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Closure Properties & Pumping of 

Regular Languages

Non-regular Languages
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Languages: Regular or Not?

• L= a*b* regular?

• L= {anbn: n  0} regular?

• L= {w  {a, b}* : every a is immediately followed by 

b} regular? 

• L= {w  {a, b}* : every a has a matching b

somewhere and no b matches more than one a } 

regular? 

7CS612



How Many Regular Languages? 

Theorem 8.1: There is a countably infinite

number of regular languages.

Proof Idea:
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There Exist Nonregular Languages 

• There is a countably infinite number of 

regular languages.

• There is an uncountably infinite number of 

languages over any nonempty alphabet .  

 So there are many more non-regular 

languages than there are regular ones!
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Languages: Regular or Not?

• Showing that a language is regular?

• Showing that a language is not regular?
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Showing that a Language is Regular
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Showing that a Language is Regular

Theorem 8.2: Every finite language is regular.

Proof Idea:

If L is the empty set, then it is defined by the regular expression 

 and so is regular.  

If it is any finite language composed of the strings s1, s2, … sn for 

some positive integer n, then it is defined by the regular 

expression: s1  s2  …  sn So it too is regular.  
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Finiteness - Theoretical vs. Practical

• Any finite language is regular.  

• The size of the language doesn't matter.

• But, from an implementation point of view, 

it very well may.
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Showing That L is Regular

 Show that L is finite.

 Exhibit an FSM for L.

 Exhibit a regular expression for L.

 Exhibit a regular grammar for L.
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Closure Properties of Regular 

Languages
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Operations that preserve the Property of 
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Closure Theorems of Regular 

Languages

The regular languages are closed under

• Union

• Concatenation

• Kleene star

• Complement

• Intersection

• Difference

• Reverse

• Letter Substitution 
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Showing That L is Regular

• Exploit the closure theorems.

 To show that L is regular, show that L can 

be constructed from other regular 

languages using the closure operations!
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Example 8.5

• L1 = {w  {a, b}* : w contains an even number of a’s and an 

odd number of b’s}, and 

• L2 = {w  {a, b}* : all a’s come in runs of three}

L = {w  {a, b}* : w contains an even number of 

a’s and an odd number of b’s and all a’s come 

in runs of three} is regular!

Proof:

L = L1  L2, where: 
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Example 8.5
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L1 = {w  {a, b}* : w contains an even number 

of a’s and an odd number of b’s} is regular.



Example 8.5
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L2 = {w  {a, b}* : all a’s come in runs of 

three} is regular.



Example 8.5

• L1 and L2 are regular.

• Then, L1  L2 is also regular.

• So, L is regular!
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Showing That L is Regular

 Show that L is finite.

 Exhibit an FSM for L.

 Exhibit a regular expression for L.

 Exhibit a regular grammar for L.

 Exploit the closure theorems.
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Showing that a Language is Not 

Regular
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Regular Languages

• Every regular language can be accepted by 

some FSM with a finite # of states.

• It can only use a finite amount of memory to 

record essential properties.
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Regular Languages

• The only way to generate/accept an infinite 

language with a finite description is to use:

 Kleene star (in regular expressions), or 

 cycles (in FSM).  

• This forces some kind of simple repetitive 

cycle within the strings.
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Repetitive Property of DFSM

L = bab*ab

b a b b b b a b

x y z

xy*z must be in L.

So L includes: baab, babab, babbab, babbbbbbbbbbab
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Long Strings Forces Repeated States

Theorem 8.5 Let M = (K, , , s, A) be any 

DFSM.  If M accepts any string of length |K| or 

greater, then that string will force M to visit

some state more than once (thus traversing at 

least one loop).  

Proof Idea:

By the Pigeonhole Principle!

If you put >n pigeons into n holes, then some hole 

must have > 1 pigeon.
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Long Strings Forces Repeated States

Proof Idea:

• M must start in one of its states.  

• Each time it reads an input character, it visits 

some state.  

• So, in processing a string of length n, M creates a 

total of n + 1 state visits.  

• If n+1 > |K|, then, by the pigeonhole principle, 

some state must get more than one visit.  

• So, if n  |K|, then M must visit at least one state 

more than once.  
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The Pumping Theorem/Lemma for 

Regular Languages

Theorem 8.6 If L is regular, then every long 

string in L is pumpable.  

