CS612

PART 1.

Automata:

Finite State Machines (Finite Automata)

Formal Language:

Regular Languages
Non-regular Languages

Grammar:

Regular Expressions
Regular Grammars

Languages, Grammars & Automata

——

5D Languages

T T
/ ~ D Languages
/ / e
J.-“} y Context-Free _ k!
f ! Languages A "'-.I
|'|l / 'y I". !

II III { /ﬁugul;l\\ H".I \ I|
|

| | l.f' Languaoes | | ‘

.-'--

b | |
\ '- FSMs / / |
oL Fsw |
|II LY _." .'l
\ f /
\ \\hf D .—"rs___- / f.-'
\ Turing Machines H/
~— -

CS612

Young
Pencil

Languages, Grammars & Automata

SD (Type 0)

Context-Sensitive (Type 1)

Context-Free
(Type 2)

Regular
(Type 3)

EdIVIS

PDAs

Turing Machines

CS612 3

Young
Pencil

Languages, Gra S & Automata

Context-sensitive

Context-free

DCF

Reaular
FSIVIS
DPDAs

NDPDAs

CS612 Turing Machines

Young
Pencil

Regular Languages

Reqgular

Generates
Language

Regular Expression

Regular Grammar

Finite State

Machine
CS612

Young
Pencil

Closure Properties & Pumping of
Regular Languages

Non-regular Languages

CS612

Languages: Regular or Not?

L= a*b* regular?

 L={a"p" n > 0} regular?

« L={w e {a, b}*: every a is immediately followed by
b} reqular?

« L={w e {a, b}*: every a has a matching b
somewhere and no b matches more than one a }
reqular?

CS612

How Many Regular Languages?

Theorem 8.1: There is a countably infinite
number of regular languages.

Proof Idea:

CS612

Young
Pencil

There Exist Nonregular Languages

 There Is a countably infinite number of
regular languages.

* There is an uncountably infinite number of
languages over any nonempty alphabet X.

v' So there are many more non-regular
languages than there are regular ones!

CS612

Young
Pencil

Young
Pencil

Young
Pencil

Languages: Regular or Not?

« Showing that a language Is regular?
« Showing that a language Is not regular?

CS612

10

Young
Pencil

Showing that a Language Is Reqgular

CS612 11

Showing that a Language is Regular

Theorem 8.2: Every finite language Is regular.

Proof Idea:

If L is the empty set, then it is defined by the regular expression
¢ and so iIs regular.

If it is any finite language composed of the strings s,, S,, ... S, for

some positive integer n, then it is defined by the regular
expression: s, Us, U ... US, So ittoo is regular.

CS612 12

Young
Pencil

Finiteness - Theoretical vs. Practical

CS612

Any finite language Is regular.
The size of the language doesn't matter.

But, from an implementation point of view,
it very well may.

13

Young
Pencil

Showing That L is Regular

v' Show that L is finite.
v' Exhibit an FSM for L.
v Exh
v Exh

nit a regular grammar for L.

CS612

pit a regular expression for L.

14

Young
Pencil

Young
Pencil

Closure Properties of Regular
Languages

Operations that preserve the Property of
being a Regular Language!

CS612

15

Young
Pencil

Young
Pencil

Closure Theorems of Regular
Languages

The reqgular languages are closed under

« Union
« Concatenation
« Kleene star

 Complement
e [ntersection
 Difference

e Reverse

- Letter Substitution
CS612

16

Young
Pencil

Showing That L Is Regular

* Exploit the closure theorems.
v To show that L is regular, show that L can

be constructed from other regular
languages using the closure operations!

CS612

17

Example 8.5

L ={w e {a, b}* : w contains an even number of
a’'s and an odd number of b’s and all a’s come

In runs of three} is regular!

Proof:

L=L, nL,, where:

L, ={w e {a, b}*: w contains an even number of a's and an
odd number of b’s}, and

* L,={w e {a, b}*:all a’'s come in runs of three}

CS612 18

Example 8.5

L, ={w e {a, b}* : w contains an even number
of a’s and an odd number of b’s} is regular.

CS612

19

Example 8.5

L, ={w e {a, b}* : all a’'s come in runs of
three} is regular.

e s

CS612

20

Example 8.5

* L, and L, are regular.
 Then, L; nL, Is also regular.
* S0, Lisregular!

CS612

21

Showing That L is Regular

Show that L is finite.
Exhibit an FSM for L.
EXh
Exhibit a reqgular grammar for L.
Exploit the closure theorems.

NN XX N

CS612

pit a regular expression for L.

22

Young
Pencil

Showing that a Language is Not
Regular

CS612

23

Regular Languages

* Every reqgular language can be accepted by
some FSM with a finite # of states.

* It can only use a finite amount of memory to
record essential properties.

CS612

24

Regular Languages

* The only way to generate/accept an infinite
language with a finite description is to use:

v' Kleene star (in regular expressions), or
v' cycles (in FSM).

« This forces some kind of simple repetitive
cycle within the strings.

