
PART 2:

Automata:
PDA

Formal Language:
Context-Free Languages

Non-Context-Free Languages

Grammar:
Context-Free Grammars

1CS612

Context-Free Grammars

2CS612

Young
Pencil

Languages, Grammars & Automata

3CS612

Young
Pencil

Languages, Grammars & Automata

4CS612

Young
Pencil

Languages, Grammars & Automata
SD

D

Context-sensitive

Context-free

DCF

Regular

FSMs

DPDAs

NDPDAs

LBAs

Turing MachinesCS612 5

Young
Pencil

Context-free Grammars, Languages,

and PDAs

Context-free

Language

Context-free

Grammar

PDA

Generates

Accepts

6CS612

Young
Pencil

Young
Pencil

Young
Pencil

Rewrite Systems

A rewrite system (or production system or rule-

based system) is:

• a list of rules, and

• an algorithm for applying them.

Each rule has a left-hand side and a right hand side:

S  aSb

aS  

aSb bSabSa

7CS612

Grammars Generate Languages

A grammar is a rewrite system to

derive/generate/define a language!

8CS612

Young
Pencil

Grammars

A grammar is a set of rules (productions)

that are stated in terms of two alphabets:

• A terminal alphabet, , that contains the symbols

that make up the strings in L(G),

• A nonterminal alphabet, the elements of which will

function as working symbols that will be used while

the grammar is operating.

• A grammar has a unique start symbol, often called

S.

9CS612

Regular Grammars (RG)

In a regular grammar, all rules in R must:

1. have a left hand side that is a single

nonterminal

2. have a right hand side that is:

• , or

• a single terminal, or

• a single terminal followed by a single

nonterminal.

Legal: S  a, S  , and T  aS

Not legal: S  aSa and aSa T

CS612 10

Context-Free Grammars (CFG)

In a context-free grammar, all rules in R

must:

1. have a left hand side that is a single

nonterminal.

2. have a right hand side.

 No restrictions on the form of the right hand sides!

S  abDeFGab

11CS612

Young
Pencil

Young
Pencil

Definition of Context-Free Grammars

A context-free grammar G is a quadruple (V,

, R, S) where:

• V is the rule alphabet, which contains

nonterminals and terminals.

•  (the set of terminals) is a subset of V,

• R (the set of rules) is a finite subset of (V - )

V*,
 All rules in R must have a left hand side that is

a single nonterminal and have a right hand

side.

• S (the start symbol) is an element of V - .

12CS612

Young
Pencil

Derivations Using A CFG

x G y iff x = A

and A   is in R

y =   

Sentential Forms

w0 G w1 G w2 G . . . G wn is a derivation in G.

Let G* be the reflexive, transitive closure of G.

13CS612

Example: CFG

G = {{S, a, b,c}, {a, b,c}, R, S}, where:

R = {

S  

S  c

S  aSb

}


acb

aaabbb

aacbbb

14CS612

Leftmost and Rightmost Derivations

• Left-most derivation:

Always choose left-most nonterminal for

expansion!

• Right-most derivation:

Always choose right-most nonterminal for

expansion!

15CS612

Young
Pencil

Recursive Rules

• A rule is recursive iff it is X  w1Yw2,

where Y G* w3Xw4

for some w1, w2, w3, and w in V*.

• Recursive rules make a finite grammar to

generate infinite set of strings!

16CS612

Young
Pencil

Recursive Grammars

• A grammar is recursive iff it contains at least

one recursive rule.

S  (S)

S  (T)

T  (S)

17CS612

Young
Pencil

Self-Embedding Rules

• A rule in a grammar G is self-embedding

iff it is X  w1Yw2,

where Y G* w3Xw4 and

both w1w3 and w4w2 are in +.

A nonempty string on each side of the

nested X!

Pairs of matching regions! uvqxyqz

18CS612

Young
Pencil

Self-Embedding Grammars

• A grammar is self-embedding iff it contains

at least one self-embedding rule.

S  aSa is self-embedding

S  aS is not self-embedding

S  aT T  Sa is self-embedding

19CS612

Young
Pencil

Self-Embedding Grammars

• A self-embedding grammar G does not

guarantees L(G) is regular.

• If a grammar G is not self-embedding then

L(G) is regular.

• If a language L has the property that every

grammar that defines it is self-embedding,

then L is not regular.

20CS612

Example 11.1

Bal = { w  {), (}* : the parentheses are

balanced}

CFG?

S  

S  SS

S  (S)

()

()()

(()())

21CS612

Example 11.2

AnBn = {anbn : n  0}

CFG?

S  
S  aSb


ab

aaabbb

aabbb

22CS612

The Language Generated by CFG

The language generated by CFG G, denoted

L(G), is

the set of terminal strings that have

derivations from the starting symbol.

