# **PART 1:**

#### **Automata:**

**Finite State Machines (Finite Automata)** 

#### **Formal Language:**

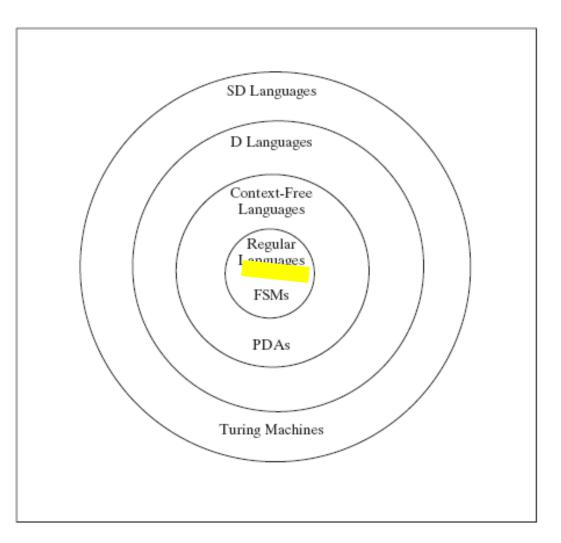
Regular Languages Non-regular Languages

#### **Grammar:**

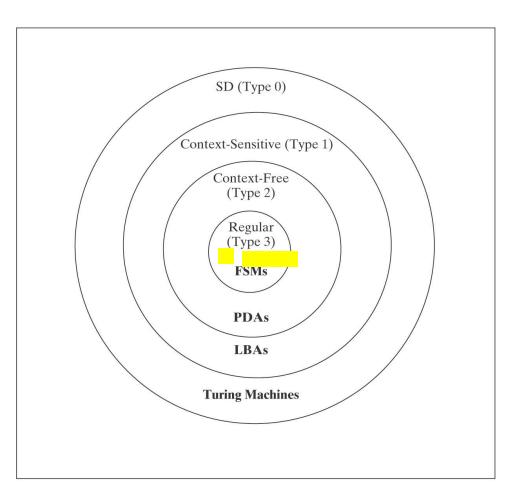
Regular Expressions Regular Grammars

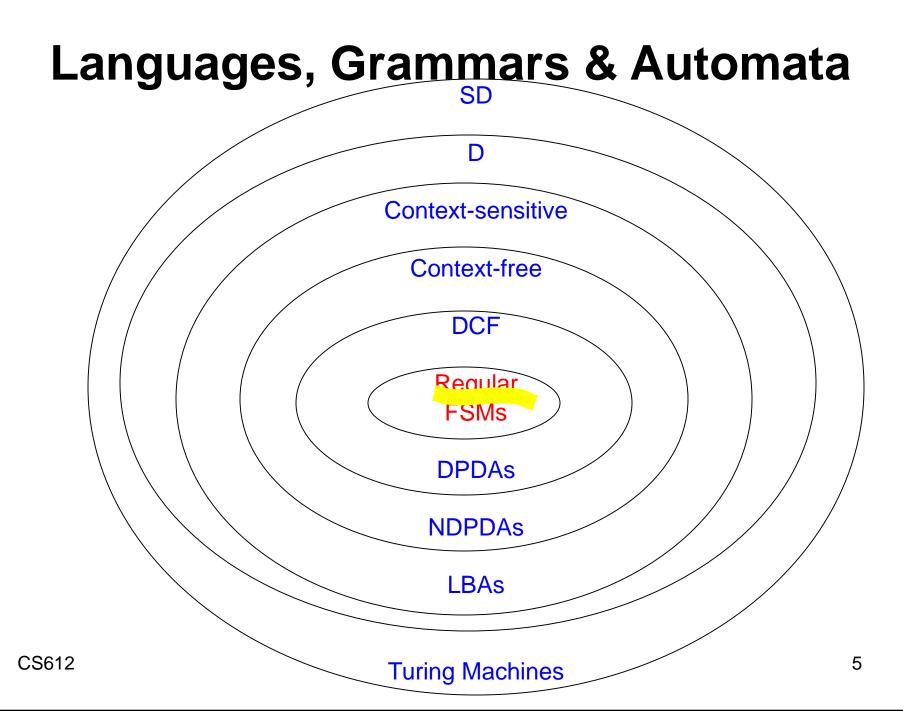
# Regular Expressions

#### Languages, Grammars & Automata

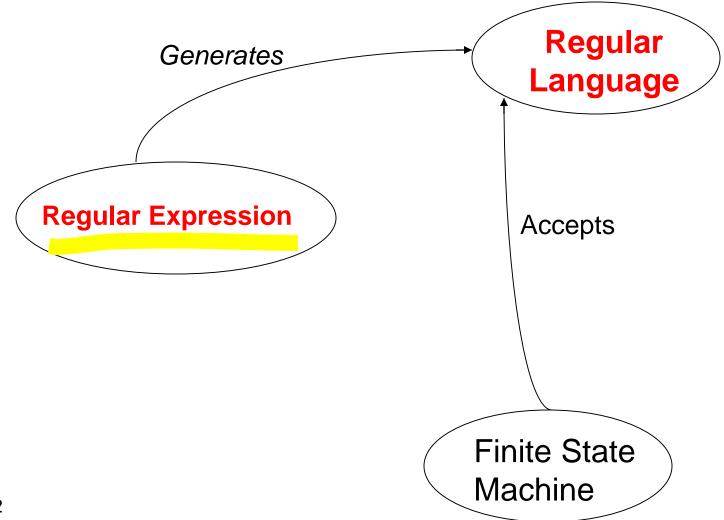


#### Languages, Grammars & Automata





## **Regular Languages**



## Expressions

- Arithmetic Expressions?
- Regular expressions?

## **Regular Expressions**

 An algebraic expression notation to describe regular languages!

## **Definition of Regular Expressions**

The regular expressions over an alphabet  $\Sigma$  are all and only the strings that can be obtained as follows:

- **1.**  $\oslash$  is a regular expression.
- 2.  $\varepsilon$  is a regular expression.
- 3. Every element of  $\Sigma$  is a regular expression.

## **Definition of Regular Expressions**

- 4. If  $\alpha$ ,  $\beta$  are regular expressions, then so is  $\alpha\beta$ .
- 5. If  $\alpha$ ,  $\beta$  are regular expressions, then so is  $\alpha \cup \beta$ .
- 6. If  $\alpha$  is a regular expression, then so is  $\alpha^*$ .
- 7.  $\alpha$  is a regular expression, then so is  $\alpha^+$ .
- 8. If  $\alpha$  is a regular expression, then so is ( $\alpha$ ).

