
PART 1:

Automata:
Finite State Machines (Finite Automata)

Formal Language:
Regular Languages

Non-regular Languages

Grammar:
Regular Expressions

Regular Grammars

1CS612

Languages, Grammars & Automata

2CS612

Young
Pencil

Languages, Grammars & Automata

3CS612

Young
Pencil

Languages, Grammars & Automata
SD

D

Context-sensitive

Context-free

DCF

Regular

FSMs

DPDAs

NDPDAs

LBAs

Turing MachinesCS612 4

Young
Pencil

Regular Languages

Regular

Language

Regular Expression

Regular Grammar

Finite State

Machine

Generates

Accepts

CS612 5

Young
Pencil

Closure Properties & Pumping of

Regular Languages

Non-regular Languages

6CS612

Languages: Regular or Not?

• L= a*b* regular?

• L= {anbn: n  0} regular?

• L= {w  {a, b}* : every a is immediately followed by

b} regular?

• L= {w  {a, b}* : every a has a matching b

somewhere and no b matches more than one a }

regular?

7CS612

How Many Regular Languages?

Theorem 8.1: There is a countably infinite

number of regular languages.

Proof Idea:

8CS612

Young
Pencil

There Exist Nonregular Languages

• There is a countably infinite number of

regular languages.

• There is an uncountably infinite number of

languages over any nonempty alphabet .

 So there are many more non-regular

languages than there are regular ones!

9CS612

Young
Pencil

Young
Pencil

Young
Pencil

Languages: Regular or Not?

• Showing that a language is regular?

• Showing that a language is not regular?

10CS612

Young
Pencil

Showing that a Language is Regular

11CS612

Showing that a Language is Regular

Theorem 8.2: Every finite language is regular.

Proof Idea:

If L is the empty set, then it is defined by the regular expression

 and so is regular.

If it is any finite language composed of the strings s1, s2, … sn for

some positive integer n, then it is defined by the regular

expression: s1  s2  …  sn So it too is regular.

12CS612

Young
Pencil

Finiteness - Theoretical vs. Practical

• Any finite language is regular.

• The size of the language doesn't matter.

• But, from an implementation point of view,

it very well may.

13CS612

Young
Pencil

Showing That L is Regular

 Show that L is finite.

 Exhibit an FSM for L.

 Exhibit a regular expression for L.

 Exhibit a regular grammar for L.

14CS612

Young
Pencil

Young
Pencil

Closure Properties of Regular

Languages

15CS612

Operations that preserve the Property of

being a Regular Language!

Young
Pencil

Young
Pencil

Closure Theorems of Regular

Languages

The regular languages are closed under

• Union

• Concatenation

• Kleene star

• Complement

• Intersection

• Difference

• Reverse

• Letter Substitution
16CS612

Young
Pencil

Showing That L is Regular

• Exploit the closure theorems.

 To show that L is regular, show that L can

be constructed from other regular

languages using the closure operations!

17CS612

Example 8.5

• L1 = {w  {a, b}* : w contains an even number of a’s and an

odd number of b’s}, and

• L2 = {w  {a, b}* : all a’s come in runs of three}

L = {w  {a, b}* : w contains an even number of

a’s and an odd number of b’s and all a’s come

in runs of three} is regular!

Proof:

L = L1  L2, where:

18CS612

Example 8.5

19CS612

L1 = {w  {a, b}* : w contains an even number

of a’s and an odd number of b’s} is regular.

Example 8.5

20CS612

L2 = {w  {a, b}* : all a’s come in runs of

three} is regular.

Example 8.5

• L1 and L2 are regular.

• Then, L1  L2 is also regular.

• So, L is regular!

21CS612

Showing That L is Regular

 Show that L is finite.

 Exhibit an FSM for L.

 Exhibit a regular expression for L.

 Exhibit a regular grammar for L.

 Exploit the closure theorems.

22CS612

Young
Pencil

Showing that a Language is Not

Regular

23CS612

Regular Languages

• Every regular language can be accepted by

some FSM with a finite # of states.

• It can only use a finite amount of memory to

record essential properties.

24CS612

Regular Languages

• The only way to generate/accept an infinite

language with a finite description is to use:

 Kleene star (in regular expressions), or

 cycles (in FSM).

• This forces some kind of simple repetitive

cycle within the strings.

25CS612

Repetitive Property of DFSM

L = bab*ab

b a b b b b a b

x y z

xy*z must be in L.

So L includes: baab, babab, babbab, babbbbbbbbbbab

26CS612

Long Strings Forces Repeated States

Theorem 8.5 Let M = (K, , , s, A) be any

DFSM. If M accepts any string of length |K| or

greater, then that string will force M to visit

some state more than once (thus traversing at

least one loop).