{w  * : S G* w}.

23CS612

Context-Free Languages (CFL)

A language L is context-free iff it is

generated by some context-free

grammar G.

CFL = CFG

24CS612

Young
Pencil

Examples and Designing CFGs

25CS612

Example 11.3

CFG?

G = {{S, a, b}, {a, b}, R, S}, where:

R = { S  aSa

S  bSb

S   }.
ababbaba

ababba

26

PalEven = {wwR : w  {a, b}*}

CS612

Example 11.4

L = {w  {a, b}*: #a(w) = #b(w)}.

CFG?
G = {{S, a, b}, {a, b}, R, S}, where:

R = { S  aSb

S  bSa

S  SS

S   }.
ababbaba

ababba
27CS612

BNF (Backus Naur Form)

• The symbol | should be read as “or”.

Example: S  aSb | bSa | SS | 

• Allow a nonterminal symbol to be any sequence of
characters surrounded by angle brackets.

Examples of nonterminals:

<program>

<variable>

A notation for writing practical context-free

grammars:

28CS612

Young
Pencil

Example 11.5

BNF for a Java Fragment

<block> ::= {<stmt-list>} | {}

<stmt-list> ::= <stmt> | <stmt-list> <stmt>

<stmt> ::= <block> | while (<cond>) <stmt> |

if (<cond>) <stmt> |

do <stmt> while (<cond>); |

<assignment-stmt>; |

return | return <expression> |

<method-invocation>;

29CS612

Designing Context-Free Grammars

• Generate related regions together:

AnBn

• Generate concatenated regions:

A  BC

• Generate outside in:
A  aAb

30CS612

Young
Pencil

Example 11.7

L = {anbncm : n, m  0}.

CFG?
G = ({S, N, C, a, b, c}, {a, b, c}, R, S} where:

R = { S  NC
N  aNb

N  
C  cC

C   }.

abc

aaabbbccc

aabbbcc

31CS612

Example 11.8

kk nnnnnn
bababa ...2211


abab

aabbaaabbbabab

CFG?
G = ({S, M, a, b}, {a, b}, R, S} where:

R = { S  MS

S  
M  aMb

M  }.

32

L = { : k  0 and i (ni  0)}

CS612

Parse Trees

 A tree representation for derivations!

 Equivalence of Parse Trees and

Derivations!

33CS612

Young
Pencil

Parse Trees

A parse tree, derived by a grammar G = (V, ,

R, S), is a rooted, ordered tree in which:

• Every leaf node is labeled with an element of   {}.

• The root node is labeled S.

• Every other node is labeled with some element of V – .

• If m is a nonleaf node labeled X and the children of m are

labeled x1, x2, …, xn, then R contains the rule X  x1, x2, …,

xn.

The yield of a parse tree is the string consisting

of all leaves.

34CS612

S

NP VP

Nominal V NP

Adjs N Nominal

Adj N

the smart cat smells chocolate

Example 11.11

35CS612

Generative Capacity

Given a grammar G:

• G’s weak generative capacity, defined to be

the set of strings, L(G), that G generates.

• G’s strong generative capacity, defined to

be the set of parse trees that G generates.

36CS612

Ambiguity & Inherent Ambiguity

37CS612

Unambiguous Grammars

A grammar G is unambiguous iff every string

derivable in G has a single leftmost

derivation.

38CS612

Young
Pencil

Young
Pencil

Ambiguous Grammars

A grammar G is ambiguous iff there is at least

one string in L(G) for which G produces more

than one parse tree.

• If G generates some string ambiguously.

• Two or more different leftmost (rightmost)

derivations/ parse trees for some string.

 For most applications of context-free grammars,

this is a problem!

39CS612

Young
Pencil

Young
Pencil

Example 11.12

Bal = { w  {), (}* : the parentheses are

balanced}

CFG:
S  

S  SS

S  (S)

(())()

Ambiguous?

40CS612

RE:

(a  b)*a (a  b)*

choose a from (a  b)

choose a from (a  b)

choose a

choose a

choose a from (a  b)

choose a from (a  b)

Example 11.13

41CS612

L = { w  {a, b}* : w contains at least one a}
aaa
Regular expressions can be ambiguous too!

Example 11.13

42CS612

L = { w  {a, b}* : w contains at least one a}
aaa
Regular grammars can be ambiguous too!

RG:

S  a

S  bS

S  aS

S  aT

T  a

T  b

T  aT

T  bT

Example 11.14

An Ambiguous Grammar for Arithmetic Expressions:

CFG G = (V, , R, E), where
V = {+, *, (,), id, E},

 = {+, *, (,), id},

R = {

E  E + E

E  E  E

E  (E)
E  id }

Is G ambiguous?

