
PART 2:

Automata:
PDA

Formal Language:
Context-Free Languages

Non-Context-Free Languages

Grammar:
Context-Free Grammars

1CS612

Context-Free Grammars

2CS612

Young
Pencil

Languages, Grammars & Automata

3CS612

Young
Pencil

Languages, Grammars & Automata

4CS612

Young
Pencil

Languages, Grammars & Automata
SD

D

Context-sensitive

Context-free

DCF

Regular

FSMs

DPDAs

NDPDAs

LBAs

Turing MachinesCS612 5

Young
Pencil

Context-free Grammars, Languages,

and PDAs

Context-free

Language

Context-free

Grammar

PDA

Generates

Accepts

6CS612

Young
Pencil

Young
Pencil

Young
Pencil

Rewrite Systems

A rewrite system (or production system or rule-

based system) is:

• a list of rules, and

• an algorithm for applying them.

Each rule has a left-hand side and a right hand side:

S aSb

aS

aSb bSabSa

7CS612

Grammars Generate Languages

A grammar is a rewrite system to

derive/generate/define a language!

8CS612

Young
Pencil

Grammars

A grammar is a set of rules (productions)

that are stated in terms of two alphabets:

• A terminal alphabet, , that contains the symbols

that make up the strings in L(G),

• A nonterminal alphabet, the elements of which will

function as working symbols that will be used while

the grammar is operating.

• A grammar has a unique start symbol, often called

S.

9CS612

Regular Grammars (RG)

In a regular grammar, all rules in R must:

1. have a left hand side that is a single

nonterminal

2. have a right hand side that is:

• , or

• a single terminal, or

• a single terminal followed by a single

nonterminal.

Legal: S a, S , and T aS

Not legal: S aSa and aSa T

CS612 10

Context-Free Grammars (CFG)

In a context-free grammar, all rules in R

must:

1. have a left hand side that is a single

nonterminal.

2. have a right hand side.

 No restrictions on the form of the right hand sides!

S abDeFGab

11CS612

Young
Pencil

Young
Pencil

Definition of Context-Free Grammars

A context-free grammar G is a quadruple (V,

, R, S) where:

• V is the rule alphabet, which contains

nonterminals and terminals.

• (the set of terminals) is a subset of V,

• R (the set of rules) is a finite subset of (V -)

V*,
 All rules in R must have a left hand side that is

a single nonterminal and have a right hand

side.

• S (the start symbol) is an element of V - .

12CS612

Young
Pencil

Derivations Using A CFG

x G y iff x = A

and A is in R

y =

Sentential Forms

w0 G w1 G w2 G . . . G wn is a derivation in G.

Let G* be the reflexive, transitive closure of G.

13CS612

Example: CFG

G = {{S, a, b,c}, {a, b,c}, R, S}, where:

R = {

S

S c

S aSb

}

acb

aaabbb

aacbbb

14CS612

Leftmost and Rightmost Derivations

• Left-most derivation:

Always choose left-most nonterminal for

expansion!

• Right-most derivation:

Always choose right-most nonterminal for

expansion!

15CS612

Young
Pencil

Recursive Rules

• A rule is recursive iff it is X w1Yw2,

where Y G* w3Xw4

for some w1, w2, w3, and w in V*.

• Recursive rules make a finite grammar to

generate infinite set of strings!

16CS612

Young
Pencil

Recursive Grammars

• A grammar is recursive iff it contains at least

one recursive rule.

S (S)

S (T)

T (S)

17CS612

Young
Pencil

Self-Embedding Rules

• A rule in a grammar G is self-embedding

iff it is X w1Yw2,

where Y G* w3Xw4 and

both w1w3 and w4w2 are in +.

A nonempty string on each side of the

nested X!

Pairs of matching regions! uvqxyqz

18CS612

Young
Pencil

Self-Embedding Grammars

• A grammar is self-embedding iff it contains

at least one self-embedding rule.

S aSa is self-embedding

S aS is not self-embedding

S aT T Sa is self-embedding

19CS612

Young
Pencil

Self-Embedding Grammars

• A self-embedding grammar G does not

guarantees L(G) is regular.

• If a grammar G is not self-embedding then

L(G) is regular.

• If a language L has the property that every

grammar that defines it is self-embedding,

then L is not regular.

20CS612

Example 11.1

Bal = { w {), (}* : the parentheses are

balanced}

CFG?

S

S SS

S (S)

()

()()

(()())

21CS612

Example 11.2

AnBn = {anbn : n 0}

CFG?