Proof Idea:

By the Pigeonhole Principle!

If you put >n pigeons into n holes, then some hole

must have > 1 pigeon.
27CS612

Young
Pencil

Young
Pencil

Long Strings Forces Repeated States

Proof Idea:

• M must start in one of its states.

• Each time it reads an input character, it visits

some state.

• So, in processing a string of length n, M creates a

total of n + 1 state visits.

• If n+1 > |K|, then, by the pigeonhole principle,

some state must get more than one visit.

• So, if n  |K|, then M must visit at least one state

more than once.

28CS612

The Pumping Theorem/Lemma for

Regular Languages

Theorem 8.6 If L is regular, then every long

string in L is pumpable.

So, k  1

( strings w  L, where |w|  k

( x, y, z (w = xyz,

|xy|  k,

y  , and

q  0 (xyqz is in L)))).

29CS612

Young
Pencil

Young
Pencil

Young
Pencil

Young
Pencil

Showing That L is not Regular

• The pumping theorem is true for every regular

language!

• If we could show the pumping theorem is not true

of some language L, then L is not regular!

• Proof by Contraction:

1. Suppose some language L is regular, then it would

possess certain properties.

2. Show that L does not posses those properties.

3. Therefore, L is not regular.

30CS612

Young
Pencil

Young
Pencil

Example 8.8

L = {anbn: n  0} is not regular!

Proof: Proof by Contradiction.

If L were regular, there exists some k st any string w, |w|  k, must

satisfy the conditions of the pumping theorem.

Choose w = akbk Since |w|  k, w must satisfy the conditions of

the pumping theorem.

So, there must exist for some x, y, and z st w = xyz, |xy|  k, y  ,

and q  0, xyqz is in L.

We will show that no such x, y, and z exist!

31CS612

Example 8.8

We will show that no such x, y, and z exist!

1 2

a a a a a … a a a a a b b b b … b b b b b b

x y z

Since |xy|  k, y must be in region 1.
So y = ap for some p  1.

Let q = 2, producing: ak+pbk which  L, since it has more a’s than

b’s.

There exists at least one long string that fails to satisfy the

pumping theorem.

So, L is not regular!

32CS612

Example 8.9

L = {anbn: n  0} is not regular!

Proof: Proof by Contradiction.

Choose w = ak/2bk/2. Since |w|  k, w must satisfy the

conditions of the pumping theorem. So, for some x, y, and z, w

= xyz, |xy|  k, y  , and q  0, xyqz is in L.

We show that no such x, y, and z exist.

There are 3 cases for where y could occur:

aaaaa…..aaaaaa | bbbbb…..bbbbbb

1 | 2

33CS612

Example 8.9

So y can fall in:

• (1): y = ap for some p. Since y  , p must be greater than 0.

Let q = 2. The resulting string is ak+pbk. But this string is not in L,

since it has more a’s than b’s.

• (2): y = bp for some p. Since y  , p must be greater than 0.

Let q = 2. The resulting string is akbk+p. But this string is not in L,

since it has more b’s than a’s.

• (1, 2): y = apbr for some non-zero p and r. Let q = 2. The

resulting string will have interleaved a’s and b’s, and so is not in L.

There exists one long string in L for which no x, y, z exist.

So L is not regular!

34CS612

Using the Pumping Theorem

• If L is regular, then every “long” string in L is

pumpable. To show that L is not regular, we find

one that isn’t.

• To use the Pumping Theorem to show that a

language L is not regular, we must:

1. Choose a string w where |w|  k. Since we do not know

what k is, we must state w in terms of k.

2. Divide the possibilities for y into a set of equivalence

classes that can be considered together.

3. For each such class of possible y values where |xy|  k

and y  : Choose a value for q such that xyqz is not in L.

35CS612

Example 8.10

36

Bal = {w  {), (}* : the parens are balanced}

is not regular!

Proof: Proof by Contradiction.

Choose w = (k)k

CS612

Example 8.11

37

PalEven = {wwR : w  {a, b}*} is not regular!

Proof: Proof by Contradiction.

Choose w = akbkbkak

CS612

Example 8.12

38

L = {anbm: n  m} is not regular!

Proof: Proof by Contradiction.

Choose w = ak+1bk

CS612

Using the Pumping Theorem

Effectively

• To choose w:
 Choose a w that is in the part of L that makes it

not regular.

 Choose a w that is only barely in L.

 Choose a w with as homogeneous as possible

an initial region of length at least k.

• To choose q:
 Try letting q be either 0 or 2.

 If that doesn’t work, analyze L to see if there is

some other specific value that will work.

39CS612

Young
Pencil

Using the Closure Properties

The two most useful ones are closure under:

• Intersection 

• Complement 

40CS612

Example 8.14

L = {w  {a, b}*: #a(w) = #b(w)} is not regular!

