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Pushdown Automata
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Languages, Grammars & Automata
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Languages, Grammars & Automata
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Languages, Grammars & Automata
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Context-free Grammars, Languages, 

and PDAs

Context-free 

Language

Context-free 

Grammar

PDA

Generates
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Nondeterministic Pushdown 

Automaton (NPDA)

NPDA = NDFSM + a single stack (unlimited 

memory)
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Definition of Nondeterministic PDA

NPDA is M = (K, , , , s, A), where:

K is a finite set of states

 is the input alphabet

 is the stack alphabet

s  K is the initial state

A  K is the set of accepting states, and

 is the transition relation
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Definition of Nondeterministic PDA

 is the transition relation.  

It is a finite subset of 

(K  (  {})   *)     (K  *)  

state      input or  string of     state string of

symbols                symbols

to pop to push

from top                on top 

of stack of stack
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Example: NPDA
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K =

 =

 =

s  K =

A  K =

 =



Configurations of NPDA

A configuration of M is an element of 

K  *  *. 

The initial configuration of M is (s, w, ).
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Manipulating the Stack
c will be written as cab 

a

b

If c1c2…cn is pushed onto the stack: 

c1

c2

cn

c

a

b

c1c2…cncab
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Yields

Let c be any element of   {}, 

Let 1, 2 and  be any elements of *, and 

Let w be any element of *.  

Then:

(q1, cw, 1) |-M (q2, w, 2) iff ((q1, c, 1), (q2, 2))  .

Let |-M* be the reflexive, transitive closure of |-M.

C1 yields configuration C2 iff C1 |-M* C2
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Computations Using NPDA

A computation by M is a finite sequence of 

configurations C0, C1, …, Cn for some n  0 

such that:

• C0 is an initial configuration,

• Cn is of the form (q, , ), for some state 

q  KM and some string  in *, and

• C0 |-M C1 |-M C2 |-M … |-M Cn.
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Nondeterminism

If M is in some configuration (q1, s, ) it is 

possible that:

•  contains exactly one transition that 

matches.  

•  contains more than one transition that 

matches.  

•  contains no transition that matches. 
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Accepting

A computation C of M is an accepting 

computation iff: 

• C = (s, w, ) |-M* (q, , ), and 

• q  A. 

 All the input is read!

 The stack is empty!

 An accepting state!

M accepts a string w iff at least one of its 

computations accepts.
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Rejecting

A computation C of M is a rejecting 

computation iff:

• C = (s, w, ) |-M* (q, w, ), 

• C is not an accepting computation, and 

• M has no moves that it can make from 

(q, , ).  

M rejects a string w iff all of its computations 

reject.
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Other Paths

Other paths may:

• Read all the input and halt in a nonaccepting

state, 

• Read all the input and halt in an accepting state 

with the stack not empty, 

• Loop forever and never finish reading the input, 

Reach a dead end where no more input can be 

read.

So note that it is possible that, on input w, M

neither accepts nor rejects.
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Language Accepted by NPDA

The language accepted by M, denoted L(M), 

is the set of all strings accepted by M. 
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Examples & Designing NPDA
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Example 12.1

M = (K, , , , s, A), where:

K = {s} the states

 = {(, )} the input alphabet

 = {(} the stack alphabet

A = {s}

 contains:

((s, (, ), (s, ( ))

((s, ), ( ), (s, ))
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Bal = { w  {), (}* : the parentheses are balanced}

PDA?
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Example 12.2
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AnBn = {anbn: n  0}

PDA?

aabb

aaabb

aaa



M = (K, , , , s, A), where:

K = {s, f} the states
 = {a, b, c} the input alphabet

 = {a, b} the stack alphabet

A = {f} the accepting states
 contains: ((s, a, ), (s, a))

((s, b, ), (s, b))

((s, c, ), (f, ))

((f, a, a), (f, ))

((f, b, b), (f, )) 

Example 12.3
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L = {wcwR: w  {a, b}*}

PDA?

abcba

aabcbba



Example 12.4
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L = {anb2n: n  0}

PDA?

abb

abbbb

aabbb



Deterministic PDA

A PDA M is deterministic iff:

• M contains no pairs of transitions that 

compete with each other, and

• Whenever M is in an accepting 

configuration it has no available moves.  

