PART 2:

Automata:

Formal Language:

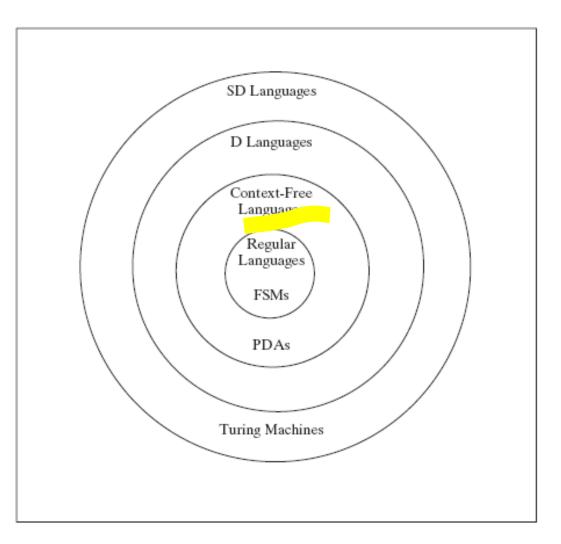
Context-Free Languages Non-Context-Free Languages

Grammar:

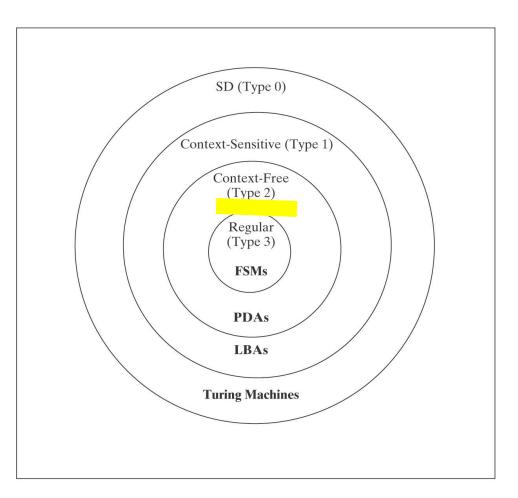
Context-Free Grammars

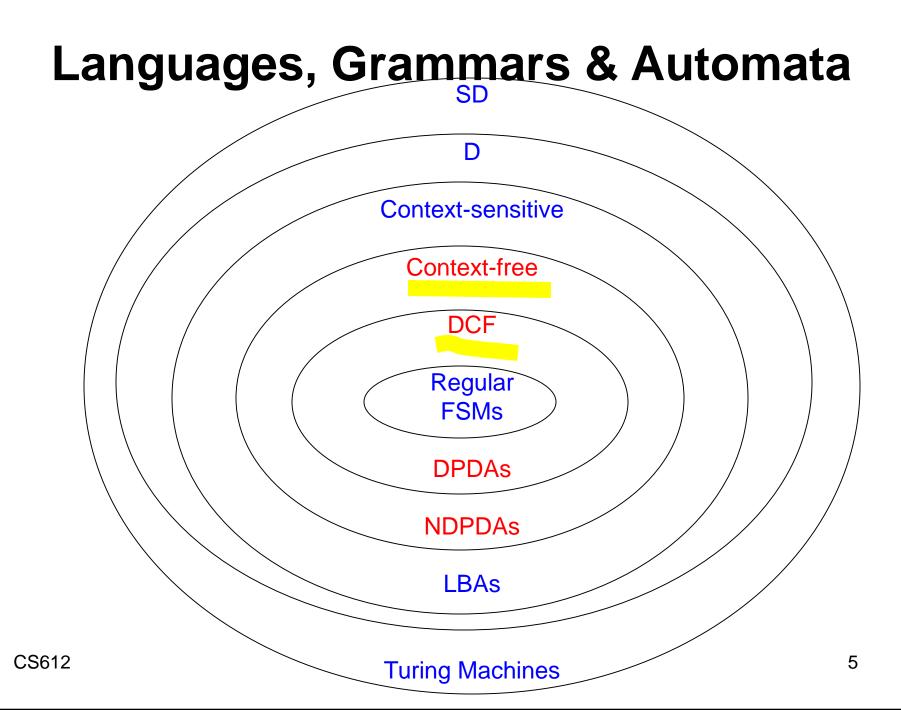
Context-Free Grammars

Languages, Grammars & Automata

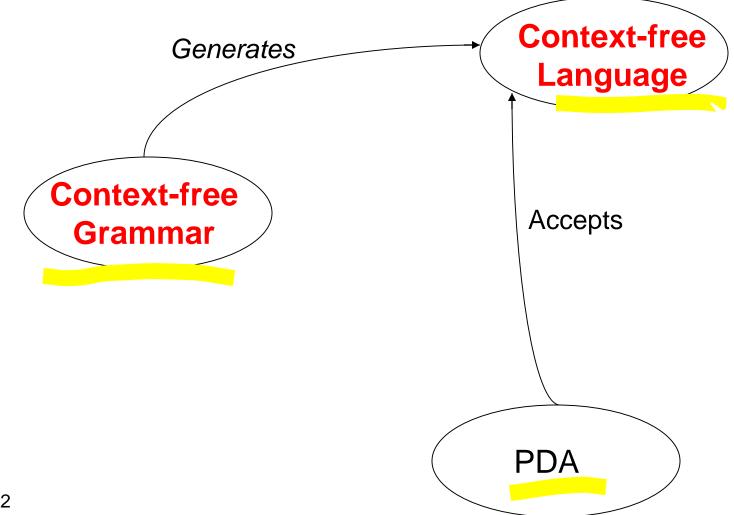


Languages, Grammars & Automata





Context-free Grammars, Languages, and PDAs



Rewrite Systems

A rewrite system (or production system or rulebased system) is:

- a list of rules, and
- an algorithm for applying them.

Each rule has a left-hand side and a right hand side:

$$S \rightarrow aSb$$

 $aS \rightarrow \varepsilon$
 $aSb \rightarrow bSabSa$

Grammars Generate Languages

A grammar is a rewrite system to derive/generate/define a language!

Grammars

A grammar is a set of **rules (productions)** that are stated in terms of two alphabets:

- A terminal alphabet, Σ , that contains the symbols that make up the strings in L(G),
- A nonterminal alphabet, the elements of which will function as working symbols that will be used while the grammar is operating.
- A grammar has a unique start symbol, often called S.

Regular Grammars (RG)

In a **regular grammar**, all rules in *R* must:

- 1. have a left hand side that is a single nonterminal
- 2. have a right hand side that is:
