
PART 1:

Automata:
Finite State Machines (Finite Automata)

Formal Language:
Regular Languages

Non-regular Languages

Grammar:
Regular Expressions

Regular Grammars

1CS612

Regular Expressions

CS612 2

Young
Pencil

Languages, Grammars & Automata

3CS612

Young
Pencil

Languages, Grammars & Automata

4CS612

Young
Pencil

Young
Pencil

Languages, Grammars & Automata
SD

D

Context-sensitive

Context-free

DCF

Regular

FSMs

DPDAs

NDPDAs

LBAs

Turing MachinesCS612 5

Young
Pencil

Regular Languages

Regular

Language

Regular Expression

Finite State

Machine

Generates

Accepts

CS612 6

Young
Pencil

Expressions

• Arithmetic Expressions?

• Regular expressions?

CS612 7

Regular Expressions

• An algebraic expression notation to

describe regular languages!

CS612 8

Young
Pencil

Young
Pencil

Definition of Regular Expressions

The regular expressions over an alphabet 

are all and only the strings that can be

obtained as follows:

1.  is a regular expression.

2.  is a regular expression.

3. Every element of  is a regular expression.

CS612 9

Young
Pencil

Definition of Regular Expressions

4. If  ,  are regular expressions, then so is .

5. If  ,  are regular expressions, then so is .

6. If  is a regular expression, then so is *.

7.  is a regular expression, then so is +.

8. If  is a regular expression, then so is ().

CS612 10

The Role of the Rules

• Rules 1, 3, 4, 5, and 6 give the language its

power to define sets.

• Rule 8 has as its only role grouping other

operators.

• Rules 2 and 7 appear to add functionality to

the regular expression language, but they

don’t.

 = *

+ = *

CS612 11

Example: RE

If  = {a, b}, the following are regular

expressions:




a

(a  b)*

abba  

*

CS612 12

Regular Expressions Define Languages

Define L, a semantic interpretation function for

regular expressions:

1. L() = 

2. L() = {}

3. L(c), where c   = {c}

CS612 13

Young
Pencil

Regular Expressions Define Languages

4. L() = L() L()

5. L(  ) = L()  L()

6. L(*) = (L())*

7. L(+) = L(*) = L() (L())*

8. L(()) = L()

CS612 14

Examples: Regular Expressions

 = {a, b}:
L() = { }

L() = {}

L(a) = {a}

L((a  b)*) =

L(abba  ) = {abba, }

L(*) = {}

CS612 15

Example 6.1

L((a  b)*b) = L((a  b)*) L(b)

= (L((a  b)))* L(b)

= (L(a)  L(b))* L(b)

= ({a}  {b})* {b}

= {a, b}* {b}.

L= ?

The set of all strings that end in b.

CS612 16

Example 6.2

L(((a  b) (a  b)) a (a  b) *)

=

= {a, b} {a, b} {a}{a, b}*

L= ?

{xay: x and y are strings of a’s and b’s and |x|=2}

The set of all strings st there exists a third character a.

CS612 17

Example 6.3

L = {w  {a, b}*: |w| is even}

RE?

((a  b) (a  b))*

(aa  ab  ba  bb)*

CS612 18

Example 6.4

L = {w  {a, b}*: w contains an odd number of

a’s}

RE?

b* (ab*ab*)* a b*

b* a b* (ab*ab*)*

CS612 19

More Examples: RE

(  )

(a  b)*

(a* b*) ? (a  b)*

(ab) * ? a* b*

CS612 20

Operator Precedence in RE

Regular Arithmetic

Expressions Expressions

Highest Kleene star exponentiation

concatenation multiplication

Lowest union addition

a b*  c d* x y2 + i j2

CS612 21

Young
Pencil

Equivalence of RE and FSM

Finite state machines (FSM) and regular

expressions (RE) define the same class of

languages!

RE = FSM (DFA & NFA)

RE = RL

CS612 22

Young
Pencil

Building an FSM from a RE

For every RE, there is an Equivalent FSM.

Theorem 6.1 Any language that can be

defined with a regular expression can be

accepted by some FSM and so is regular.

Proof Idea:

Proof by Construction

CS612 23

Young
Pencil

For Every Regular Expression

There is a Corresponding FSM

We’ll show this by construction. An FSM for:

:

CS612 24

For Every Regular Expression

There is a Corresponding FSM

A single element of :

CS612 25

For Every Regular Expression

There is a Corresponding FSM

 (= *):

CS612 26

Union

If  is the regular expression    and if both L() and

L() are regular:

CS612 27

Concatenation

If  is the regular expression  and if both L() and L()

are regular:

CS612 28

Kleene Star

If  is the regular expression * and if L() is regular:

CS612 29

Example 6.5

RE: (b  ab)*

FSM?

An FSM for b An FSM for a An FSM for b

CS612 30

Example 6.5

An FSM for ab:

CS612 31

Example 6.5

An FSM for (b  ab):

CS612 32

Example 6.5

An FSM for (b  ab)*:

CS612 33

Building a RE from an FSM

For every FSM, there is an equivalent RE.