2+ 3 * 5

43CS612

Example 11.14

44CS612

Inherent Ambiguous Languages

• Some languages have the property that

every grammar for them is ambiguous.

• No unambiguous grammar exists!

• We call such languages inherently

ambiguous languages.

45CS612

Young
Pencil

Young
Pencil

Example11.15

L = {anbncm: n, m  0}  {anbmcm: n, m  0} is

inherently ambiguous?

One grammar for L:

S  S1 | S2

S1  S1c | A /* Generate all strings in {anbncm}.

A  aAb | 

S2  aS2 | B /* Generate all strings in {anbmcm}.

B  bBc | 

Consider any string of the form {anbncn: n  0}.

Two distinct derivations! L is inherently ambiguous!

46CS612

Ambiguity & Inherent Ambiguity

Both of the following problems are undecidable:

• Given a context-free grammar G, is G

ambiguous?

• Given a context-free language L, is L

inherently ambiguous?

47CS612

Young
Pencil

Reducing Ambiguity

Grammar structures lead to ambiguity:

•  rules like S  ,

• Rules with symmetric right-hand sides, e.g.,

S  SS

E  E + E

• Rule sets that lead to ambiguous attachment of

optional postfixes.

48CS612

Young
Pencil

Young
Pencil

Example 11.19

An Ambiguous Grammar for Arithmetic Expressions:

E  E + E

E  E  E

E  (E)
E  id

E E

E E E E

E E E E

id  id  id id  id  id

Problem 1: Associativity

49CS612

Example 11.19

E E

E E E E

E E E E

id  id + id id  id + id

Problem 2: Precedence

50CS612

An Ambiguous Grammar for Arithmetic Expressions:

E  E + E

E  E  E

E  (E)
E  id

Example 11.19

An Unambiguous Grammar for Arithmetic Expressions:

E  E + T

E T

T  T * F

T  F

F  (E)

F  id

id + id * id

51CS612

Ambiguous Attachment

The dangling else problem:

<stmt> ::= if <cond> then <stmt>

<stmt> ::= if <cond> then <stmt> else <stmt>

Ambiguous?

if cond1 then if cond2 then st1 else st2

52CS612

<Statement> ::= <IfThenStatement> | <IfThenElseStatement> |

<IfThenElseStatementNoShortIf>

<StatementNoShortIf> ::= <block> |

<IfThenElseStatementNoShortIf> | …
<IfThenStatement> ::= if (<Expression>) <Statement>

<IfThenElseStatement> ::= if (<Expression>)

<StatementNoShortIf> else <Statement>

<IfThenElseStatementNoShortIf> ::=
if (<Expression>) <StatementNoShortIf>

else <StatementNoShortIf>

<Statement>

<IfThenElseStatement>

if (cond) <StatementNoShortIf> else <Statement>

Example 11.20

53CS612

Normal Forms for Grammars

54CS612

Normal Forms for Grammars

Chomsky Normal Form, in which all rules are

of one of the following two forms:

• X  a, where a  , or

• X  BC, where B and C are elements of

V - .

Advantages:

• Parsers can use binary trees.

• Exact length of derivations is known.

55CS612

Young
Pencil

Normal Forms for Grammars

Greibach Normal Form, in which all rules are of

the following form:

• X  a , where a   and   (V - )*.

Advantages:
• Every derivation of a string s contains |s| rule

applications.

• Greibach normal form grammars can easily be

converted to pushdown automata with no -

transitions. This is useful because such PDAs are

guaranteed to halt.
56CS612

Young
Pencil

Normal Forms Exist

Theorem 11.1 Given a CFG G, there exists an

equivalent Chomsky normal form grammar GC such that:

L(GC) = L(G) – {}.

Proof Idea: Proof by construction.

Theorem 11.2 Given a CFG G, there exists an

equivalent Greibach normal form grammar GG such that:

L(GG) = L(G) – {}.

Proof Idea: Proof by construction.
57CS612

Young
Pencil

Normal Forms

E  E + E

E  (E)
E  id

Converting to Chomsky Normal Form:

E  E E

E  P E

E  L E

E  E R
E  id

L  (

R )

P  +

Conversion doesn’t change weak generative capacity, but it may

change strong generative capacity!
58CS612

Comparing RL and CFL

Regular Languages Context-Free Languages

regular expressions

or

regular grammars context-free grammars

recognize parse

59CS612

Young
Pencil

Reading Assignment

Chapter 11:

Sections

11.1

11.2

11.3

11.6

11.7

11.8

60CS612

In-Class Exercises

Chapter 11:

1 - b

2

3

6 – e & i

8

9

10

61CS612