 - <u></u>8, or
 - a single terminal, or
 - a single terminal followed by a single nonterminal.

Legal: $S \rightarrow a$, $S \rightarrow \varepsilon$, and $T \rightarrow aS$ Not legal: $S \rightarrow aSa$ and $aSa \rightarrow T$

Context-Free Grammars (CFG)

In a **context-free grammar**, all rules in *R* must:

- 1. have a left hand side that is a single nonterminal.
- 2. have a right hand side.

✓ No restrictions on the form of the right hand sides! $S \rightarrow ab DeFGab$

Definition of Context-Free Grammars

A context-free grammar G is a quadruple (V, Σ , R, S) where:

- V is the rule alphabet, which contains nonterminals and terminals.
- Σ (the set of terminals) is a subset of V,
- *R* (the set of rules) is a finite subset of $(V \Sigma) \times V^*$,
 - ✓ All rules in *R* must have a left hand side that is a single nonterminal and have a right hand side.
- S (the start symbol) is an element of V Σ .

Derivations Using A CFG

$$x \Rightarrow_{G} y \text{ iff } x = \alpha A\beta$$
$$\int \text{ and } A \rightarrow \gamma \text{ is in } R$$
$$y = \alpha \gamma \beta$$

Sentential Forms

 $w_0 \Rightarrow_G w_1 \Rightarrow_G w_2 \Rightarrow_G \ldots \Rightarrow_G w_n$ is a *derivation* in *G*.

Let \Rightarrow_{G}^{*} be the *reflexive, transitive closure* of \Rightarrow_{G}^{*} .

