PART 1:

Automata:

Finite State Machines (Finite Automata)

Formal Language:

Regular Languages Non-regular Languages

Grammar:

Regular Expressions Regular Grammars

Languages, Grammars & Automata

Languages, Grammars & Automata

Regular Languages

Closure Properties & Pumping of Regular Languages

Non-regular Languages

Languages: Regular or Not?

• L= a*b* regular?

- L= {aⁿbⁿ: $n \ge 0$ } regular?
- L= {w ∈ {a, b}* : every a is immediately followed by b} regular?

 L= {w ∈ {a, b}* : every a has a matching b somewhere and no b matches more than one a } regular?

How Many Regular Languages?

Theorem 8.1: There is a <u>countably</u> infinite number of regular languages.

Proof Idea:

There Exist Nonregular Languages

- There is a <u>countably infinite</u> number of regular languages.
- There is an <u>uncountably infinite</u> number of **languages** over any nonempty alphabet Σ .

 So there are many more non-regular languages than there are regular ones!

Languages: Regular or Not?

Showing that a language is regular?
Showing that a language is not regular?

Showing that a Language is Regular

Showing that a Language is Regular

Theorem 8.2: Every finite language is regular.

Proof Idea:

If *L* is the empty set, then it is defined by the regular expression \emptyset and so is regular.

If it is any finite language composed of the strings $s_1, s_2, ..., s_n$ for some positive integer *n*, then it is defined by the regular expression: $s_1 \cup s_2 \cup ... \cup s_n$ So it too is regular.

Finiteness - Theoretical vs. Practical

- Any finite language is regular.
- The size of the language doesn't matter.
- But, from an implementation point of view, it very well may.

Showing That *L* is Regular

- Show that L is finite.
- Exhibit an FSM for L.
- \checkmark Exhibit a regular expression for *L*.
 - Exhibit a regular grammar for *L*.

Closure Properties of Regular Languages

Operations that preserve the Property of being a Regular Language!

Closure Theorems of Regular Languages

The regular languages are <u>closed</u> under

- Union
- Concatenation
- Kleene star
- Complement
- Intersection
- Difference
- Reverse
 Letter Substitution

CS612

Showing That *L* is Regular

- Exploit the closure theorems.
- To show that L is regular, show that L can be constructed from other regular languages using the closure operations!

L = { $w \in \{a, b\}^*$: w contains an even number of a's and an odd number of b's and all a's come in runs of three} is regular!

Proof:

- $L = L_1 \cap L_2$, where:
- L₁ = {w ∈ {a, b}* : w contains an even number of a's and an odd number of b's}, and
- $L_2 = \{w \in \{a, b\}^* : all a's come in runs of three\}$

 $L_1 = \{w \in \{a, b\}^* : w \text{ contains an even number of } a's and an odd number of b's \} is regular.$

 $L_2 = \{w \in \{a, b\}^* : all a's come in runs of three\}$ is **regular**.

- L_1 and L_2 are regular.
- Then, $L_1 \cap L_2$ is also regular.
- So, L is regular!

Showing That *L* is Regular

- Show that *L* is finite.
- ✓ Exhibit an FSM for L.
- \checkmark Exhibit a regular expression for *L*.
- \checkmark Exhibit a regular grammar for *L*.
- Exploit the closure theorems.

Showing that a Language is Not Regular

Regular Languages

- Every regular language can be accepted by some FSM with a finite # of states.
- It can only use a finite amount of memory to record essential properties.

Regular Languages

- The only way to generate/accept an infinite language with a finite description is to use:
 - Kleene star (in regular expressions), or
 cycles (in FSM).
- This forces some kind of simple repetitive cycle within the strings.

Repetitive Property of DFSM

L=bab*ab

<u>babbb</u>ab xyz

*xy*z* must be in L.

Long Strings Forces Repeated States

Theorem 8.5 Let $M = (K, \Sigma, \delta, s, A)$ be any DFSM. If *M* accepts any string of length |K| or greater, then that string will force *M* to <u>visit</u> <u>some state more than once</u> (thus traversing at least one loop).

Proof Idea:

By the Pigeonhole Principle!

If you put >n pigeons into n holes, then some hole must have > 1 pigeon.

Long Strings Forces Repeated States

Proof Idea:

- *M* must start in one of its states.
- Each time it reads an input character, it visits some state.
- So, in processing a string of length n, M creates a total of n + 1 state visits.
- If n+1 > |K|, then, by the pigeonhole principle, some state must get more than one visit.
- So, if $n \ge |K|$, then *M* must visit at least one state more than once.

