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PART 1.

Automata:

Finite State Machines (Finite Automata)

Formal Language:

Regular Languages
Non-regular Languages

Grammar:

Regular Expressions
Regular Grammars
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Languages, Grammars & Automata

SD (Type 0)
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Languages, Gra nmars & Automata
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Regular Languages

Generates

Regular Expression
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FSM (Finite Automaton)

* A computational model as an idealized
small computer with limited memory
— finite and small amount of memory!

* The simplest model of computation!
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Deterministic FSM (DFSM or DFA)
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Definition of a Deterministic FSM

A DFSM (DFA) M = (K, =, 8, s, A) where:
K Is a finite set of states
> Is an alphabet of symbols
s € K is the initial (starting) state
A c K is the set of accepting states, and

o Is the transition function from (K x %) to K
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Example: DFSM

o = Transition Diagram!

b b
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Configurations of DFSMs

A confiauration of a DFSM M Is an element of:
K x X*

It captures the two things that can make a
difference to M’s future behavior:

* Its current state
* the input that is still left to read.

The initial configuration of a DFSM M, on input w,
IS: (S, W)
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The Yields Relations
The yields-in-one-step relation |-\,
(@, W) |-v (@, W) Iff

W =a w' for some symbol a € £, and
*5(0,a)=¢

|-u * is the reflexive, transitive closure of |-,.
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Computations Using DFSMs

A computation by M is a finite sequence of
contigurations C,, C,, ..., C, forsomen >0
such that:

« C, Is an initial configuration,

 C,, Is of the form (q, €), for some state q € K,

*Colm Cilm Col-m e I-m G
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Accepting and Rejecting

A DFSM M accepts a string w Iff:
(s, w) |-y * (g, €), for some q € A.
A DFSM M rejects a string w |ff:

(s, w) |-y* (g, €), for some q ¢ A.

The language accepted by DFSM M, denoted
L(M), Is the set of all strings accepted by M.
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Examples and Designing DFSMs
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Example 5.2

L={w e {a, b}*:
followed by a b}.

DFSM?

every a Is immediately

b

b
~
a
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Example 5.3

L ={w e {a, b}* : every a region in w Is of even
length}

DFSM?

b a
By
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Example 5.4

L={w e {0, 1}* : w has odd parity - odd # of 1's}.
DFSM?

1

0
i
qo 1 0
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Example 5.5

L ={w € {a, b}* : w contains no more than one b}.

DFSM?
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Example 5.6

L ={w e {a, b}* : no two consecutive characters
are the same}.

DFSM?
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Example 5.7

L = FLOAT = {w: w Is the string representation
of a floating point number}.

+3.0,3.0,0.3E1, 0.3E+1, -0.3E+1, -3ES

DFSM?

CS612
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Example 5.9

L ={w e {a, b}* : w contains an even number
of a’s and an odd number of b’s}

DFSM?
a -
even a’s > ( odd a’s
even b’s 4 even b’s
a
b
b
a -
even a’s "/ odd a’s
odd b’s odd b’s
h a
CS612
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Example 5.10

L ={w e {a - z}*: all five vowels, a, ¢, i, o,
and u, occur in w in alphabetical order}.

DFSM?

2 -{a} 2~4e} =47} 2 -{o} 3 -{a} P
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Example 5.11

L ={w € {a, b}* : w does not contain the
substring aab}.

DFSM?

DFSM for —L:
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Example 5.12

> ={a, b, c, d}L
Lyissing = {W : there is a symbol a; € X not
appearing in wj}.

DFSM?
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More Examples

L={} =&
DFSM?

L= {c}

DFSM?

CS612
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DFSMs Halt

Theorem 5.1 Every DFSM M, on any input s
of finite length, halts in |s| steps.
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Regular Languages

A language Is regular Iff it is accepted
by some DFSM.

RL = DFSM
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Nondeterministic FSM
(NDFSM or NDFA or NFA)
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Determinism and Nondeterminism

» Deterministic computation on a
deterministic machine

« Nonderetministic computation on a
nondeterminisuc machines
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Determinism of DFSM

CS612

IS the transition function from (K x %) to K

Only one unique next state!
No choices!
No randomness!
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Sources of Nondeterminism

* Multiple edges
* Epsilon edges
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Nondeterminism of NDFSM

O Is the transition relation from (K x £) to K
« The next state iIs chosen at random!

* All next states are chosen in parallel and
pursued simultaneously!

CS612 33




Definition of an NDFSM

ANDFSM (NDFA) M = (K, X, A, s, A) where:
K IS a Tinite set of states

> Is an alphabet
s € K is the initial state
A c K is the set of accepting states, and

A IS the transition relation. ltis a finite subset of
(Kx (Zu{e}) xK
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Example: NDFSM

> > 0 M X
~ A
Tl

njn m
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Accepting by an NDFSM

M accepts a string w Iff at least one of its
computations accepts, I.e., there exists
some path along which w drives M to some
element of A.