Example: CFG

$G = \{\{S, a, b, c\}, \{a, b, c\}, R, S\}, where:$

$$R = \{ S \rightarrow \varepsilon \\ S \rightarrow c \\ S \rightarrow aSb \\ \}$$

$$\varepsilon$$
acb
aaabbb
aacbbb

Leftmost and Rightmost Derivations

• Left-most derivation:

Always choose *left-most nonterminal* for expansion!

• Right-most derivation:

Always choose *right-most nonterminal* for expansion!

Recursive Rules

- A rule is *recursive* iff it is $X \rightarrow w_1 Y w_2$, where $Y \Rightarrow_G^* w_3 X w_4$ for some w_1 , w_2 , w_3 , and w in V^* .
- Recursive rules make a finite grammar to generate infinite set of strings!

Recursive Grammars

• A grammar is recursive iff it contains at least one recursive rule.

 $S \rightarrow (S)$ $S \rightarrow (T)$ $T \rightarrow (S)$

Self-Embedding Rules

- A rule in a grammar *G* is self-embedding iff it is $X \to w_1 Y w_2$, where $Y \Rightarrow_G^* w_3 X w_4$ and both $w_1 w_3$ and $w_4 w_2$ are in Σ^+ .
- A nonempty string on each side of the nested X!
- ✓ Pairs of matching regions! uv^qxy^qz

Self-Embedding Grammars

• A grammar is self-embedding iff it contains at least one self-embedding rule.

 $S \rightarrow aSa$ is self-embedding $S \rightarrow aS$ is not self-embedding $S \rightarrow aT$ $T \rightarrow Sa$ is self-embedding

Self-Embedding Grammars

- A self-embedding grammar G does not guarantees L(G) is regular.
- If a grammar *G* is not self-embedding then *L*(*G*) is regular.
- If a language *L* has the property that every grammar that defines it is self-embedding, then *L* is not regular.

Bal = { $w \in \{$), (}* : the parentheses are balanced}

CFG?

$$\mathsf{A}^{\mathsf{n}}\mathsf{B}^{\mathsf{n}} = \{ a^{n} b^{n} : n \ge 0 \}$$

CFG?

$$S \rightarrow \varepsilon$$

 $S \rightarrow a Sb$

ε ab aaabbb aabbb

The Language Generated by CFG

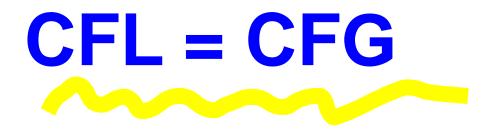
The language generated by CFG G, denoted L(G), is

the set of terminal strings that have derivations from the starting symbol.

 $\{ W \in \Sigma^* : S \Longrightarrow_G^* W \}.$

Context-Free Languages (CFL)

A language *L* is *context-free* iff it is generated by some **context-free grammar** *G*.



Examples and Designing CFGs

 $PalEven = \{ww^{R} : w \in \{a, b\}^*\}$ CFG? *G* = {{*S*, a, b}, {a, b}, *R*, *S*}, where: $R = \{ S \rightarrow aSa \}$ $S \rightarrow bSb$ $S \rightarrow \varepsilon$ }. ababbaba ababba

$$L = \{ W \in \{ a, b \}^* : \#_a(W) = \#_b(W) \}.$$

$$R = \{ S \rightarrow aSb \\ S \rightarrow bSa \\ S \rightarrow SS \\ S \rightarrow \epsilon \}.$$

ababbaba ababba cs612

BNF (Backus Naur Form)

A notation for writing *practical* context-free grammars:

The symbol | should be read as "or".

Example: $S \rightarrow aSb \mid bSa \mid SS \mid \epsilon$

• Allow a nonterminal symbol to be any sequence of characters surrounded by angle brackets.