The Pumping Theorem/Lemma for Regular Languages

Theorem 8.6 If *L* is regular, then every long string in *L* is pumpable.

So, $\exists k \ge 1$

(\forall strings $w \in L$, where $|w| \ge k$ ($\exists x, y, z (w = xyz, |xy| \le k, y \ne \varepsilon$, and $\forall q \ge 0 (xy^qz \text{ is in } L)))).$

Showing That *L* is not Regular

- The pumping theorem is true for every regular language!
- If we could show the pumping theorem is not true of some language L, then L is not regular!
- Proof by Contraction:
 - 1. Suppose some language L is regular, then it would possess certain properties.
 - 2. Show that L does not posses those properties.
 - 3. Therefore, L is not regular.

L = {aⁿbⁿ: $n \ge 0$ } is not regular!

Proof: Proof by Contradiction.

If L were regular, there exists some k st any string w, $|w| \ge k$, must satisfy the conditions of the pumping theorem.

Choose $w = a^k b^k$ Since $|w| \ge k$, w must satisfy the conditions of the pumping theorem.

So, there must exist for some *x*, *y*, and *z* st w = xyz, $|xy| \le k$, $y \ne \varepsilon$, and $\forall q \ge 0$, $xy^q z$ is in *L*.

We will show that no such *x*, *y*, and *z* exist!

We will show that no such *x*, *y*, and *z* exist!

Since $|xy| \le k$, y must be in region 1. So $y = a^p$ for some $p \ge 1$.

Let q = 2, producing: $a^{k+p}b^k$ which $\notin L$, since it has more a's than b's.

There exists at least one long string that fails to satisfy the pumping theorem.

So, L is not regular!

$L = \{a^n b^n: n \ge 0\}$ is not regular!

Proof: Proof by Contradiction.

Choose $w = a^{\lceil k/2 \rceil} b^{\lceil k/2 \rceil}$. Since $|w| \ge k$, *w* must satisfy the conditions of the pumping theorem. So, for some *x*, *y*, and *z*, *w* = *xyz*, $|xy| \le k$, $y \ne \varepsilon$, and $\forall q \ge 0$, $xy^q z$ is in *L*.

We show that no such *x*, *y*, and *z* exist. There are 3 cases for where *y* could occur:

```
aaaaa....aaaaaa | bbbbb....bbbbbb
1 | 2
```

So y can fall in:

- (1): y = a^p for some p. Since y ≠ ε, p must be greater than 0. Let q = 2. The resulting string is a^{k+p}b^k. But this string is not in L, since it has more a's than b's.
- (2): y = b^p for some p. Since y ≠ ε, p must be greater than 0. Let q = 2. The resulting string is a^kb^{k+p}. But this string is not in L, since it has more b's than a's.
- (1, 2): y = a^pb^r for some non-zero p and r. Let q = 2. The resulting string will have interleaved a's and b's, and so is not in L.

There exists one long string in *L* for which no x, y, z exist. So *L* is not regular!

Using the Pumping Theorem

- If *L* is regular, then every "long" string in *L* is pumpable. To show that *L* is not regular, we find one that isn't.
- To use the Pumping Theorem to show that a language *L* is not regular, we must:
 - 1. Choose a string *w* where $|w| \ge k$. Since we do not know what *k* is, we must state *w* in terms of *k*.
 - 2. Divide the possibilities for *y* into a set of equivalence classes that can be considered together.
 - 3. For each such class of possible *y* values where $|xy| \le k$ and $y \ne \varepsilon$: Choose a value for *q* such that xy^qz is not in *L*.

Bal = {w \in {), (}* : the parens are balanced} is **not regular**!

Proof: Proof by Contradiction.

Choose $w = \binom{k}{k}$

PalEven = { ww^{R} : $w \in \{a, b\}^{*}$ } is not regular!

Proof: Proof by Contradiction.

Choose $w = a^k b^k b^k a^k$

L = {aⁿb^m: $n \ge m$ } is **not regular**!

Proof: Proof by Contradiction.

Choose $w = a^{k+1}b^k$

Using the Pumping Theorem Effectively

To choose w:

- ✓ Choose a *w* that is in the part of *L* that makes it not regular.
- \checkmark Choose a *w* that is only barely in *L*.
- ✓ Choose a *w* with as homogeneous as possible an initial region of length at least k.

• To choose q:

- ✓ Try letting q be either 0 or 2.
- ✓ If that doesn't work, analyze L to see if there is some other specific value that will work.

