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Context-free Grammars, Languages, 

and PDAs

Context-free 

Language

Context-free 

Grammar

PDA

Generates
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Rewrite Systems

A rewrite system (or production system or rule-

based system) is:

• a list of rules, and 

• an algorithm for applying them.  

Each rule has a left-hand side and a right hand side: 

S  aSb 

aS  

aSb bSabSa
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Grammars Generate Languages

A grammar is a rewrite system to 

derive/generate/define a language!
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Grammars

A grammar is a set of rules (productions) 

that are stated in terms of two alphabets:

• A terminal alphabet, , that contains the symbols 

that make up the strings in L(G),

• A nonterminal alphabet, the elements of which will 

function as working symbols that will be used while 

the grammar is operating.  

• A grammar has a unique start symbol, often called 

S.   
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Regular Grammars (RG)

In a regular grammar, all rules in R must:

1. have a left hand side that is a single 

nonterminal

2. have a right hand side that is:

• , or 

• a single terminal, or 

• a single terminal followed by a single 

nonterminal.

Legal:  S  a, S  , and T  aS

Not legal:  S  aSa and aSa T
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Context-Free Grammars (CFG)

In a context-free grammar, all rules in R

must:

1. have a left hand side that is a single 

nonterminal.

2. have a right hand side.

 No restrictions on the form of the right hand sides!

S  abDeFGab
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Definition of Context-Free Grammars

A context-free grammar G is a quadruple (V, 

, R, S) where:

• V is the rule alphabet, which contains 

nonterminals and terminals.

•  (the set of terminals) is a subset of V,

• R (the set of rules) is a finite subset of (V - ) 

V*, 
 All rules in R must have a left hand side that is 

a single nonterminal and have a right hand 

side.

• S (the start symbol) is an element of V - .
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Derivations Using A CFG

x G y iff x = A

and  A   is in R

y =   

Sentential Forms

w0 G w1 G w2 G . . . G wn is a derivation in G. 

Let G* be the reflexive, transitive closure of G.
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Example: CFG

G = {{S, a, b,c}, {a, b,c}, R, S}, where:

R = {

S  

S  c

S  aSb

}


acb

aaabbb

aacbbb
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Leftmost and Rightmost Derivations

• Left-most derivation:

Always choose left-most nonterminal for 

expansion!

• Right-most derivation:

Always choose right-most nonterminal for 

expansion!
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Recursive Rules 

• A rule is recursive iff it is  X  w1Yw2, 

where Y G* w3Xw4

for some w1, w2, w3, and w in V*.

• Recursive rules make a finite grammar to 

generate infinite set of strings!
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Recursive Grammars

• A grammar is recursive iff it contains at least 

one recursive rule.   

S  (S)  

S  (T) 

T  (S) 

17CS612

Young
Pencil



Self-Embedding Rules 

• A rule in a grammar G is self-embedding

iff it is X  w1Yw2, 

where Y G* w3Xw4 and 

both w1w3 and w4w2 are in +. 

A nonempty string on each side of the 

nested X!

Pairs of matching regions! uvqxyqz
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Self-Embedding Grammars

• A grammar is self-embedding iff it contains 

at least one self-embedding rule.  

S  aSa is self-embedding

S  aS is not self-embedding

S  aT T  Sa is self-embedding
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Self-Embedding Grammars

• A self-embedding grammar G does not 

guarantees L(G) is regular.

• If a grammar G is not self-embedding then 

L(G) is regular.   

• If a language L has the property that every 

grammar that defines it is self-embedding, 

then L is not regular.  
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Example 11.1

Bal = { w  {), (}* : the parentheses are 

balanced}

CFG?

S  

S  SS

S  (S)

()

()()

(()())
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Example 11.2

AnBn = {anbn : n  0} 

CFG?

S  
S  aSb


ab

aaabbb

aabbb
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The Language Generated by CFG

The language generated by CFG G, denoted 

L(G), is 

the set of terminal strings that have 

derivations from the starting symbol.

{w  * : S G* w}. 
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Context-Free Languages (CFL)

A language L is context-free iff it is 

generated by some context-free 

grammar G.

CFL = CFG   
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Examples and Designing CFGs
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Example 11.3

CFG?