So, k  1

( strings w  L, where |w|  k

( x, y, z (w = xyz,

|xy|  k,

y  , and

q  0 (xyqz is in L)))).
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Showing That L is not Regular

• The pumping theorem is true for every regular 

language!

• If we could show the pumping theorem is not true 

of some language L, then L is not regular!

• Proof by Contraction:

1. Suppose some language L is regular, then it would 

possess certain properties.

2. Show that L does not posses those properties.

3. Therefore, L is not regular.
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Example 8.8

L = {anbn: n  0} is not regular!

Proof: Proof by Contradiction.

If L were regular, there exists some k st any string w, |w|  k, must 

satisfy the conditions of the pumping theorem. 

Choose w = akbk Since |w|  k, w must satisfy the conditions of 

the pumping theorem. 

So, there must exist for some x, y, and z st w = xyz, |xy|  k, y  , 

and q  0, xyqz is in L.  

We will show that no such x, y, and z exist!

31CS612



Example 8.8

We will show that no such x, y, and z exist!

1                               2

a a a a a … a a a a a b b b b … b b b b b b

x y z

Since |xy|  k, y must be in region 1.  
So y = ap for some p  1.  

Let q = 2, producing: ak+pbk which  L, since it has more a’s than 

b’s.

There exists at least one long string that fails to satisfy the 

pumping theorem.

So, L is not regular!
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Example 8.9

L = {anbn: n  0} is not regular!

Proof: Proof by Contradiction.

Choose w = ak/2bk/2.  Since |w|  k, w must satisfy the 

conditions of the pumping theorem. So, for some x, y, and z, w

= xyz, |xy|  k, y  , and q  0, xyqz is in L.  

We show that no such x, y, and z exist.  

There are 3 cases for where y could occur:

aaaaa…..aaaaaa | bbbbb…..bbbbbb

1             |                    2                
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Example 8.9

So y can fall in:

• (1):  y = ap for some p.  Since y  , p must be greater than 0.  

Let q = 2.  The resulting string is ak+pbk.   But this string is not in L, 

since it has more a’s than b’s.  

• (2):  y = bp for some p.  Since y  , p must be greater than 0.  

Let q = 2.  The resulting string is akbk+p.   But this string is not in L, 

since it has more b’s than a’s.  

• (1, 2):  y = apbr for some non-zero p and r.  Let q = 2.  The 

resulting string will have interleaved a’s and b’s, and so is not in L.

There exists one long string in L for which no x, y, z exist.  

So L is not regular!
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Using the Pumping Theorem

• If L is regular, then every “long” string in L is 

pumpable. To show that L is not regular, we find 

one that isn’t.

• To use the Pumping Theorem to show that a 

language L is not regular, we must:

1. Choose a string w where |w|  k. Since we do not know 

what k is, we must state w in terms of k.

2. Divide the possibilities for y into a set of equivalence 

classes that can be considered together. 

3. For each such class of possible y values where |xy|  k

and y  : Choose a value for q such that xyqz is not in L. 
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Example 8.10

36

Bal = {w  {), (}* : the parens are balanced} 

is not regular!

Proof: Proof by Contradiction.

Choose w = (k)k
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Example 8.11

37

PalEven = {wwR : w  {a, b}*} is not regular!

Proof: Proof by Contradiction.

Choose w = akbkbkak
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Example 8.12

38

L = {anbm: n  m} is not regular!

Proof: Proof by Contradiction.

Choose w = ak+1bk
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Using the Pumping Theorem 

Effectively

• To choose w:
 Choose a w that is in the part of L that makes it 

not regular.  

 Choose a w that is only barely in L.  

 Choose a w with as homogeneous as possible 

an initial region of length at least k.

• To choose q:
 Try letting q be either 0 or 2.

 If that doesn’t work, analyze L to see if there is 

some other specific value that will work.
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Using the Closure Properties

The two most useful ones are closure under:

• Intersection 

• Complement 
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Example 8.14

L = {w  {a, b}*: #a(w) = #b(w)} is not regular!

Proof: 

If L were regular, then: Intersection

L = L  a*b*

= {anbn: n  0}

would also be regular.  But it isn’t. 