#### The Role of the Rules

- Rules 1, 3, 4, 5, and 6 give the language its power to define sets.
- Rule 8 has as its only role grouping other operators.
- Rules 2 and 7 appear to add functionality to the regular expression language, but they don't.

$$\checkmark \varepsilon = \emptyset^*$$
$$\checkmark \alpha^+ = \alpha \alpha^*$$

#### **Example: RE**

# If $\Sigma = \{a, b\}$ , the following are regular expressions:

 $\emptyset$   $\varepsilon$  a  $(a \cup b)^*$   $abba \cup \varepsilon$  $\emptyset^*$ 

#### **Regular Expressions Define Languages**

Define *L*, a semantic interpretation function for regular expressions:

1. 
$$L(\emptyset) = \emptyset$$

2. 
$$L(\varepsilon) = \{\varepsilon\}$$

3. *L*(*c*), where  $c \in \Sigma = \{c\}$ 

#### **Regular Expressions Define Languages**

4. 
$$L(\alpha\beta) = L(\alpha) L(\beta)$$

5. 
$$L(\alpha \cup \beta) = L(\alpha) \cup L(\beta)$$

6. 
$$L(\alpha^*) = (L(\alpha))^*$$

7. 
$$L(\alpha^+) = L(\alpha\alpha^*) = L(\alpha) (L(\alpha))^*$$

8.  $L((\alpha)) = L(\alpha)$ 

#### **Examples: Regular Expressions**

$$\Sigma = \{a, b\}:$$

$$L(\emptyset) = \{\}$$

$$L(\varepsilon) = \{\varepsilon\}$$

$$L(a) = \{a\}$$

$$L((a \cup b)^*) =$$

$$L(abba \cup \varepsilon) = \{abba, \varepsilon\}$$

$$L(\emptyset^*) = \{\varepsilon\}$$

$$L((a \cup b)^*b) = L((a \cup b)^*) L(b)$$
  
=  $(L((a \cup b)))^* L(b)$   
=  $(L(a) \cup L(b))^* L(b)$   
=  $(\{a\} \cup \{b\})^* \{b\}$   
=  $\{a, b\}^* \{b\}.$ 

L= ?