Examples of nonterminals: <program> <variable>

BNF for a Java Fragment

Designing Context-Free Grammars

Generate related regions together: AⁿBⁿ

- Generate concatenated regions: $A \rightarrow BC$
- Generate outside in: $A \rightarrow aAb$

```
L = \{a^{n}b^{n}c^{m} : n, m \ge 0\}.
```

```
CFG?
G = ({S, N, C, a, b, c}, {a, b, c}, R, S} where:
                R = \{ S \rightarrow NC \}
                          N \rightarrow a N b
                          N \rightarrow \varepsilon
                          C \rightarrow C C
                          C \rightarrow \varepsilon \}.
     3
```

abc

aaabbbccc

aabbbcc

$$L = \{ a^{n_1} b^{n_1} a^{n_2} b^{n_2} ... a^{n_k} b^{n_k} : k \ge 0 \text{ and } \forall i (n_j \ge 0) \}$$

```
ε
abab
aabbaaabbbabab
```

CFG?

$$G = (\{S, M, a, b\}, \{a, b\}, R, S\}$$
 where:
 $R = \{S \rightarrow MS$
 $S \rightarrow \varepsilon$
 $M \rightarrow aMb$
 $M \rightarrow \varepsilon\}.$

✓ A tree representation for derivations!

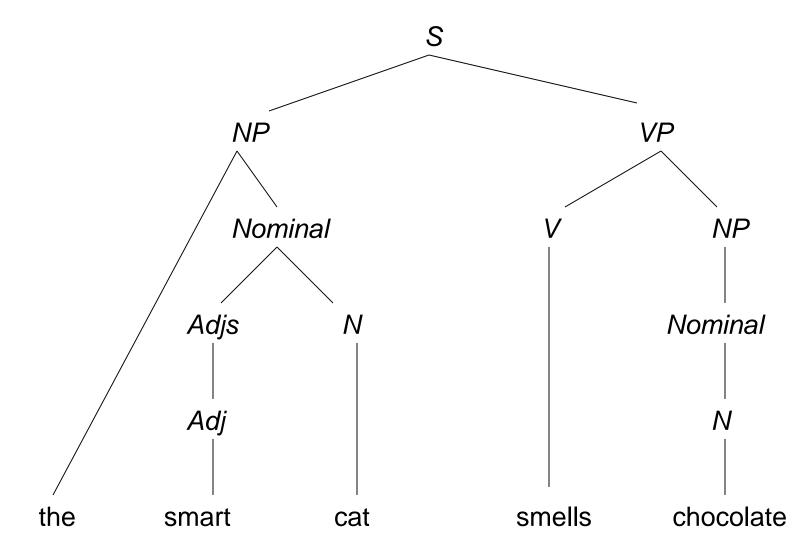
 Equivalence of Parse Trees and Derivations!

Parse Trees

A parse tree, *derived* by a grammar $G = (V, \Sigma, R, S)$, is a rooted, ordered tree in which:

- Every leaf node is labeled with an element of $\Sigma \cup \{\epsilon\}$.
- The root node is labeled S.
- Every other node is labeled with some element of $V \Sigma$.
- If *m* is a nonleaf node labeled *X* and the children of *m* are labeled $x_1, x_2, ..., x_n$, then *R* contains the rule $X \rightarrow x_1, x_2, ..., x_n$.

The yield of a parse tree is the string consisting of all leaves.



Generative Capacity

Given a grammar G:

- G's weak generative capacity, defined to be the set of strings, *L*(*G*), that *G* generates.
- G's strong generative capacity, defined to be the set of parse trees that G generates.

Ambiguity & Inherent Ambiguity

Unambiguous Grammars

A grammar *G* is *unambiguous* iff **every string** derivable in *G* has **a single leftmost derivation**.

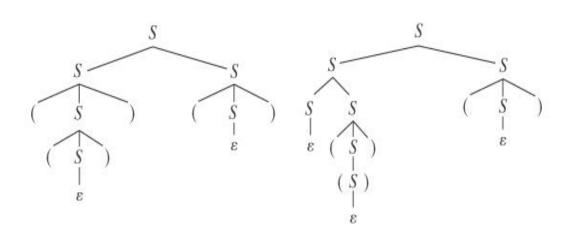
Ambiguous Grammars

A grammar G is *ambiguous* iff there is at least one string in L(G) for which G produces more than one parse tree.

- If G generates some string ambiguously.
- Two or more different leftmost (rightmost) derivations/ parse trees for some string.
- ✓ For most applications of context-free grammars, this is a problem!

Bal = { $w \in \{$), (}* : the parentheses are balanced}

CFG: $S \rightarrow \varepsilon$ $S \rightarrow SS$ $S \rightarrow (S)$ (())() Ambiguous?



