CS612

PART 2:

Automata:
PDA

Formal Language:

Context-Free Languages
Non-Context-Free Languages

Grammar:

Context-Free Grammars

CS612

Context-Free Grammars

Young
Pencil

Languages, Grammars & Automata

——

5D Languages

_.--"__-_ - ___-"“-u.
“ D Languages
/ —
,-'# ; Context-Free _ Y
II-" / Languar- \ III".
II |II 5 II| II

|I |'| / Regular™ \ "| "
|

| | { Languages 'l |
| |

.-'--

b | |
\ '- FSMs / / |
oL Fsw |
|II LY _." .'l
\ f /
\ \\hf D .—"rs___- / f.-'
\ Turing Machines H/
~— -

CS612 3

Young
Pencil

Languages, Grammars & Automata

SD (Type 0)

Context-Sensitive (Type 1)

Context-Free
(Type 2)

Regular
(Type 3)

FSMs

PDAs

Turing Machines

CS612 4

Young
Pencil

Languages, Gra ars & Automata

Context-sensitive

Context-free

DCF

Regular
FSMs
DPDAs

NDPDAs

CS612 Turing Machines

Young
Pencil

Context-free Grammars, Languages,

and PDAs
Context-free
Language

Accepts

Generates

Context-free
Grammar

CS612 0 6

Young
Pencil

Young
Pencil

Young
Pencil

Rewrite Systems

A rewrite system (or production system or rule-
based system) is:

« alist of rules, and
« an algorithm for applying them.

Each rule has a left-hand side and a right hand side:

S > aSb
aS > ¢
aSb - bSabSa

CS612

Grammars Generate Languages

A grammar Is a rewrite system to
derive/generate/define a language!

CS612

Young
Pencil

Grammars

A grammar is a set of rules (productions)
that are stated in terms of two alphabets:

« Aterminal alphabet, %, that contains the symbols
that make up the strings in L(G),

* A nonterminal alphabet, the elements of which will
function as working symbols that will be used while
the grammar is operating.

« A grammar has a unique start symbol, often called
S.

CS612

Regular Grammars (RG)

In a regular grammar, all rules in R must:

1. have a left hand side that is a single
nonterminal
2. have aright hand side that is:
* g, 0r
e asingle terminal, or
* asingle terminal followed by a single
nonterminal.

Legal: S—>a,S—>¢ and T — aS
Notlegal: S —> aSaandaSa—>T

CS612

10

Context-Free Grammars (CFG)

In a context-free grammar, all rules in R
must:

1. have a left hand side that is a single
nonterminal.

2. have a right hand side.

v No restrictions on the form of the right hand sides!

S — abDeFGab

CS612 11

Young
Pencil

Young
Pencil

Definition of Context-Free Grammars

A context-free grammar G is a quadruple (V,
>, R, S) where:

* Vs the rule alphabet, which contains
nonterminals and terminals.
« X (the set of terminals) is a subset of V,
R (the set of rules) is a finite subset of (V - %)
xV*,
v' All rules in R must have a left hand side that is

a single nonterminal and have a right hand
side.

« S (the start symbol) is an element of V - .

CS612 12

Young
Pencil

Derivations Using A CFG

X =g Y Iff X=aAB
and A—>yIsinR

y=ayf

Sentential Forms
Wy =g W, =g W, =5 ... =g W, Is aderivation in G.

Let =.* be the reflexive, transitive closure of =,

CS612

13

Example: CFG

G={{S, a, b, c}, {a, b, c}, R, S}, where:

R=/{
S —>¢
S—>c
S —> aSb
}

e
acb

aaabbb
aacbbb

CS612

Leftmost and Rightmost Derivations

e Left-most derivation:

Always choose left-most nonterminal for
expansion!

* Right-most derivation:

Always choose right-most nonterminal for
expansion!

CS612 15

Young
Pencil

Recursive Rules

* Aruleisrecursive iffitis X —» w;Yw,,
where Y =* waXw,
for some wy, w,, w,, and w in V*.

* Recursive rules make a finite grammar to
generate Iinfinite set of strings!

CS612

16

Young
Pencil

Recursive Grammars

« A grammar is recursive Iff it contains at least
one recursive rule.

S —>(S)

S - (T)
T—(S)

CS612

17

Young
Pencil

Self-Embedding Rules

« Arule in a grammar G is self-embedding
Iff itis X —» w,Yw,,
where Y = * w;Xw, and
both w,w,; and w,w, are in Z*.

v" A honempty string on each side of the
nested X!

v’ Pairs of matching regions! uvixydz

CS612

18

Young
Pencil

Self-Embedding Grammars

« A grammar is self-embedding iff it contains
at least one self-embedding rule.

S —> aSa s self-embedding
S —»> aS is not self-embedding
S—>aTlT T - Sa is self-embedding

CS612

Young
Pencil

Self-Embedding Grammars

« A self-embedding grammar G does not
guarantees L(G) is regular.

« If a grammar G Is not self-embedding then
L(G) Is regular.

 |f alanguage L has the property that every
grammar that defines it is self-embedding,
then L is not regular.