The set of all strings that end in b.

## Example 6.2 L( (( $a \cup b$ ) ( $a \cup b$ )) a ( $a \cup b$ ) \*) = = {a, b} {a, b} {a}{a, b}\*

#### L= ?

{xay: x and y are strings of a's and b's and |x|=2}

The set of all strings st there exists a third character a.

#### $L = \{w \in \{a, b\}^* : |w| \text{ is even}\}$

RE?

 $((a \cup b) (a \cup b))^*$  $(a \cup ab \cup ba \cup bb)^*$ 

# $L = \{w \in \{a, b\}^*: w \text{ contains an odd number of } a's\}$

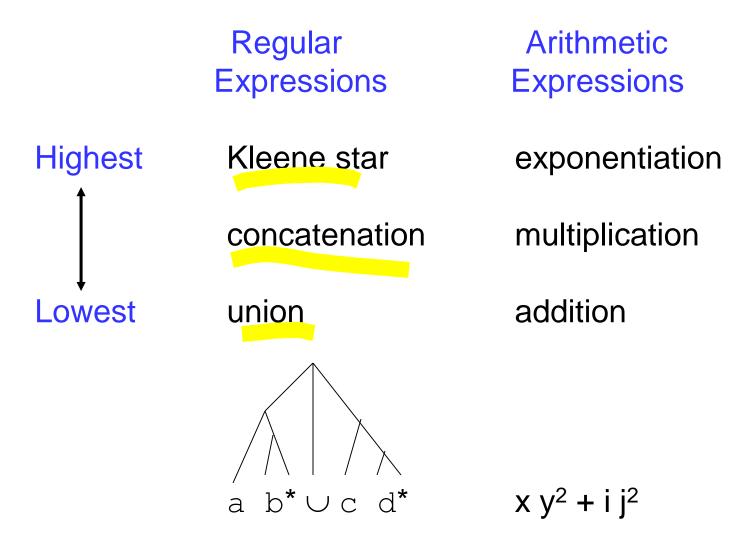
RE?

b\* (ab\*ab\*)\* a b\* b\* a b\* (ab\*ab\*)\*

## More Examples: RE

 $(\alpha \cup \varepsilon)$ (a \cup b)\* (a\*\cup b\*)? (a \cup b)\* (ab)\*? a\*b\*

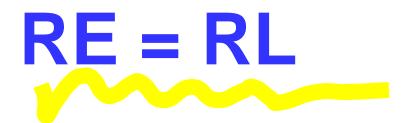
#### **Operator Precedence in RE**



## **Equivalence of RE and FSM**

Finite state machines (FSM) and regular expressions (RE) define the same class of languages!

# RE = FSM (DFA & NFA)



## **Building an FSM from a RE**

For every RE, there is an Equivalent FSM.

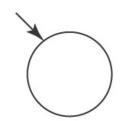
**Theorem 6.1** Any language that can be defined with a regular expression can be accepted by some FSM and so is regular.

**Proof Idea:** Proof by Construction

## For Every Regular Expression There is a Corresponding FSM

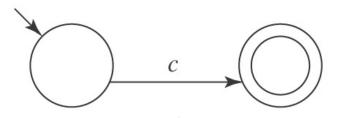
We'll show this by construction. An FSM for:

Ø:



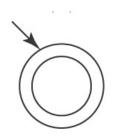
## For Every Regular Expression There is a Corresponding FSM

A single element of  $\Sigma$ :