$L = \{ w \in \{a, b\}^* : w \text{ contains at least one } a \}$

aaa

Regular expressions can be ambiguous too!

RE:

```
(a \cup b)^*a (a \cup b)^*
```

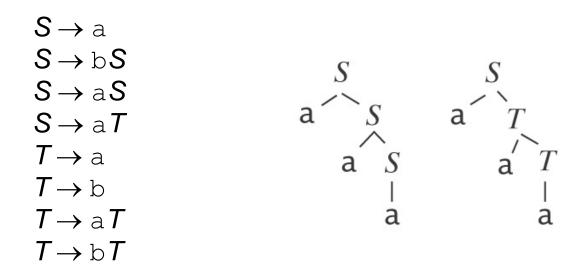
```
choose a from (a \cup b)
choose a from (a \cup b)
choose a
```

```
choose a
choose a from (a \cup b)
choose a from (a \cup b)
```

$L = \{ w \in \{a, b\}^* : w \text{ contains at least one } a \}$

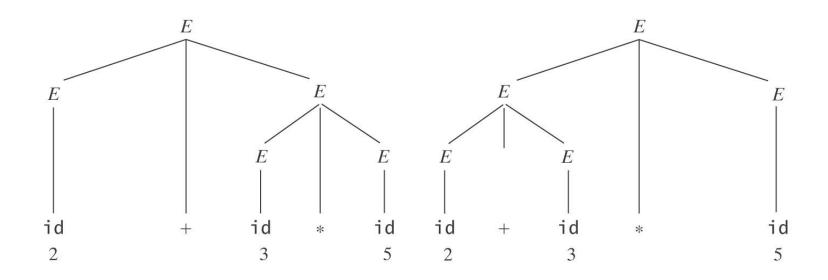
Regular grammars can be ambiguous too!

RG:



An Ambiguous Grammar for Arithmetic Expressions: CFG $G = (V, \Sigma, R, E)$, where $V = \{+, *, (,), id, E\},\$ $\Sigma = \{+, *, (,), id\},\$ $R = \{$ $E \rightarrow E + E$ $E \rightarrow E * E$ $E \rightarrow (E)$ $E \rightarrow \text{id} \}$ Is G ambiguous?

2+3*5



Inherent Ambiguous Languages

- Some languages have the property that every grammar for them is ambiguous.
- No unambiguous grammar exists!
- We call such languages *inherently ambiguous languages*.

 $L = \{a^n b^n c^m: n, m \ge 0\} \cup \{a^n b^m c^m: n, m \ge 0\}$ is inherently ambiguous?

One grammar for *L*:

$$S \rightarrow S_1 \mid S_2$$

$$S_1 \rightarrow S_1 c \mid A$$

$$A \rightarrow aAb \mid \varepsilon$$

$$S_2 \rightarrow aS_2 \mid B$$

$$B \rightarrow bBc \mid \varepsilon$$

/* Generate all strings in $\{a^n b^n c^m\}$.

/* Generate all strings in $\{a^{n}b^{m}c^{m}\}$.

Consider any string of the form $\{a^n b^n c^n: n \ge 0\}$. Two distinct derivations! L is inherently ambiguous!

Ambiguity & Inherent Ambiguity

Both of the following problems are undecidable:

- Given a context-free grammar G, is G ambiguous?
- Given a context-free language L, is L
 inherently ambiguous?

Reducing Ambiguity

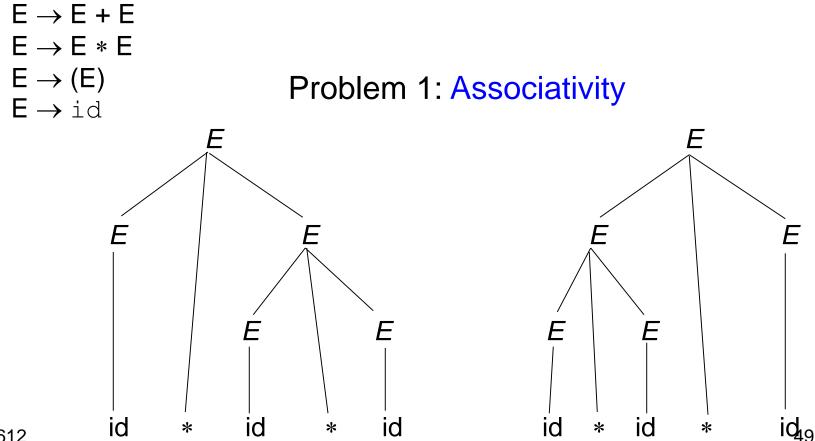
Grammar structures lead to ambiguity:

- ε rules like $S \rightarrow \varepsilon$,
- Rules with symmetric right-hand sides, e.g.,

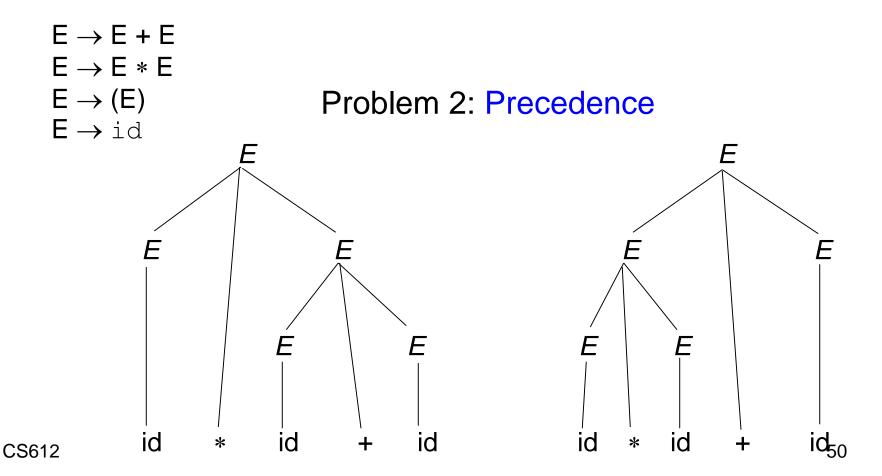
$$S \to SS$$
$$E \to E + E$$

• Rule sets that lead to ambiguous attachment of optional postfixes.

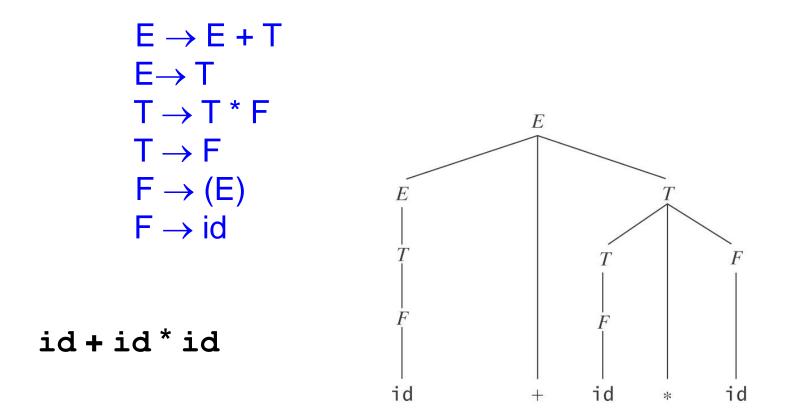
An Ambiguous Grammar for Arithmetic Expressions:



An Ambiguous Grammar for Arithmetic Expressions:



An Unambiguous Grammar for Arithmetic Expressions:



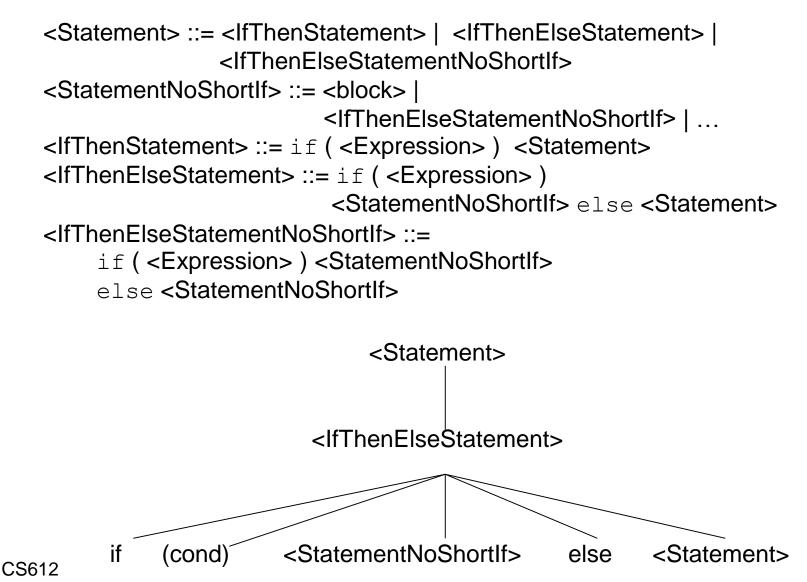
Ambiguous Attachment

The dangling else problem:

<stmt> ::= if <cond> then <stmt> <stmt> ::= if <cond> then <stmt> else <stmt>

Ambiguous?

 $\texttt{if cond}_1 \texttt{ then if cond}_2 \texttt{ then } st_1 \texttt{ else } st_2$



Normal Forms for Grammars

Normal Forms for Grammars

Chomsky Normal Form, in which all rules are of one of the following two forms:

- $X \rightarrow a$, where $a \in \Sigma$, or
- $X \rightarrow BC$, where *B* and *C* are elements of $V \Sigma$.

Advantages:

- Parsers can use binary trees.
- Exact length of derivations is known.

Normal Forms for Grammars

Greibach Normal Form, in which all rules are of the following form.

• $X \rightarrow a \beta$, where $a \in \Sigma$ and $\beta \in (V - \Sigma)^*$.

Advantages:

- Every derivation of a string *s* contains |*s*| rule applications.
- Greibach normal form grammars can easily be converted to pushdown automata with no εtransitions. This is useful because such PDAs are guaranteed to halt.

Normal Forms Exist

Theorem 11.1 Given a CFG G, there exists an equivalent Chomsky normal form grammar G_C such that:

 $L(G_C) = L(G) - \{\varepsilon\}.$

Proof Idea: Proof by construction.

Theorem 11.2 Given a CFG G, there exists an equivalent Greibach normal form grammar G_G such that:

 $L(G_G) = L(G) - \{\varepsilon\}.$

Proof Idea: Proof by construction.

Normal Forms

 $E \rightarrow E + E$ $E \rightarrow (E)$ $E \rightarrow id$

Converting to Chomsky Normal Form:

$$E \rightarrow E E'$$

$$E' \rightarrow P E$$

$$E \rightarrow L E''$$

$$E'' \rightarrow E R$$

$$E \rightarrow id$$

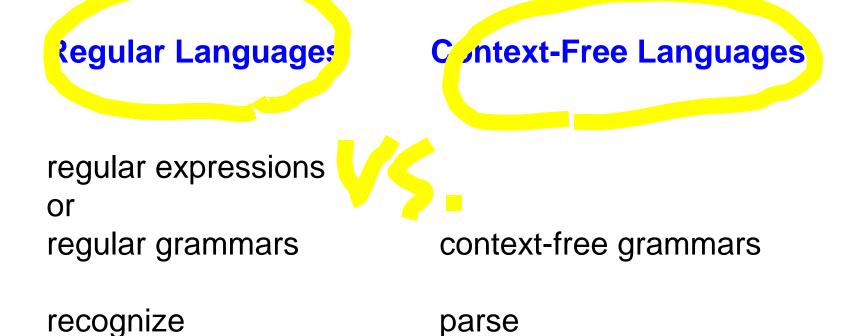
$$L \rightarrow ($$

$$R \rightarrow)$$

$$P \rightarrow +$$

Conversion doesn't change weak generative capacity, but it may change strong generative capacity!

Comparing RL and CFL



Reading Assignment

Chapter 11:

Sections 11.1 11.2 11.3 11.6 11.7 11.8

In-Class Exercises

Chapter 11:

1 - b 2 3 6 - e & i 8 9 10