S
S aSb

ab

aaabbb

aabbb

22CS612

The Language Generated by CFG

The language generated by CFG G, denoted

L(G), is

the set of terminal strings that have

derivations from the starting symbol.

{w * : S G* w}.

23CS612

Context-Free Languages (CFL)

A language L is context-free iff it is

generated by some context-free

grammar G.

CFL = CFG

24CS612

Young
Pencil

Examples and Designing CFGs

25CS612

Example 11.3

CFG?

G = {{S, a, b}, {a, b}, R, S}, where:

R = { S aSa

S bSb

S }.
ababbaba

ababba

26

PalEven = {wwR : w {a, b}*}

CS612

Example 11.4

L = {w {a, b}*: #a(w) = #b(w)}.

CFG?
G = {{S, a, b}, {a, b}, R, S}, where:

R = { S aSb

S bSa

S SS

S }.
ababbaba

ababba
27CS612

BNF (Backus Naur Form)

• The symbol | should be read as “or”.

Example: S aSb | bSa | SS |

• Allow a nonterminal symbol to be any sequence of
characters surrounded by angle brackets.

Examples of nonterminals:

<program>

<variable>

A notation for writing practical context-free

grammars:

28CS612

Young
Pencil

Example 11.5

BNF for a Java Fragment

<block> ::= {<stmt-list>} | {}

<stmt-list> ::= <stmt> | <stmt-list> <stmt>

<stmt> ::= <block> | while (<cond>) <stmt> |

if (<cond>) <stmt> |

do <stmt> while (<cond>); |

<assignment-stmt>; |

return | return <expression> |

<method-invocation>;

29CS612

Designing Context-Free Grammars

• Generate related regions together:

AnBn

• Generate concatenated regions:

A BC

• Generate outside in:
A aAb

30CS612

Young
Pencil

Example 11.7

L = {anbncm : n, m 0}.

CFG?
G = ({S, N, C, a, b, c}, {a, b, c}, R, S} where:

R = { S NC
N aNb

N
C cC

C }.

abc

aaabbbccc

aabbbcc

31CS612

Example 11.8

kk nnnnnn
bababa ...2211

abab

aabbaaabbbabab

CFG?
G = ({S, M, a, b}, {a, b}, R, S} where:

R = { S MS

S
M aMb

M }.

32

L = { : k 0 and i (ni 0)}

CS612

Parse Trees

 A tree representation for derivations!

 Equivalence of Parse Trees and

Derivations!

33CS612

Young
Pencil

Parse Trees

A parse tree, derived by a grammar G = (V, ,

R, S), is a rooted, ordered tree in which:

• Every leaf node is labeled with an element of {}.

• The root node is labeled S.

• Every other node is labeled with some element of V – .

• If m is a nonleaf node labeled X and the children of m are

labeled x1, x2, …, xn, then R contains the rule X x1, x2, …,

xn.

The yield of a parse tree is the string consisting

of all leaves.

34CS612

S

NP VP

Nominal V NP

Adjs N Nominal

Adj N

the smart cat smells chocolate

Example 11.11

35CS612

Generative Capacity

Given a grammar G:

• G’s weak generative capacity, defined to be

the set of strings, L(G), that G generates.

• G’s strong generative capacity, defined to

be the set of parse trees that G generates.

36CS612

Ambiguity & Inherent Ambiguity

37CS612

Unambiguous Grammars

A grammar G is unambiguous iff every string

derivable in G has a single leftmost

derivation.

38CS612

Young
Pencil

Young
Pencil

Ambiguous Grammars

A grammar G is ambiguous iff there is at least

one string in L(G) for which G produces more

than one parse tree.

• If G generates some string ambiguously.

• Two or more different leftmost (rightmost)

derivations/ parse trees for some string.

 For most applications of context-free grammars,

this is a problem!

39CS612

Young
Pencil

Young
Pencil

Example 11.12

Bal = { w {), (}* : the parentheses are

balanced}

CFG:
S

S SS

S (S)

(())()

Ambiguous?

40CS612

RE:

(a b)*a (a b)*

choose a from (a b)

choose a from (a b)

choose a

choose a

choose a from (a b)

choose a from (a b)

Example 11.13

41CS612

L = { w {a, b}* : w contains at least one a}
aaa
Regular expressions can be ambiguous too!

Example 11.13

42CS612

L = { w {a, b}* : w contains at least one a}
aaa
Regular grammars can be ambiguous too!

RG:

S a

S bS

S aS

S aT

T a

T b

T aT

T bT

Example 11.14

An Ambiguous Grammar for Arithmetic Expressions:

CFG G = (V, , R, E), where
V = {+, *, (,), id, E},

 = {+, *, (,), id},

R = {

E E + E

E E E

E (E)
E id }

Is G ambiguous?