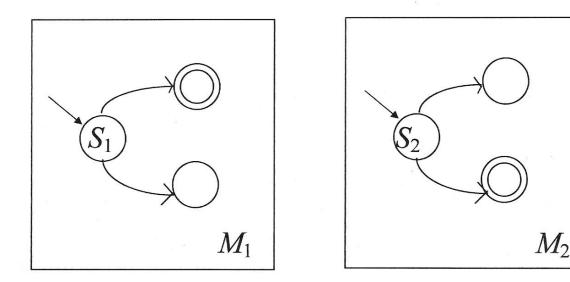
## For Every Regular Expression There is a Corresponding FSM

ε **(=**∅\*):



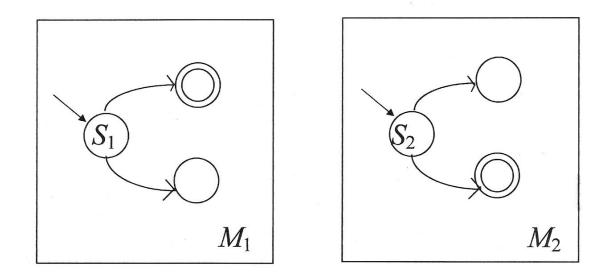
## Union

If  $\alpha$  is the regular expression  $\beta \cup \gamma$  and if both  $L(\beta)$  and  $L(\gamma)$  are regular:



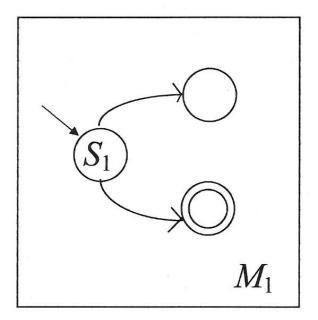
#### Concatenation

If  $\alpha$  is the regular expression  $\beta\gamma$  and if both  $L(\beta)$  and  $L(\gamma)$  are regular:



#### **Kleene Star**

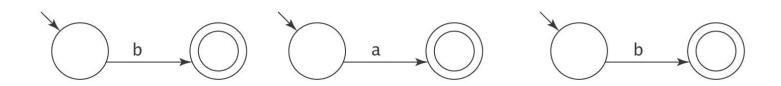
If  $\alpha$  is the regular expression  $\beta^*$  and if  $L(\beta)$  is regular:



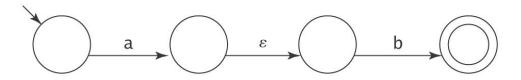
#### RE: (b $\cup$ ab)\*

#### FSM?

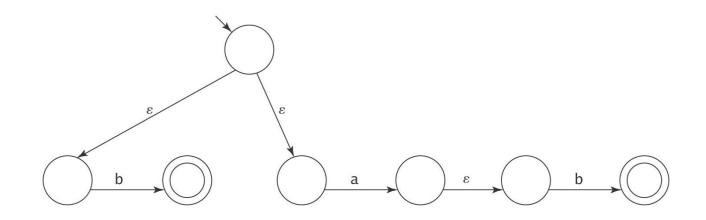
An FSM for b An FSM for a An FSM for b



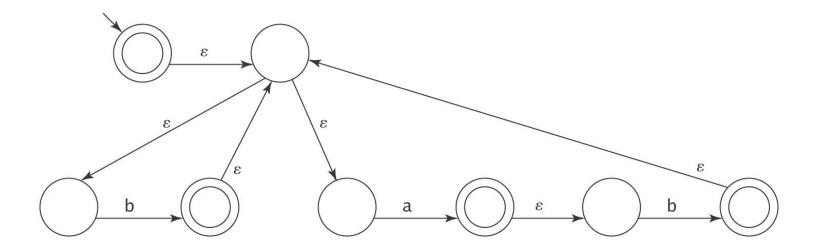
#### An FSM for ab:



An FSM for ( $b \cup ab$ ):



An FSM for ( $b \cup ab$ )\*:



## **Building a RE from an FSM**

For every FSM, there is an equivalent RE.

**Theorem 6.2** Every regular language (i.e., every language that can be accepted by some DFSM) can be defined with a regular expression.

# Equivalence of Regular Languages and Regular Expressions

**Kleene Theorem** 

**Theorem 6.3** The class of languages that can be defined with regular expressions is exactly the class of regular languages.