CS612 20

Example 11.1

Bal={w < {), (}* : the parentheses are
balanced}

CFG?

S —>¢
S >SS
S - (95)

21

Example 11.2

A"B" = {a"b" : n > 0}
CFG?

S >c¢
S > aSb

o
ab

aaabbb

aabbb
CS612

22

The Language Generated by CFG

The language generated by CFG G, denoted
L(G), IS

the set of terminal strings that have
derivations from the starting symbol.

{weX*:S =" w}

CS612 23

Context-Free Languages (CFL)

A language L Is context-free iff it Is

generated by some context-free
grammar G.

CHL = CFG

CS612

24

Young
Pencil

Examples and Designing CFGs

CS612

25

Example 11.3

PalEven = {wwR : w e {a, b}*}

CFG?

G ={{S, a, b}, {3, b}, R, S}, where:

R={S > aSa
S > bSb
S—>el
ababbaba

ababba

CS612

26

Example 11.4

L ={w € {a, b}*: #.(w) = #_(wW)}.

CFG?

G ={{S, a, b}, {3, b}, R, S}, where:

R={S > aSb
S > bSa
S >SS
S —>el
ababbaba
ababba

CS612

27

BNF (Backus Naur Form)

A notation for writing practical context-free
grammars:

 The symbol | should be read as “or”.
Example: S - aSb | bSa | SS | ¢

« Allow a nonterminal symbol to be any sequence of
characters surrounded by angle brackets.

Examples of nonterminals:
<program>

<variable>
CS612

28

Young
Pencil

Example 11.5

BNF for a Java Fragment

<block> ::= {<stmt-1list>} | {}
<stmt-list> ::= <stmt> | <stmt-list> <stmt>
<stmt> ::= <block> | while (<cond>) <stmt>

if (<cond>) <stmt> |

do <stmt> while (<cond>),; |
<assignment-stmt>; |

return | return <expression> |
<method-invocation>;

CS612

29

Designing Context-Free Grammars

Generate related regions together:
AnBn

« (Generate concatenated regions:
A — BC

« (Generate outside In:
A — aAb

CS612 30

Young
Pencil

Example 11.7

L ={a"b"c™: n, m2> 0}

CFG?
G=({S,N,C, a, b, c}, {a, b, c}, R, S}where:
R={S—> NC
N — aNb
N— ¢
C—cC
C—oel
e
abc
aaabbbccc

aabbbcc
CS612

31

Example 11.8

L = {a"b"a™b™..a*b™ : k>0 and Vi (n > 0)}

o
abab

aabbaaabbbabab

CFG?
G=({S, M, a, b}, {a, b}, R, S} where:
R={S > MS
S—¢
M — aMb
M — g}.

CS612

32

Parse Trees

v Atree representation for derivations!

v Equivalence of Parse Trees and
Derivations!

CS612

33

Young
Pencil

Parse Trees

A parse tree, derived by a grammar G = (V, Z,
R, S), Is a rooted, ordered tree in which:

Every leaf node is labeled with an element of X U {&}.

The root node is labeled S.

Every other node is labeled with some element of V — X.

If m is a nonleaf node labeled X and the children of m are
labeled x4, X,, ..., X,,, then R contains the rule X — xy, X, ...,
X

n-

The yield of a parse tree Is the string consisting
of all leaves.

CS612

34

Example 11.11

S
/\
NP VP
N
Nominal V NP
N

Adjs N Nominal
Adj N

the smart cat smells chocolate

CS612

35

Generative Capacity

Given a grammar G:

 (G’s weak generative capacity, defined to be
the set of strings, L(G), that G generates.

« (G’s strong generative capacity, defined to
be the set of parse trees that G generates.

CS612 36

Ambiguity & Inherent Ambiguity

CS612

37

Unambiguous Grammars

A grammar G Is unambiguous Iff every string
derivable in G has a single leftmost
derivation.

CS612

38

Young
Pencil

Young
Pencil

Ambiaguous Grammars

A grammar G Is ambiguous Iiff there is at least

one string in L(G) for which G produces more
than one parse tree.

« If G generates some string ambiguously.

« Two or more different leftmost (rightmost)
derivations/ parse trees for some string.

v' For most applications of context-free grammars,
this is a problem!

CS612 39

Young
Pencil

Young
Pencil

Example 11.12

Bal ={w € {), (}* : the parentheses are

balanced}

CFG:

S > ¢
S 5 SS
S - (9)
§

() () i

Ambiguous?

CS612

40

Example 11.13

L={w e {a, b}*: w contains at least one a}

aaa
Regular expressions can be ambiguous too!

RE:
(a Ub)*a(a Ub)*

choose a from (a U b)
choose a from (a U b)
choose a

choose a
choose a from (a U b)

choose a from (a U b)
CS612

41

Example 11.13

L={w e {a, b}*: w contains at least one a}

aaa
Regular grammars can be ambiguous too!

RG:

S—>a

S > bS .
S —>aS /S:\ /LS\
S—>al a
T > a a S a T
T—o>b | |
T—aT d d
T—>DbT

CS612

42

Example 11.14

An Ambiguous Grammar for Arithmetic Expressions:
CFG G =(V, %, R, E), where
V=A{+7*1¢(,), id, E},
2={+"*() id}
R={
E—>E+E
E—>E=+*E
E— (E)
E—> id }
Is G ambiguous?