G = {{S, a, b}, {a, b}, R, S}, where:

R = { S  aSa

S  bSb

S   }.
ababbaba

ababba

26

PalEven = {wwR : w  {a, b}*} 
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Example 11.4

L = {w  {a, b}*: #a(w) = #b(w)}. 

CFG?
G = {{S, a, b}, {a, b}, R, S}, where:

R = { S  aSb

S  bSa

S  SS

S   }.
ababbaba

ababba
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BNF (Backus Naur Form)

• The symbol | should be read as “or”.  

Example: S  aSb | bSa | SS | 

• Allow a nonterminal symbol to be any sequence of 
characters surrounded by angle brackets.  

Examples of nonterminals: 

<program>       

<variable>  

A notation for writing practical context-free 

grammars:
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Example 11.5

BNF for a Java Fragment

<block> ::= {<stmt-list>} | {}

<stmt-list> ::= <stmt> | <stmt-list> <stmt>

<stmt> ::= <block> | while (<cond>) <stmt> | 

if (<cond>) <stmt> | 

do <stmt> while (<cond>); | 

<assignment-stmt>; | 

return | return <expression> | 

<method-invocation>;
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Designing Context-Free Grammars

• Generate related regions together:

AnBn

• Generate concatenated regions:

A  BC

• Generate outside in:
A  aAb
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Example 11.7

L = {anbncm : n, m  0}.  

CFG?
G = ({S, N, C, a, b, c},  {a, b, c}, R, S} where:

R = { S  NC
N  aNb

N  
C  cC

C   }. 

abc

aaabbbccc

aabbbcc
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Example 11.8

kk nnnnnn
bababa ...2211


abab

aabbaaabbbabab

CFG?
G = ({S, M, a, b}, {a, b}, R, S} where:

R = { S  MS

S  
M  aMb

M  }. 

32

L = {                             : k  0 and i (ni  0)}
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Parse Trees

 A tree representation for derivations!

 Equivalence of Parse Trees and 

Derivations!
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Parse Trees

A parse tree, derived by a grammar G = (V, , 

R, S), is a rooted, ordered tree in which:

• Every leaf node is labeled with an element of   {}.

• The root node is labeled S.

• Every other node is labeled with some element of V – .

• If m is a nonleaf node labeled X and the children of m are 

labeled x1, x2, …, xn, then R contains the rule  X  x1, x2, …, 

xn.

The yield of a parse tree is the string consisting 

of all leaves.
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S

NP VP

Nominal V NP

Adjs N Nominal

Adj N

the smart cat                    smells           chocolate

Example 11.11
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Generative Capacity

Given a grammar G:

• G’s weak generative capacity, defined to be 

the set of strings, L(G), that G generates.

• G’s strong generative capacity, defined to 

be the set of parse trees that G generates.
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Ambiguity & Inherent Ambiguity
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Unambiguous Grammars

A grammar G is unambiguous iff every string 

derivable in G has a single leftmost 

derivation.
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Ambiguous Grammars

A grammar G is ambiguous iff there is at least 

one string in L(G) for which G produces more 

than one parse tree.

• If G generates some string ambiguously.

• Two or more different leftmost (rightmost) 

derivations/ parse trees for some string.

 For most applications of context-free grammars, 

this is a problem!
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Example 11.12

Bal = { w  {), (}* : the parentheses are 

balanced}

CFG:
S  

S  SS

S  (S)

(())()

Ambiguous?
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RE:

(a  b)*a (a  b)*

choose a from (a  b)

choose a from (a  b)

choose a

choose a

choose a from (a  b)

choose a from (a  b) 

Example 11.13 
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L = { w  {a, b}* : w contains at least one a}
aaa
Regular expressions can be ambiguous too!



Example 11.13 
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L = { w  {a, b}* : w contains at least one a}
aaa
Regular grammars can be ambiguous too!

RG:

S  a

S  bS

S  aS

S  aT

T  a

T  b

T  aT

T  bT



Example 11.14

An Ambiguous Grammar for Arithmetic Expressions:

CFG G = (V, , R, E), where
V = {+, *, (, ), id, E},

 = {+, *, (, ), id},

R = {

E  E + E

E  E  E

E  (E)
E  id }

Is G ambiguous?

2+ 3 * 5
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Example 11.14
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Inherent Ambiguous Languages

• Some languages have the property that 

every grammar for them is ambiguous.  