Proof:

If L were regular, then: Intersection

L = L  a*b*

= {anbn: n  0}

would also be regular. But it isn’t.

So, L is not regular.

41CS612

Example 8.15

L = {aibj: i, j  0 and i  j} is not regular!

Proof:

If L is regular then so is Complement

L = AnBn  {out of order}

If L is regular, then so is Intersection

L = L  a*b* = {anbn: n  0}

But, L is not regular.

Then, L is not regular.

So, L is not regular!

42CS612

Showing That L is not Regular

 Use the Pumping Theorem for regular

languages.

 Exploit the closure theorems for regular

languages.

43CS612

Young
Pencil

IN OUT

R grammar Regular Pumping

Regular Expression a*b* Closure

FSM

Language Summary

44CS612

Young
Pencil

Reading Assignment

Chapter 8:

Sections

8.1

8.2

8.3

8.4

45CS612

In-Class Exercises

Chapter 8:

1 – a & b & n

21 – a & b & e

46CS612

Algorithms and Decision Procedures

for

Regular Languages

47CS612

Decision Procedures

• A decision procedure is an algorithm

whose result is a boolean value.

• It must be guaranteed to halt on all inputs

and be correct

48CS612

Membership

49

Theorem 9.1 Given a regular language L and

a string w, there exists a decision procedure

that answers the question, is w  L?

CS612

Young
Pencil

Emptiness

50

Theorem 9.2 Given an FSM M, there exists a

decision procedure that answers the

question, is L(M) =  ?

CS612

Young
Pencil

Totality

51

Theorem 9.3 Given an FSM M, there exists a

decision procedure that answers the question,

is L(M) = *?

CS612

Young
Pencil

Finiteness

52

Theorem 9.4 Given an FSM M, there exists a

decision procedure that answers the question,

is L(M) finite and is L(M) infinite?

CS612

Young
Pencil

Equivalence

53

Theorem 9.5 Given two FSMs M1 and M2,

there exists a decision procedure that answers

the question, is L(M1) = L(M2).

CS612

Young
Pencil

Minimality

54

Theorem 9.6 Given an FSM M, there exists a

decision procedure that answers the question,

is M minimal?

CS612

Young
Pencil

Decision Procedures for RLs

Decision procedures that answer questions

about languages defined by FSMs:

• Given an FSM M and a string s, is s accepted by M?

• Given an FSM M, is L(M) = ?

• Given an FSM M, is L(M) = * ?

• Given an FSM M, is L(M) finite (infinite)?

• Given two FSMs, M1 and M2, is L(M1) = L(M2)?

• Given an FSM M, is M minimal?

55CS612

Decision Procedures for RLs

Decision procedures that answer questions

about languages defined by regular

expressions:

• Convert the regular expressions to FSMs

and apply the FSM algorithms!

56CS612

Decision Procedures for RLs

Decision procedures that answer questions

about languages defined by regular grammars:

• Convert the regular grammars to FSMs and

apply the FSM algorithms!

57CS612

Algorithms for RLs

• Ndfsmtodfs

• MinDFSM

58CS612

Young
Pencil

Algorithms for RLs

• Given FSMs M1 and M2, construct a FSM M3 st L(M3)

= L(M2)  L(M1).

• Given FSMs M1 and M2, construct a new FSM M3 st

L(M3) = L(M2) L(M1).

• Given FSM M, construct an FSM M* st L(M*) =

(L(M))*.

59CS612

Algorithms for RLs

• Given a DFSM M, construct an FSM M* st L(M*) =

L(M).

• Given two FSMs M1 and M2, construct an FSM M3

st L(M3) = L(M2)  L(M1).

• Given two FSMs M1 and M2, construct an FSM M3

st L(M3) = L(M2) - L(M1).

• Given an FSM M, construct an FSM M* st L(M*) =

(L(M))R.

60CS612

Algorithms for RLs

• Given a regular expression , construct an FSM M

st L() = L(M).

• Given an FSM M, construct a regular expression 

st L() = L(M).

• Given a regular grammar G, construct an FSM M st

L(G) = L(M).

• Given an FSM M, construct a regular grammar G st

L(G) = L(M).

61CS612

Reading Assignment

Chapter 9:

Sections

9.1

9.2

62CS612

In-Class Exercises

Chapter 9:

1 - c

63CS612

Regular Languages: Summary

Regular Languages

● regular exprs.

or

● regular grammars

● = DFSMs

● recognize

● minimize FSMs

● closed under:

♦ concatenation

♦ union

♦ Kleene star

♦ complement

♦ intersection

● pumping theorem

● D = ND

CS612 64

Young
Pencil

Young
Pencil