So, L is not regular.
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Example 8.15

L = {aibj: i, j  0 and i  j} is not regular!

Proof: 

If L is regular then so is Complement

L = AnBn  {out of order}

If L is regular, then so is Intersection

L = L   a*b* = {anbn: n  0}

But, L is not regular.

Then, L is not regular.

So, L is not regular!
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Showing That L is not Regular

 Use the Pumping Theorem for regular 

languages.

 Exploit the closure theorems for regular 

languages.
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IN OUT

R grammar Regular Pumping

Regular Expression                  a*b* Closure

FSM

Language Summary
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Reading Assignment

Chapter 8:

Sections

8.1

8.2

8.3

8.4
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In-Class Exercises

Chapter 8:

1 – a & b & n

21 – a & b & e
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Algorithms and Decision Procedures 

for 

Regular Languages
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Decision Procedures

• A decision procedure is an algorithm 

whose result is a boolean value.  

• It must be guaranteed to halt on all inputs 

and be correct
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Membership

49

Theorem 9.1 Given a regular language L and 

a string w, there exists a decision procedure 

that answers the question, is w  L?
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Emptiness

50

Theorem 9.2 Given an FSM M, there exists a 

decision procedure that answers the 

question, is L(M) =  ?
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Totality

51

Theorem 9.3 Given an FSM M, there exists a 

decision procedure that answers the question, 

is L(M) = *?
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Finiteness

52

Theorem 9.4 Given an FSM M, there exists a 

decision procedure that answers the question, 

is L(M) finite and is L(M) infinite?
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Equivalence

53

Theorem 9.5 Given two FSMs M1 and M2, 

there exists a decision procedure that answers 

the question, is L(M1) = L(M2). 
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Minimality

54

Theorem 9.6 Given an FSM M, there exists a 

decision procedure that answers the question, 

is M minimal?
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Decision Procedures for RLs

Decision procedures that answer questions 

about languages defined by FSMs:

• Given an FSM M and a string s, is s accepted by M?

• Given an FSM M, is L(M) = ?

• Given an FSM M, is L(M) = * ?

• Given an FSM M, is  L(M) finite (infinite)?

• Given two FSMs, M1 and M2, is L(M1) = L(M2)?

• Given an FSM M, is M minimal?
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Decision Procedures for RLs

Decision procedures that answer questions 

about languages defined by regular 

expressions: 

• Convert the regular expressions to FSMs 

and apply the FSM algorithms!
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Decision Procedures for RLs

Decision procedures that answer questions 

about languages defined by regular grammars: 

• Convert the regular grammars to FSMs and 

apply the FSM algorithms!
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Algorithms for RLs 

• Ndfsmtodfs

• MinDFSM 
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Algorithms for RLs 

• Given FSMs M1 and M2, construct a FSM M3 st L(M3) 

= L(M2)  L(M1).

• Given FSMs M1 and M2, construct a new FSM M3 st 

L(M3) =  L(M2) L(M1).

• Given FSM M, construct an FSM M* st L(M*) = 

(L(M))*.
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Algorithms for RLs 

• Given a DFSM M, construct an FSM M* st L(M*) = 

L(M).

• Given two FSMs M1 and M2, construct an FSM M3

st L(M3) =  L(M2)  L(M1).

• Given two FSMs M1 and M2, construct an FSM M3

st L(M3) =  L(M2) - L(M1).

• Given an FSM M, construct an FSM M* st L(M*) = 

(L(M))R.
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Algorithms for RLs 

• Given a regular expression , construct an FSM M 

st L() = L(M).

• Given an FSM M, construct a regular expression 

st L() = L(M).

• Given a regular grammar G, construct an FSM M st 

L(G) = L(M).

• Given an FSM M, construct a regular grammar G st 

L(G) = L(M).
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Reading Assignment

Chapter 9:

Sections

9.1

9.2
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In-Class Exercises

Chapter 9:

1 - c
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Regular Languages: Summary

Regular Languages

● regular exprs.

or

● regular grammars

● = DFSMs

● recognize

● minimize FSMs

● closed under:

♦ concatenation

♦ union

♦ Kleene star

♦ complement

♦ intersection

● pumping theorem

● D = ND
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