#### **Examples and Designing REs**

 $L = \{ w \in \{a, b\}^*: \text{ there is no more than one b} \}.$ 

#### RE?

a\*(b∪ ε)a\*

 $L = \{ w \in \{a, b\}^*: no two consecutive letters are the same \}.$ 

RE? (b $\cup \varepsilon$ )(ab)\*(a $\cup \varepsilon$ ) (a $\cup \varepsilon$ )(ba)\*(b $\cup \varepsilon$ )

# L = FLOAT = {*w*: w is the string representation of a floating point number}.

L = Decimal numbers

L = Legal passwords

L = IP addresses

## Simplifying Regular Expressions

- Union is commutative:  $\alpha \cup \beta = \beta \cup \alpha$
- Union is associative:  $(\alpha \cup \beta) \cup \gamma = \alpha \cup (\beta \cup \gamma)$
- $\varnothing$  is the identity for union:  $\alpha \cup \varnothing = \varnothing \cup \alpha = \alpha$
- Union is idempotent:  $\alpha \cup \alpha = \alpha$

## Simplifying Regular Expressions

- Concatenation is associative:  $(\alpha\beta)\gamma = \alpha(\beta\gamma)$
- $\epsilon$  is the identity for concatenation:  $\alpha \epsilon = \epsilon \alpha = \alpha$
- $\varnothing$  is a zero for concatenation:  $\alpha \varnothing = \varnothing \alpha = \varnothing$
- $(\alpha \cup \beta) \gamma = (\alpha \gamma) \cup (\beta \gamma)$
- $\gamma (\alpha \cup \beta) = (\gamma \alpha) \cup (\gamma \beta)$

## **Simplifying Regular Expressions**

- $\emptyset^* = \varepsilon$
- $\epsilon^* = \epsilon$
- $(\alpha^*)^* = \alpha^*$
- $\alpha^* \alpha^* = \alpha^*$
- $(\alpha \cup \beta)^* = (\alpha^* \beta^*)^*$

