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Expressions

• Arithmetic Expressions?

• Regular expressions?
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Regular Expressions

• An algebraic expression notation to 

describe regular languages!
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Definition of Regular Expressions

The regular expressions over an alphabet 

are all and only the strings that can be 

obtained as follows:

1.  is a regular expression.

2.  is a regular expression.

3. Every element of  is a regular expression.
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Definition of Regular Expressions

4. If  ,  are regular expressions, then so is .

5. If  ,  are regular expressions, then so is .

6. If  is a regular expression, then so is *.

7.  is a regular expression, then so is +.

8. If  is a regular expression, then so is ().
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The Role of the Rules

• Rules 1, 3, 4, 5, and 6 give the language its 

power to define sets.  

• Rule 8 has as its only role grouping other 

operators. 

• Rules 2 and 7 appear to add functionality to 

the regular expression language, but they 

don’t.

 = *

+ = *
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Example: RE

If  = {a, b}, the following are regular 

expressions:




a

(a  b)*

abba  

*
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Regular Expressions Define Languages

Define L, a semantic interpretation function for 

regular expressions:

1. L() = 

2. L() = {}

3. L(c), where c   = {c}
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Regular Expressions Define Languages

4. L() = L() L()

5. L(  ) = L()  L() 

6. L(*) = (L())*  

7. L(+) = L(*) = L() (L())*  

8. L(()) = L() 
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Examples: Regular Expressions

 = {a, b}:
L() = { }

L() = {}

L(a) = {a}

L((a  b)*) = 

L(abba  ) = {abba, }

L(*) = {}
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Example 6.1

L((a  b)*b) = L((a  b)*)  L(b)

= (L((a  b)))* L(b)

= (L(a)  L(b))* L(b)

= ({a}  {b})* {b}

= {a, b}* {b}.

L= ?

The set of all strings that end in b.
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Example 6.2

L( ((a  b) (a  b)) a (a  b) *) 

=

= {a, b} {a, b} {a}{a, b}*

L= ?

{xay: x and y are strings of a’s and b’s and |x|=2}

The set of all strings st there exists a third character a.
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Example 6.3

L = {w  {a, b}*: |w| is even}

RE?

((a  b) (a  b))*

(aa  ab  ba  bb)*
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Example 6.4

L = {w  {a, b}*: w contains an odd number of 

a’s}

RE?

b* (ab*ab*)* a b*

b* a b* (ab*ab*)*
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More Examples: RE

(  )

(a  b)*

(a* b*)   ?  (a  b)*

(ab) *    ?   a* b*
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Operator Precedence in RE

Regular Arithmetic

Expressions Expressions

Highest Kleene star exponentiation

concatenation multiplication

Lowest union addition

a b*  c d* x y2 + i j2
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Equivalence of RE and FSM

Finite state machines (FSM) and regular 

expressions (RE) define the same class of 

languages!

RE = FSM (DFA & NFA)

RE = RL
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Building an FSM from a RE

For every RE, there is an Equivalent FSM.

Theorem 6.1 Any language that can be 

defined with a regular expression can be 

accepted by some FSM and so is regular.

Proof Idea:

Proof by Construction
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For Every Regular Expression 

There is a Corresponding FSM

We’ll show this by construction.  An FSM for:

:
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For Every Regular Expression 

There is a Corresponding FSM

A single element of :
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For Every Regular Expression 

There is a Corresponding FSM

 (= *):
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Union

If  is the regular expression    and if both L() and 

L() are regular:
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Concatenation

If  is the regular expression  and if both L() and L() 

are regular:
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Kleene Star

If  is the regular expression * and if L() is regular:
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Example 6.5

RE: (b  ab)*

FSM?

An FSM for b An FSM for a An FSM for b
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Example 6.5

An FSM for ab:
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Example 6.5

An FSM for (b  ab):

CS612 32



Example 6.5

An FSM for (b  ab)*:
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Building a RE from an FSM

For every FSM, there is an equivalent RE.

Theorem 6.2 Every regular language (i.e., 

every language that can be accepted by some 

DFSM) can be defined with a regular 

expression. 
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Equivalence of Regular Languages 

and Regular Expressions

Kleene Theorem

Theorem 6.3 The class of languages that can 

be defined with regular expressions is exactly 

the class of regular languages.