Using the Closure Properties

The two most useful ones are closure under:

- Intersection \cap
- Complement –

$$L = \{w \in \{a, b\}^*: \#_a(w) = \#_b(w)\}$$
 is not regular!

Proof:

If L were regular, then: Intersection

would also be regular. But it isn't. So, L is not regular.

L = { $a^{i}b^{j}$: *i*, $j \ge 0$ and $i \ne j$ } is **not regular**! *Proof:*

If L is regular then so is Complement

 $-L = A^n B^n \cup \{ \text{out of order} \}$

If $\neg L$ is regular, then so is Intersection

$$\mathsf{L}' = \neg \mathsf{L} \ \cap \mathsf{a}^*\mathsf{b}^* = \{\mathsf{a}^n \mathsf{b}^n : n \ge 0\}$$

But, L' is not regular.

Then, $\neg L$ is not regular.

So, L is not regular!

Showing That *L* is not Regular

 Use the Pumping Theorem for regular languages.
 Exploit the closure theorems for regular

 Exploit the closure theorems for regular languages.

Reading Assignment

Chapter 8:

Sections 8.1 8.2 8.3 8.4

In-Class Exercises

Chapter 8:

1 – a & b & n 21 – a & b & e

Algorithms and Decision Procedures for Regular Languages

Decision Procedures

- A decision procedure is an algorithm whose result is a boolean value.
- It must be guaranteed to halt on all inputs and be correct

Membership

Theorem 9.1 Given a regular language L and a string w, there exists a decision procedure that answers the question, is $w \in L$?

Emptiness

Theorem 9.2 Given an FSM M, there exists a decision procedure that answers the question, is $L(M) = \emptyset$?

Totality

Theorem 9.3 Given an FSM M, there exists a decision procedure that answers the question, is $L(M) = \Sigma^*$?

Finiteness

Theorem 9.4 Given an FSM M, there exists a decision procedure that answers the question, is L(M) finite and is L(M) infinite?

Equivalence

Theorem 9.5 Given two FSMs M_1 and M_2 , there exists a decision procedure that answers the question, is $L(M_1) = L(M_2)$.

Minimality

Theorem 9.6 Given an FSM M, there exists a decision procedure that answers the question, is M minimal?

Decision Procedures for RLs

Decision procedures that answer questions about languages defined by FSMs:

- Given an FSM *M* and a string *s*, is *s* accepted by *M*?
- Given an FSM *M*, is $L(M) = \emptyset$?
- Given an FSM *M*, is $L(M) = \Sigma^*$?
- Given an FSM *M*, is *L*(*M*) finite (infinite)?
- Given two FSMs, M_1 and M_2 , is $L(M_1) = L(M_2)$?
- Given an FSM *M*, is *M* minimal?

Decision Procedures for RLs

Decision procedures that answer questions about languages defined by regular expressions:

 Convert the regular expressions to FSMs and apply the FSM algorithms!

Decision Procedures for RLs

Decision procedures that answer questions about languages defined by regular grammars:

 Convert the regular grammars to FSMs and apply the FSM algorithms!

- Given FSMs M_1 and M_2 , construct a FSM M_3 st $L(M_3) = L(M_2) \cup L(M_1)$.
- Given FSMs M_1 and M_2 , construct a new FSM M_3 st $L(M_3) = L(M_2) L(M_1)$.
- Given FSM M, construct an FSM M* st L(M*) = (L(M))*.

- Given a DFSM *M*, construct an FSM M^* st $L(M^*) = \neg L(M)$.
- Given two FSMs M_1 and M_2 , construct an FSM M_3 st $L(M_3) = L(M_2) \cap L(M_1)$.
- Given two FSMs M_1 and M_2 , construct an FSM M_3 st $L(M_3) = L(M_2) - L(M_1)$.
- Given an FSM M, construct an FSM M^* st $L(M^*) = (L(M))^R$.

- Given a regular expression α, construct an FSM M st L(α) = L(M).
- Given an FSM *M*, construct a regular expression α st *L*(α) = *L*(*M*).
- Given a regular grammar G, construct an FSM M st L(G) = L(M).
- Given an FSM *M*, construct a regular grammar *G* st L(G) = L(M).

Reading Assignment

Chapter 9:

Sections 9.1 9.2

In-Class Exercises

Chapter 9:

1 - c

Regular Languages: Summary

Regular Languages

- regular exprs. or
- regular grammars
- = DFSMs
- recognize
- minimize FSMs
- closed under:
 - concatenation
 - ♦ union
 - Kleene star
 - complement
 - intersection
- pumping theorem
 - $\mathsf{D} = \mathsf{N}\mathsf{D}$