Simplifying a RE

# **Reading Assignment**

**Chapter 6:** 

Sections 6.1 6.2 6.3 6.4

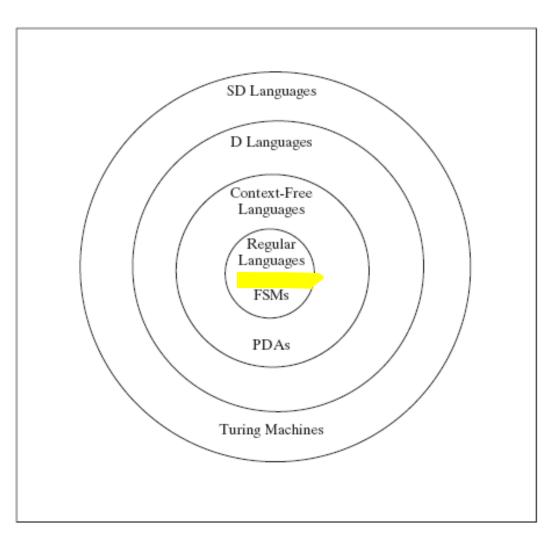
## **In-Class Exercises**

#### **Chapter 6:**

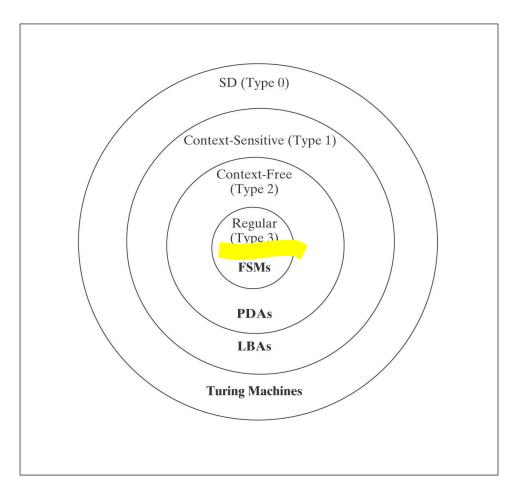
1 2 - g 4 5 8 13 - e

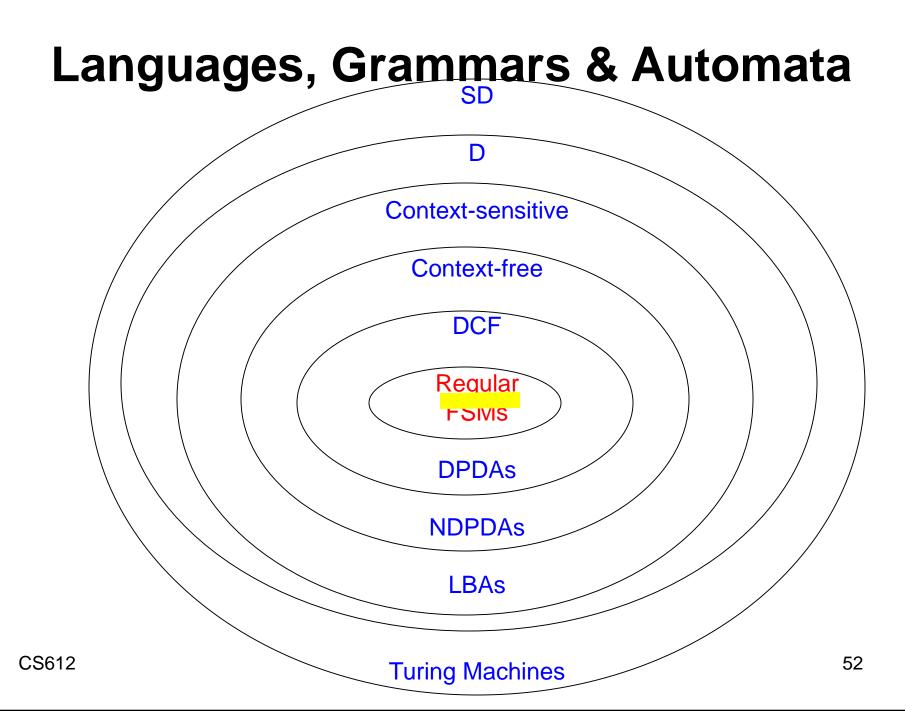
# Regular Grammars (Right Linear Grammars)

### Languages, Grammars & Automata

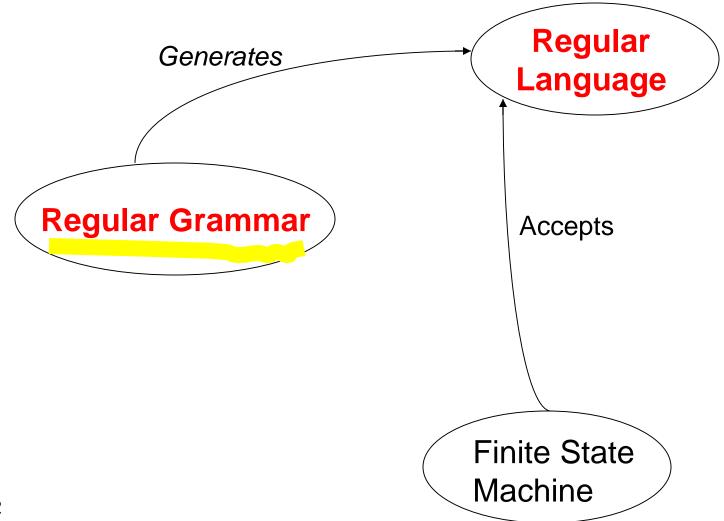


## Languages, Grammars & Automata





#### **Regular Languages**



## **Definition of Regular Grammars**

A regular grammar or right-linear grammar G is a quadruple ( $V, \Sigma, R, S$ ), where:

- V is the rule alphabet, which contains nonterminals and terminals,
- $\Sigma$  (the set of terminals) is a subset of V,
- *R* (the set of rules) is a finite set of rules of the form  $X \rightarrow Y$ ,
- S (the start symbol) is a nonterminal.

## Regular Grammars or Right-Linear Grammars

In a regular grammar, all rules in R must:

- have a left hand side that is a single nonterminal
- have a right hand side that is:
  - <mark>ε</mark>, or
  - a single terminal, or
  - a single terminal followed by a single nonterminal.