CS612 25

Repetitive Property of DFSM

b
—>

L = bab*ab

b abbbb ab
X y Z

Xy*z must be In L.

So L includes: baab, babab, babbab, babbbbbbbbbbab

CS612 26

Long Strings Forces Repeated States

Theorem 8.5 Let M = (K, %, 9, s, A) be any
DFSM. If M accepts any string of length |K| or
greater, then that string will force M to visit
some state more than once (thus traversing at
least one loop).

Proof Idea:
By the Pigeonhole Principle!

If you put >n pigeons into n holes, then some hole

must have > 1 pigeon.
CS612 57

Young
Pencil

Young
Pencil

Long Strings Forces Repeated States

Proof Idea:

M must start in one of its states.

« Each time it reads an input character, it visits
some state.

« S0, in processing a string of length n, M creates a
total of n + 1 state visits.

« If n+1 > |K], then, by the pigeonhole principle,
some state must get more than one visit.

« S0, if n > |K|, then M must visit at least one state

more than once.

CS612 28

The Pumping Theorem/Lemma for
Regular Languages

Theorem 8.6 If L Is regular, then every long
string in L Is pumpable.

So,dk>1

(V strings w € L, where |w| > k
(A XY, z(w=xyz,
Ixy| <k,
y # g, and
vq =0 (xy9zis in L)))).

CS612 29

Young
Pencil

Young
Pencil

Young
Pencil

Young
Pencil

Showing That L Is not Regular

 The pumping theorem is true for every reqgular
language!

« |If we could show the pumping theorem is not true
of some language L, then L is not regular!

 Proof by Contraction:

1. Suppose some language L is regular, then it would
POSSess certain properties.

Show that L does not posses those properties.

3. Therefore, L is not regular.

N

CS612 30

Young
Pencil

Young
Pencil

Example 8.8

L ={a"b™ n >0} is not regular!
Proof: Proof by Contradiction.

If L were regular, there exists some k st any string w, |w| > k, must
satisfy the conditions of the pumping theorem.

Choose w = akpk Since |w| > k, w must satisfy the conditions of
the pumping theorem.

So, there must exist for some X, y, and z st w = xyz, [xy| <k, y # ¢,
and vq >0, xy9zis in L.

We will show that no such x, y, and z exist!

CS612

31

Example 8.8

We will show that no such x, y, and z exist!

1 2
aaaaa...aaaaabbbb ...bbbbbb
X y Z

Since |xy| £k, y must be in region 1.
Soy = aP for some p > 1.

Let q = 2, producing: ak*Pbk which ¢ L, since it has more a’s than
b’s.

There exists at least one long string that fails to satisfy the
pumping theorem.

So, L is not regular!

CS612

Example 8.9

L ={a"b"™. n >0} is not regular!

Proof. Proof by Contradiction.

Choose w = a' K2/ k2] Since |w| > k, w must satisfy the
conditions of the pumping theorem. So, for some x, y, and z, w
=Xxyz, [Xy| < k,y#¢, and Vq >0, xyd9zisin L.

We show that no such x, y, and z exist.
There are 3 cases for where y could occur:

aaaaa.....aaaaaa |bbbbb.....bbbbbb
1 | 2

CS612

33

Example 8.9

So y can fall in:

« (1): y=aPforsome p. Sincey # ¢, p must be greater than 0.
Let g = 2. The resulting string is ak*Pbk. But this string is not in L,
since it has more a's than b’s.

* (2): y=DbPforsome p. Sincey # ¢, p must be greater than 0.
Let g = 2. The resulting string is akb**P. But this string is not in L,
since it has more b’s than a’s.

* (1, 2): y=aPpb"forsome non-zeropandr. Letg=2. The
resulting string will have interleaved a’s and b’s, and so is not in L.

There exists one long string in L for which no X, y, z exist.
So L is not regular!

CS612 34

Using the Pumping Theorem

* If Lis regular, then every “long” string in L is
pumpable. To show that L is not regular, we find

one that isn't.
* To use the Pumping Theorem to show that a
language L Is not regular, we must:

1. Choose a string w where |w| > k. Since we do not know
what k is, we must state w in terms of k.

2. Divide the possibilities for y into a set of equivalence
classes that can be considered together.

3. For each such class of possible y values where |xy| < k

and y = &: Choose a value for q such that xy9z is not in L.

CS612

35

Example 8.10

Bal = {w e {), (}* : the parens are balanced}
IS not regular!

Proof: Proof by Contradiction.

Choose w = (k) k

CS612

36

Example 8.11

PalEven = {wwR : w € {a, b}*} is not regular!
Proof: Proof by Contradiction.

Choose w = akbkpkak

CS612

37

Example 8.12

L ={a"b™:. n > mj} is not regular!
Proof: Proof by Contradiction.

Choose w = ak*1pk

CS612

38

Using the Pumping Theorem
Effectively

+ To choose w:
v' Choose a w that is in the part of L that makes it
not regular.
v' Choose a w that is only barely in L.
v' Choose a w with as homogeneous as possible
an initial region of length at least k.