• No unambiguous grammar exists!

• We call such languages inherently 

ambiguous languages.
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Example11.15

L = {anbncm: n, m  0}  {anbmcm: n, m  0} is 

inherently ambiguous?

One grammar for L:

S  S1 | S2

S1  S1c | A /* Generate all strings in {anbncm}.

A  aAb | 

S2  aS2 | B /* Generate all strings in {anbmcm}.

B  bBc | 

Consider any string of the form  {anbncn: n  0}.

Two distinct derivations! L is inherently ambiguous!
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Ambiguity & Inherent Ambiguity

Both of the following problems are undecidable:

• Given a context-free grammar G, is G

ambiguous?

• Given a context-free language L, is L

inherently ambiguous?
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Reducing Ambiguity

Grammar structures lead to ambiguity:

•  rules like S  ,

• Rules with symmetric right-hand sides, e.g.,

S  SS

E  E + E

• Rule sets that lead to ambiguous attachment of 

optional postfixes.
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Example 11.19

An Ambiguous Grammar for Arithmetic Expressions:

E  E + E                 

E  E  E

E  (E)
E  id

E E

E E E E

E E                     E E

id        id         id                   id     id       id

Problem 1: Associativity
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Example 11.19

E E

E E E E

E E                     E E

id        id        +      id                   id     id      +        id

Problem 2: Precedence

50CS612

An Ambiguous Grammar for Arithmetic Expressions:

E  E + E                 

E  E  E

E  (E)
E  id



Example 11.19

An Unambiguous Grammar for Arithmetic Expressions:

E  E + T

E T

T  T * F

T  F

F  (E)

F  id

id + id * id
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Ambiguous Attachment

The dangling else problem:

<stmt> ::= if <cond> then <stmt>

<stmt> ::= if <cond> then <stmt> else <stmt>

Ambiguous?

if cond1 then if cond2 then st1 else st2
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<Statement> ::= <IfThenStatement> |  <IfThenElseStatement> | 

<IfThenElseStatementNoShortIf>

<StatementNoShortIf> ::= <block> | 

<IfThenElseStatementNoShortIf> | …
<IfThenStatement> ::= if ( <Expression> )  <Statement>

<IfThenElseStatement> ::= if ( <Expression> ) 

<StatementNoShortIf> else <Statement>

<IfThenElseStatementNoShortIf> ::= 
if ( <Expression> ) <StatementNoShortIf> 

else <StatementNoShortIf>

<Statement>

<IfThenElseStatement>

if      (cond)        <StatementNoShortIf>       else      <Statement>

Example 11.20
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Normal Forms for Grammars
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Normal Forms for Grammars

Chomsky Normal Form, in which all rules are 

of one of the following two forms: 

• X  a, where a  ,  or

• X  BC, where B and C are elements of 

V - .

Advantages:

• Parsers can use binary trees.

• Exact length of derivations is known.
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Normal Forms for Grammars

Greibach Normal Form, in which all rules are of 

the following form:

• X  a , where a   and   (V - )*.

Advantages:
• Every derivation of a string s contains |s| rule 

applications.  

• Greibach normal form grammars can easily be 

converted to pushdown automata with no -

transitions.  This is useful because such PDAs are   

guaranteed to halt.
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Normal Forms Exist

Theorem 11.1 Given a CFG G, there exists an 

equivalent Chomsky normal form grammar GC such that:

L(GC) = L(G) – {}.

Proof Idea: Proof by construction.  

Theorem 11.2 Given a CFG G, there exists an 

equivalent Greibach normal form grammar GG such that:

L(GG) = L(G) – {}.

Proof Idea: Proof by construction.  
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Normal Forms

E  E + E

E  (E)
E  id  

Converting to Chomsky Normal Form:

E  E E

E  P E

E  L E

E  E R
E  id

L   (

R   )

P   + 

Conversion doesn’t change weak generative capacity, but it may 

change strong generative capacity!
58CS612



Comparing RL and CFL

Regular Languages Context-Free Languages

regular expressions

or

regular grammars context-free grammars

recognize parse
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Reading Assignment

Chapter 11:

Sections

11.1

11.2

11.3

11.6

11.7

11.8
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In-Class Exercises

Chapter 11:

1 - b

2

3

6 – e & i

8

9

10  
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