* Mrejects a string w Iff none of its
computations accepts.

The language accepted by NDFSM M,
denoted L(M), Is the set of all strings accepted
by M.
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Analyzing Nondeterministic FSMs

Two approaches:

v Explore a search tree:

s, abab

/\\

q;,abab q,bab g, bab

/\

q1, ab 0, ab

v Follow all paths in parallel!
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Example 5.13

L ={w e {a, b}* : wis made up of an optional
a followed by aa followed by zero or more
b’s}.

NDFSM?

.
E
O=Q0FIQFI 0
d
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Example 5.14

L={w e {a, b}* : w= aba or |w| Is even}.

NDFSM?

CS612
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Example 5.15

> ={a, b, c, d}L
Lyissing = {W : there is a symbol a; € X not
appearing in w}

NDFSM?
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Example 5.16

L={we{a,b,c}r:3IX,yei{a, b, c} (W=Xx
abcabb y)}.

NDFSM?
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Example 5.16

L={we{a, b, c}:3IX,y e{a, b, c}* (W=x
abcabb y)}.

DFSM?
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Example 5.17

L={w e {a, b}*:3x,y € {a, b}* (W =X abbaa y)
v (W= X baba y))}

NDFSM?
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Example 5.18

L ={w e {a, b}* : the fourth to the last character
IS a}

NDFSM?
a,b
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Analyzing Nondeterministic FSMs

Does this NDFSM accept baaba ?
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Handling e-Transitions via e-Closure

e -closure:

 eps(g) = The set of states that are
reachable from ¢ by following O or more e—
transitions.

* eps(q)={peK:(qw)|[*y (P W)}

« eps(q) Is the closure of {g} under the
relation {(p, r) : there is a transition (p, ¢, )
e A}.
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An Algorithm to Compute eps(q)

eps(q: state) =

result = {q};
while
there exists some p e result and
some r ¢ result and some transition (p, g, 1) € A
do
Insert r into result;
return result;

CS612

a7




Example 5.19

NDFSM:

eps(do) =
eps(dy) =
eps(d,) =
eps(ds) =

CS612
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Equivalence of NDFSMs and
DFSMSs

NDFSM = DFSM

RL = DFSM = NDFSM

CCCCC
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Equivalence of NDFSMs and
DFSMSs

Theorem 5.2 If there is a DFSM for L, there is
an NDFSM for L.
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Equivalence of NDFSMs and
DFSMSs

Theorem 5.3 If there is an NDFSM for L,
there iIs a DFSM for L.

Proof Idea: Proof by Construction

The Subset Construction

Givena NDFSM M = (K, Z, A, s, A), we construct DFSM M' = (K', %, &', s', A'),
where

K' = 9(K)

s' = eps(s)

A={QcK: QnA=J}

§'(Q, a) = U{eps(p): p € Kand (g, a, p) € A for some g € Q}
CS612
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An Algorithm for Constructing the
DFSM from NDFSM

1. Compute the eps(q)’s.
2. Compute s' = eps(s).
3. Compute o,

4. Compute K' = a subset of P(K).

5.Compute A'={Q e K': QnA=J}
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The Algorithm ndfsmtodfsm

ndfsmtodfsm(M: NDFSM) =

1. For each state g in K,, do:
1.1 Compute eps(q).

2.s' = eps(s)

3. Compute d"
3.1 active-states = {s'}.
3.26 =0.

3.3 While there exists some element Q of active-states for
which &' has not yet been computed do:
For each character c in %, do:
new-state = .
For each state g in Q do:

For each state p such that (g, ¢, p) € A do:

new-state = new-state U eps(p).
Add the transition (Q, ¢, new-state) to ¢'.
If new-state ¢ active-states then insert it.
4. K' = active-states.
5A={QeK:QnAxJ}.
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Example 5.20

NDFSM:

54




Example 5.20

NDFSM:

1. Compute the eps(q)’s.

2. Compute s' = eps(s).

3. Compute &,

4. Compute K' = a subset of P(K).

5.Compute A'={Q e K': QA= I}
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55



Young
Pencil


Example 5.20

DFSM:
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State Minimization

Step (1): Get rid of unreachable states.
\ d @
©

State 3 is unreachable.

Step (2): Get rid of redundant states.

States 2 and 3 are redundant.
CS612
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Minimizing DFSM

A DFSM M is minimal iff there i1s no other DFSM M’ st
L(M) = L(M’) and M’ as fewer states than M does.

CS612

Given any regular language L, there exists a
minimal DFSM M that accepts L.

M Is unigue up to the naming of its states.
Given any DFSM M, there exists an algorithm

MINDFSM that constructs a minimal DFSM that also
accepts L(M).
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Reading Assignment

Chapter 5:

Sections
5.1
5.2
5.3
5.4
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In-Class Exercises

Chapter 5:
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