« To choose q:
v Try letting g be either 0 or 2.
v If that doesn’t work, analyze L to see if there is
some other specific value that will work.

CS612 39

Young
Pencil

Using the Closure Properties

The two most useful ones are closure under:

* |Intersection N
« Complement —

CS612

40

Example 8.14

L ={w € {a, b}*: #_(w) = #_(w)} Is not regular!

Proof:
If L were regular, then: Intersection

L'=L N a*b*
={a"p" n > 0}

would also be regular. But it isn't.
So, L is not regular.

CS612

41

Example 8.15

L={av:i,j>0andi=j}is not regular!

Proof:

If L is regular then so is Complement
—L = A"B" U {out of order}

If —L is regular, then so is Intersection
L' ==L na**={a"v"™ n >0}

But, L' is not regular.

Then, —L is not regular.

So, L is not regular!

CS612

42

Showing That L Is not Regular

v Use the Pumping Theorem for regular
languages.

v Exploit the closure theorems for regular
languages.

CS612

43

Young
Pencil

Language Summary

IN
R grammar Regular
Regular Expression a*b*
FSM

CS612

OuT

Pumping
Closure

44

Young
Pencil

Reading Assignment

Chapter 8:

Sections
8.1
8.2
8.3
8.4

CS612

45

In-Class Exercises

Chapter 8:

1-a&bé&n
21 —a&bé&e

CS612

46

Algorithms and Decision Procedures
for
Regular Languages

CS612 47

Decision Procedures

* A decision procedure iIs an algorithm
whose result Is a boolean value.

* It must be guaranteed to halt on all inputs
and be correct

CS612

48

Membership

Theorem 9.1 Given a regular language L and
a string w, there exists a decision procedure
that answers the question, iIsw € L?

CS612

49

Young
Pencil

Emptiness

Theorem 9.2 Given an FSM M, there exists a
decision procedure that answers the
question, iIsL(M) =& ?

CS612

50

Young
Pencil

Totality

Theorem 9.3 Given an FSM M, there exists a

decision procedure that answers the question,
IS L(M) = X*?

CS612

51

Young
Pencil

Finiteness

Theorem 9.4 Given an FSM M, there exists a
decision procedure that answers the guestion,
Is L(M) finite and is L(M) Infinite?

CS612

52

Young
Pencil

Equivalence

Theorem 9.5 Given two FSMs M; and M,,
there exists a decision procedure that answers
the question, is L(M,) = L(M,).

CS612

53

Young
Pencil

Minimality

Theorem 9.6 Given an FSM M, there exists a
decision procedure that answers the guestion,
IS M minimal?

CS612

54

Young
Pencil

Decision Procedures for RLsS

Decision procedures that answer guestions
about languages defined by FSMs:

« Given an FSM M and a string s, is s accepted by M?
« Given an FSM M, is L(M) = &7

 Givenan FSM M, is L(M) = * ?

« Given an FSM M, is L(M) finite (infinite)?

* Given two FSMs, M, and M,, is L(M,) = L(M,)?

« Given an FSM M, is M minimal?

CS612

55

Decision Procedures for RLs

Decision procedures that answer questions
about languages defined by regular
expressions;

* Convert the regular expressions to FSMs
and apply the FSM algorithms!

CS612

56

Decision Procedures for RLs

Decision procedures that answer questions
about languages defined by regular grammars:

« Convert the regular grammars to FSMs and
apply the FSM algorithms!

CS612 57

Algorithms for RLs

» Ndfsmtodfs

» MInDFSM

CS612

58

Young
Pencil

Algorithms for RLs

* Given FSMs M, and M,, construct a FSM M, st L(M,)

CS612

= L(My) U L(M,).

Given FSMs M; and M,, construct a new FSM M, st
L(Mg) = L(My) L(My).

Given FSM M, construct an FSM M* st L(M*) =
(L(M))*.

59

Algorithms for RLs

CS612

Given a DFSM M, construct an FSM M* st L(M*) =
—L(M).

Given two FSMs M, and M,, construct an FSM M,
st L(M3) = L(M,) nL(M,).

Given two FSMs M, and M,, construct an FSM M,
st L(M3) = L(M,) - L(M,).

Given an FSM M, construct an FSM M* st L(M*) =
(L(M))R.

60

Algorithms for RLs

« Given a regular expression a, construct an FSM M
st L(a) = L(M).

« Given an FSM M, construct a regular expression o,
st L(a) = L(M).

« Given a regular grammar G, construct an FSM M st
L(G) = L(M).

« Given an FSM M, construct a regular grammar G st
L(G) = L(M).

CS612 61

Reading Assignment

Chapter 9:

Sections
0.1
9.2

CS612

62

In-Class Exercises

Chapter 9:

1-cC

CS612

63

Regular Languages: Summary

Regular Languages

e regular exprs.
or
e regular grammars
e = DFSMs
e recognize
e minimize FSMs

e closed under:
4 concatenation
4 union
¢ Kleene star
¢ complement
¢ intersection

e pumping theorem
D =ND

CS612

64

Young
Pencil

Young
Pencil