2+ 3 * 5

43CS612

Example 11.14

44CS612

Inherent Ambiguous Languages

• Some languages have the property that

every grammar for them is ambiguous.

• No unambiguous grammar exists!

• We call such languages inherently

ambiguous languages.

45CS612

Young
Pencil

Young
Pencil

Example11.15

L = {anbncm: n, m 0} {anbmcm: n, m 0} is

inherently ambiguous?

One grammar for L:

S S1 | S2

S1 S1c | A /* Generate all strings in {anbncm}.

A aAb |

S2 aS2 | B /* Generate all strings in {anbmcm}.

B bBc |

Consider any string of the form {anbncn: n 0}.

Two distinct derivations! L is inherently ambiguous!

46CS612

Ambiguity & Inherent Ambiguity

Both of the following problems are undecidable:

• Given a context-free grammar G, is G

ambiguous?

• Given a context-free language L, is L

inherently ambiguous?

47CS612

Young
Pencil

Reducing Ambiguity

Grammar structures lead to ambiguity:

• rules like S ,

• Rules with symmetric right-hand sides, e.g.,

S SS

E E + E

• Rule sets that lead to ambiguous attachment of

optional postfixes.

48CS612

Young
Pencil

Young
Pencil

Example 11.19

An Ambiguous Grammar for Arithmetic Expressions:

E E + E

E E E

E (E)
E id

E E

E E E E

E E E E

id id id id id id

Problem 1: Associativity

49CS612

Example 11.19

E E

E E E E

E E E E

id id + id id id + id

Problem 2: Precedence

50CS612

An Ambiguous Grammar for Arithmetic Expressions:

E E + E

E E E

E (E)
E id

Example 11.19

An Unambiguous Grammar for Arithmetic Expressions:

E E + T

E T

T T * F

T F

F (E)

F id

id + id * id

51CS612

Ambiguous Attachment

The dangling else problem:

<stmt> ::= if <cond> then <stmt>

<stmt> ::= if <cond> then <stmt> else <stmt>

Ambiguous?

if cond1 then if cond2 then st1 else st2

52CS612

<Statement> ::= <IfThenStatement> | <IfThenElseStatement> |

<IfThenElseStatementNoShortIf>

<StatementNoShortIf> ::= <block> |

<IfThenElseStatementNoShortIf> | …
<IfThenStatement> ::= if (<Expression>) <Statement>

<IfThenElseStatement> ::= if (<Expression>)

<StatementNoShortIf> else <Statement>

<IfThenElseStatementNoShortIf> ::=
if (<Expression>) <StatementNoShortIf>

else <StatementNoShortIf>

<Statement>

<IfThenElseStatement>

if (cond) <StatementNoShortIf> else <Statement>

Example 11.20

53CS612

Normal Forms for Grammars

54CS612

Normal Forms for Grammars

Chomsky Normal Form, in which all rules are

of one of the following two forms:

• X a, where a , or

• X BC, where B and C are elements of

V - .

Advantages:

• Parsers can use binary trees.

• Exact length of derivations is known.

55CS612

Young
Pencil

Normal Forms for Grammars

Greibach Normal Form, in which all rules are of

the following form:

• X a , where a and (V -)*.

Advantages:
• Every derivation of a string s contains |s| rule

applications.

• Greibach normal form grammars can easily be

converted to pushdown automata with no -

transitions. This is useful because such PDAs are

guaranteed to halt.
56CS612

Young
Pencil

Normal Forms Exist

Theorem 11.1 Given a CFG G, there exists an

equivalent Chomsky normal form grammar GC such that:

L(GC) = L(G) – {}.

Proof Idea: Proof by construction.

Theorem 11.2 Given a CFG G, there exists an

equivalent Greibach normal form grammar GG such that:

L(GG) = L(G) – {}.

Proof Idea: Proof by construction.
57CS612

Young
Pencil

Normal Forms

E E + E

E (E)
E id

Converting to Chomsky Normal Form:

E E E

E P E

E L E

E E R
E id

L (

R)

P +

Conversion doesn’t change weak generative capacity, but it may

change strong generative capacity!
58CS612

Comparing RL and CFL

Regular Languages Context-Free Languages

regular expressions

or

regular grammars context-free grammars

recognize parse

59CS612

Young
Pencil

Reading Assignment

Chapter 11:

Sections

11.1

11.2

11.3

11.6

11.7

11.8

60CS612

In-Class Exercises

Chapter 11:

1 - b

2

3

6 – e & i

8

9

10

61CS612

