1 Compute eps(q).
2. s' = eps(s)
3. Compute \delta':
         3.1 active-states = \{s\}.
         3.2 \delta' = \emptyset.
         3.3 While there exists some element Q of active-states for
             which \delta' has not yet been computed do:
                        For each character c in \Sigma_M do:
                                 new-state = \emptyset.
                                 For each state q in Q do:
                                     For each state p such that (q, c, p) \in \Delta do:
                                 new-state = new-state \cup eps(p).
                                 Add the transition (Q, c, new-state) to \delta'.
                                 If new-state ∉ active-states then insert it.
4. K' = active-states.
5. A' = \{Q \in K : Q \cap A \neq \emptyset\}.
```

NDFSM:

DFSM?

 q_8

- 1. Compute the eps(q)'s.
- 2. Compute s' = eps(s).
- **3.** Compute δ' .
- 4. Compute K' = a subset of $\mathcal{P}(K)$.
- 5. Compute $A' = \{Q \in K' : Q \cap A \neq \emptyset\}$.

DFSM:

State Minimization

Step (1): Get rid of unreachable states.

State 3 is unreachable.

Step (2): Get rid of redundant states.

States 2 and 3 are redundant.

Minimizing DFSM

A DFSM M is *minimal* iff there is no other DFSM M' st L(M) = L(M') and M' as fewer states than M does.

- Given any regular language *L*, there exists a *minimal* DFSM *M* that accepts *L*.
- *M* is unique up to the naming of its states.
- Given any DFSM *M*, there exists an algorithm *minDFSM* that constructs a minimal DFSM that also accepts *L*(*M*).

Reading Assignment

Chapter 5:

Sections 5.1 5.2 5.3 5.4

In-Class Exercises

Chapter 5:

2- f & g 3 4 5 6 - b 7 9 - a