2+3*5

CS612

43

Example 11.14

E E
E

id o id

/i 3

CS612

Inherent Ambiguous Languages

« Some languages have the property that
every grammar for them is ambiguous.

* No unambiguous grammar exists!

« We call such languages inherently
ambiguous languages.

CS612 45

Young
Pencil

Young
Pencil

Examplell.15

L={a"o"c™ n, m=>0}u{a"bM™c™ n, m=>0}is
iInherently ambiguous?

One grammar for L:

S—>S5,|S,
S, > S;c|A [* Generate all strings in {a"b"c™}.
A — aAb | ¢
S,—>aS,|B [* Generate all strings in {a"b™c™M}.
B> bBc|e¢

Consider any string of the form {a"b"c": n > O}.
Two distinct derivations! L is inherently ambiguous!
CS612 46

Ambiguity & Inherent Ambiguity

Both of the following problems are undecidable:

* Given a context-free grammar G, is G
ambiguous?

* Given a context-free language L, is L
Inherently ambiguous?

CS612 47

Young
Pencil

Reducing Ambiguity

Grammar structures lead to ambiguity:

e c¢cruleslike S — ¢,

* Rules with symmetric right-hand sides, e.g.,

S >SS
E—->E+E

 Rule sets that lead to ambiguous attachment of
optional postfixes.

CS612

48

Young
Pencil

Young
Pencil

Example 11.19

An Ambiguous Grammar for Arithmetic Expressions:

E>E+E
E>E*E
E—(E) Problem 1: Associativity
E— id
E\ 3
E E E E
E E E E

CS612 id * id * id id =+ id = 10,9

Example 11.19

An Ambiguous Grammar for Arithmetic Expressions:

ESE+E
ESE=xE
E— (E) Problem 2: Precedence
E— id
E\ -
E E E E
E E E E

610 d + id + id d o+ id +idy

Example 11.19

An Unambiguous Grammar for Arithmetic Expressions:

E—->E+T

E—>T

To>T*F .

F— (E) E §

F—id s
T T F
4 F

id+ id *id

id + id » id

CS612 51

Ambiguous Attachment

The dangling else problem:

<stmt> ;= i f <cond> then <stmt>
<stmt> ;= i f <cond> then <stmt> else <stmt>

Ambiguous?

if cond, then if cond, then St; else st,

CS612

52

Example 11.20

<Statement> ;.= <|fThenStatement> | <IfThenElseStatement> |
<IfThenElseStatementNoShortIf>
<StatementNoShortlf> ::= <block> |
<IfThenElseStatementNoShortlf> | ...
<IfThenStatement> ::= i £ (<Expression>) <Statement>
<IfThenElseStatement> ::= i f (<Expression>)
<StatementNoShortlf> e1 se <Statement>
<IfThenElseStatementNoShortlf> ::=
if (<Expression>) <StatementNoShortlf>
else <StatementNoShortlf>

<Statement>

<|fThenElseStatement>

if (cond) <StatementNoShortlf> else <Statement>

CS612 53

Normal Forms for Grammars

CS612

54

Normal Forms for Grammars

Chomsky Normal Form, in which all rules are
Of one o1 uie 1wwnuwiig two forms:

e X—>a,whereae, or
« X — BC, where B and C are elements of

V-2,

Advantages:
« Parsers can use binary trees.
« Exact length of derivations is known.

CS612 55

Young
Pencil

Normal Forms for Grammars

Greibach Normal Form, in which all rules are of
the rollowing 1orin.

« X—>ap,whereaexandf e (V-2)*~

Advantages:
« Every derivation of a string s contains |s| rule
applications.
« Greibach normal form grammars can easily be
converted to pushdown automata with no e-
transitions. This is useful because such PDAs are

guaranteed to halt.
CS612 56

Young
Pencil

Normal Forms Exist

Theorem 11.1 Given a CFG G, there exists an
equivalent Chomsky normal form grammar G, such that:

L(Gc) = L(G) — {e}.
Proof Idea: Proof by construction.

Theorem 11.2 Given a CFG G, there exists an
equivalent Greibach normal form grammar G4 such that:

L(Ge) = L(G) - {&}.

Proof Idea: Proof by construction.
CS612 57

Young
Pencil

Normal Forms

E—->E+E
E—>(E)
E—id

Converting to Chomsky Normal Form:

E—>EFE
E'>PE
E—>LE"
E'">ER
E—id
L —(
R —)
P >+

Conversion doesn’t change weak generative capacity, but it may

change strong generative capacity!
CS612

58

Comparing RL and CFL

Regular Languages C .ntext-Free Languages

regular expressions
or
regular grammars context-free grammars

recognize parse

CS612

59

Young
Pencil

Reading Assignment

Chapter 11:

Sections
11.1
11.2
11.3
11.6
11.7
11.8

CS612

60

In-Class Exercises

Chapter 11.

CS612

61