Theorem 6.2 Every regular language (i.e.,

every language that can be accepted by some

DFSM) can be defined with a regular

expression.

CS612 34

Young
Pencil

Equivalence of Regular Languages

and Regular Expressions

Kleene Theorem

Theorem 6.3 The class of languages that can

be defined with regular expressions is exactly

the class of regular languages.

RL = RE = FSM

CS612 35

Young
Pencil

Examples and Designing REs

36CS612

Example 6.10

L = { w  {a, b}*: there is no more than one b}.

RE?

a*(b )a*

CS612 37

Example 6.11

L = { w  {a, b}*: no two consecutive letters

are the same}.

RE?

(b )(ab)*(a )

(a )(ba)*(b )

CS612 38

Example 6.12

L = FLOAT = {w: w is the string

representation of a floating point number}.

RE?

CS612 39

Example 6.14

L = Decimal numbers

RE?

CS612 40

Example 6.15

L = Legal passwords

RE?

CS612 41

Example 6.16

L = IP addresses

RE?

CS612 42

Simplifying Regular Expressions

• Union is commutative:    =   

• Union is associative: (  )   =   (  )

•  is the identity for union:    =    = 

• Union is idempotent:    = 

CS612 43

Simplifying Regular Expressions

• Concatenation is associative: () = ()

•  is the identity for concatenation:   =   = 

•  is a zero for concatenation:   =   = 

• (  )  = ( )  ( )

•  (  ) = ( )  ( )

CS612 44

Simplifying Regular Expressions

• * = 

• * = 

• (*)* = *

• ** = *

• (  )* = (**)*

CS612 45

Example 6.17

Simplifying a RE

CS612 46

Reading Assignment

Chapter 6:

Sections

6.1

6.2

6.3

6.4

47CS612

In-Class Exercises

Chapter 6:

1

2 - g

4

5

8

13 - e

48CS612

Regular Grammars

(Right Linear Grammars)

CS612 49

Young
Pencil

Languages, Grammars & Automata

50CS612

Young
Pencil

Languages, Grammars & Automata

51CS612

Young
Pencil

Languages, Grammars & Automata
SD

D

Context-sensitive

Context-free

DCF

Regular

FSMs

DPDAs

NDPDAs

LBAs

Turing MachinesCS612 52

Young
Pencil

Regular Languages

Regular

Language

Regular Grammar

Finite State

Machine

Generates

Accepts

CS612 53

Young
Pencil

Definition of Regular Grammars

A regular grammar or right-linear grammar

G is a quadruple (V, , R, S), where:

• V is the rule alphabet, which contains

nonterminals and terminals,

•  (the set of terminals) is a subset of V,

• R (the set of rules) is a finite set of rules of the

form X  Y,

• S (the start symbol) is a nonterminal.

CS612 54

Young
Pencil

Regular Grammars or Right-Linear

Grammars

In a regular grammar, all rules in R must:

• have a left hand side that is a single

nonterminal

• have a right hand side that is:

− , or

− a single terminal, or

− a single terminal followed by a single

nonterminal.

Legal: S  a, S  , and T  aS

Not legal: S  aSa and aSa TCS612 55

Young
Pencil

Example: RG

G = {{S,T}, {a, b}, R, S}, where:

R = {

S  

S  aT

S  bT

T  a

T  b

T  aS

T  bS

}

56CS612

Example 7.1

L = {w  {a, b}* : |w| is even}

RE?
((aa)  (ab)  (ba)  (bb))*

FSM?

RG?

S  

S  aT

S  bT

T  aS

T  bS
CS612 57

Young
Pencil

Equivalence of Regular Languages

and Regular Grammars

Theorem 7.1 The class of languages that can

be defined/generated with regular grammars is

exactly the regular languages.

Proof Idea:

Proof by Construction

RL = RG

CS612 58

Young
Pencil

Regular Languages and Regular

Grammars

Regular grammar  FSM:

grammartofsm(G = (V, , R, S)) =

1. Create in M a separate state for each nonterminal in V.

2. Start state is the state corresponding to S .

3. If there are any rules in R of the form X  w, for some

w  , create a new state labeled #.

4. For each rule of the form X  w Y, add a transition from

X to Y labeled w.

5. For each rule of the form X  w, add a transition from X

to # labeled w.

6. For each rule of the form X  , mark state X as

accepting.

7. Mark state # as accepting.

FSM  Regular grammar: Similarly.

CS612 59

Example 7.2

L = {w  {a, b}* : w ends with the pattern aaaa}.

RE?
(a  b)*aaaa

CS612 60

RG:

S  aS

S  bS

S  aB

B  aC

C  aD

D  a

FSM?

Example 7.3

RG:
S   A  bA C  aC

S  aB A  cA C  bC

S  aC A   C  

S  bA B  aB

S  bC B  cB

S  cA B  

S  cB

CS612 61

FSM?

Reading Assignment

Chapter 7:

Sections

7.1

7.2

62CS612

In-Class Exercises

Chapter 7:

1 – c & e

2 - a

5

63CS612