RL = RE = FSM
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Examples and Designing REs
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Example 6.10

L = { w  {a, b}*: there is no more than one b}.

RE?

a*(b )a*
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Example 6.11

L = { w  {a, b}*: no two consecutive letters 

are the same}.

RE?

(b )(ab)*(a )

(a )(ba)*(b )
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Example 6.12

L = FLOAT = {w: w is the string 

representation of a floating point number}. 

RE?
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Example 6.14

L = Decimal numbers

RE?

CS612 40



Example 6.15

L = Legal passwords

RE?
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Example 6.16

L = IP addresses

RE?
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Simplifying Regular Expressions

• Union is commutative:     =   

• Union is associative: (  )   =   (  )

•  is the identity for union:     =    = 

• Union is idempotent:     =  
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Simplifying Regular Expressions

• Concatenation is associative:  () = ()

•  is the identity for concatenation:    =   = 

•  is a zero for concatenation:    =   = 

• (  )  = ( )  ( ) 

•  (  ) = ( )  ( )
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Simplifying Regular Expressions

• * = 

• * = 

• (*)* = * 

• ** = *  

• (  )* = (**)*
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Example 6.17

Simplifying a RE
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Reading Assignment

Chapter 6:

Sections

6.1

6.2

6.3

6.4
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In-Class Exercises

Chapter 6:

1

2 - g

4

5

8

13 - e
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Regular Grammars

(Right Linear Grammars)
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Languages, Grammars & Automata
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Regular Languages

Regular 

Language

Regular Grammar

Finite State  

Machine

Generates

Accepts
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Definition of Regular Grammars

A regular grammar or right-linear grammar 

G is a quadruple (V, , R, S), where:

• V is the rule alphabet, which contains 

nonterminals and terminals, 

•  (the set of terminals) is a subset of V,

• R (the set of rules) is a finite set of rules of the 

form X  Y, 

• S (the start symbol) is a nonterminal.
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Regular Grammars or Right-Linear 

Grammars

In a regular grammar, all rules in R must:

• have a left hand side that is a single 

nonterminal

• have a right hand side that is:

− , or 

− a single terminal, or 

− a single terminal followed by a single 

nonterminal.

Legal:  S  a, S  , and T  aS

Not legal:  S  aSa and aSa TCS612 55
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Example: RG

G = {{S,T}, {a, b}, R, S}, where:

R = {

S  

S  aT    

S  bT

T  a

T  b

T  aS

T  bS

}
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Example 7.1

L = {w  {a, b}* : |w| is even}

RE?    
((aa)  (ab)  (ba)  (bb))*

FSM? 

RG?

S  

S  aT    

S  bT

T  aS

T  bS
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Equivalence of Regular Languages 

and Regular Grammars

Theorem 7.1 The class of languages that can 

be defined/generated with regular grammars is 

exactly the regular languages. 

Proof Idea:

Proof by Construction

RL = RG
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Regular Languages and Regular 

Grammars

Regular grammar  FSM:

grammartofsm(G = (V, , R, S)) = 

1. Create in M a separate state for each nonterminal in V.

2. Start state is the state corresponding to S .

3. If there are any rules in R of the form X  w, for some

w  , create a new state labeled #.

4. For each rule of the form X  w Y, add a transition from

X to Y labeled w.

5. For each rule of the form X  w, add a transition from X

to # labeled w.

6. For each rule of the form X  , mark state X as

accepting.

7. Mark state # as accepting.

FSM  Regular grammar: Similarly. 
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Example 7.2

L = {w  {a, b}* : w ends with the pattern aaaa}.

RE?    
(a  b)*aaaa
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S  aS

S  bS

S  aB

B  aC

C  aD

D  a

FSM? 



Example 7.3

RG:
S   A  bA    C  aC

S  aB A  cA    C  bC

S  aC A   C  

S  bA B  aB

S  bC B  cB

S  cA B  

S  cB
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Reading Assignment

Chapter 7:

Sections

7.1

7.2
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In-Class Exercises

Chapter 7:

1 – c & e

2 - a

5
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