Legal: 
$$S \rightarrow a$$
,  $S \rightarrow \varepsilon$ , and  $T \rightarrow aS$   
Not legal:  $S \rightarrow aSa$  and  $aSa \rightarrow T$ 

CS612

#### **Example: RG**

#### **G** = {{S,T}, {a, b}, *R*, *S*}, where: $R = \{$ $S \rightarrow \epsilon$ $S \rightarrow a T$ $S \rightarrow bT$ $T \rightarrow a$ $T \rightarrow b$ $T \rightarrow aS$ $T \rightarrow bS$ }

Example 7.1  

$$L = \{w \in \{a, b\}^* : |w| \text{ is even}\}$$

$$RE?$$

$$((aa) \cup (ab) \cup (ba) \cup (bb))^*$$

$$FSM?$$

$$a,b \rightarrow aT$$

$$S \rightarrow bT$$

$$T \rightarrow aS$$

$$T \rightarrow bS$$

## Equivalence of Regular Languages and Regular Grammars

**Theorem 7.1** The class of languages that can be defined/generated with regular grammars is exactly the regular languages.

Proof Idea:

Proof by Construction **RL = RG** 

# Regular Languages and Regular Grammars

#### Regular grammar $\rightarrow$ FSM:

 $grammartofsm(G = (V, \Sigma, R, S)) =$ 

- 1. Create in *M* a separate state for each nonterminal in *V*.
- 2. Start state is the state corresponding to S.
- 3. If there are any rules in *R* of the form  $X \rightarrow w$ , for some  $w \in \Sigma$ , create a new state labeled #.
- 4. For each rule of the form  $X \rightarrow w Y$ , add a transition from *X* to *Y* labeled *w*.
- 5. For each rule of the form  $X \rightarrow w$ , add a transition from X to # labeled w.
- 6. For each rule of the form  $X \rightarrow \varepsilon$ , mark state X as accepting.
- 7. Mark state # as accepting.

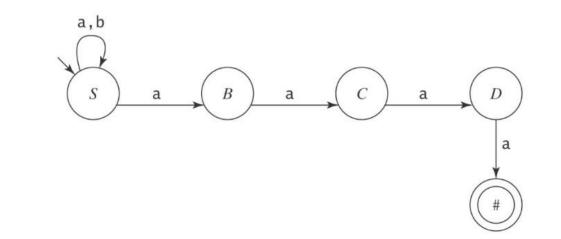
#### *FSM* → *Regular grammar:* Similarly.

#### Example 7.2

#### L = { $w \in \{a, b\}^*$ : w ends with the pattern aaaa}. RE? (a $\cup$ b)\*aaaa

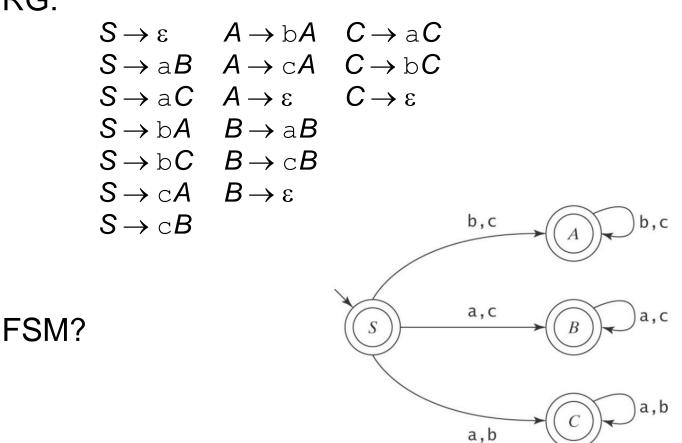
RG: FSM?

 $S \rightarrow aS$  $S \rightarrow bS$  $S \rightarrow aB$  $B \rightarrow aC$  $C \rightarrow aD$  $D \rightarrow a$ 



#### Example 7.3

RG:



# **Reading Assignment**

**Chapter 7:** 

Sections 7.1 7.2

# **In-Class Exercises**

#### Chapter 7:

1 – c & e 2 - a 5