But many useful PDAs are not deterministic!
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Example 12.5

S  
S  aSa

S  bSb

NPDA?
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PalEven ={wwR: w  {a, b}*}

CFG:

ababbaba

ababba



Example 12.6
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L = {w  {a, b}* : #a(w) = #b(w)} 

NPDA?

ababbaba

ababba



Example 12.7

L = {ambn : m = n; m, n > 0}

NPDA?

a//a

b/a/

b/a/

1 2
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Example 12.7

L = {ambn : m ≠ n; m, n > 0}

NPDA?
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Example 12.7

L1 = {ambn : 0 < n < m }

If input is empty but stack is not (m > n) (accept):

a//a

b/a/

b/a/

/a/

/a/

21 3
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Example 12.7

L2 = {ambn : 0 < m < n } 

If stack is empty but input is not (m < n) (accept):

a//a

b/a/

b/a/

21 4

b//

b//
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Example 12.7

L = {ambn : m  n; m, n > 0} = L1  L2 
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Example 12.8

L = AnBnCn = {anbncn: n  0}.

NPDA?
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Example 12.8

L =  AnBnCn

NPDA?

L is the union of two languages:

• {w  {a, b, c}* : the letters are out of order}

• {aibjck: i, j, k  0 and (i  j or j  k)}
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Example 12.8

NPDA for L =  AnBnCn :
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Equivalence of NPDAs and CFGs
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NPDA = CFG

CFL = CFG = NPDA 
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Equivalence of PDAs and CFGs

Theorem 12.1 Given a CFG G, there exists a 

NPDA M such that L(G) = L(M).

Proof Idea:

Proof by Construction
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Equivalence of PDAs and CFGs

Theorem 12.2 Given a NPDA M, there exists a 

CFG G such that L(G) = L(M).

Proof Idea: 

Proof by Construction
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Context-Free Languages

A language is context-free iff it is accepted

by some NPDA.

CFL = NPDA
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Equivalence of PDAs and CFGs

Theorem 12.3 A language is context-free iff it 

is accepted by some NPDA.

Proof Idea: 

• For every CFG there exists an equivalent NPDA.

• For every NPDA there exists an equivalent CFG.
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Deterministic PDA (DPDA)
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Deterministic PDAs

A PDA M is deterministic iff:

• M contains no pairs of transitions that 

compete with each other, and

• Whenever M is in an accepting 

configuration it has no available moves.  
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Definition of Deterministic PDA

DPDA is M = (K, , , , s, A), where:

K is a finite set of states

 is the input alphabet

 is the stack alphabet

s  K is the initial state

A  K is the set of accepting states, and

 is the transition function.  It is a finite subset of 

(K  (  {})   *)     (K  *)  

state        input or  string of       state          string of

symbols                        symbols

to pop to push

from top                on top 

of stack of stack
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Example: DPDA
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K =

 =

 =

s  K =

A  K =

 =



Non-Equivalence of NPDA and DPDA

NPDA ≠ DPDA

DPDA is weaker than NPDA!

DPDA accepts a class of languages DCFLs 

strictly between the RLs and the CFLs!

DCFL = Unambiguous CFL!
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Alternative Equivalent & Not 

Equivalent Definitions of a NPDA
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• Pop and Push?
 any string.

 only a single symbol?

• Accept?
 if the input is consumed and in an accepting state and 

the stack is empty.

 if the input is consumed and in an accepting state 

(regardless of the stack content)?

 if the input is consumed (regardless of the final state) 

and the stack is empty?

 All of these alternatives are equivalent!

Alternative Equivalent 

Definitions of a NPDA
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• NPDA = NDFSM + a stack

• FSM plus a queue (instead of stack)?

 Tag system (Post machine)

 = TM!

• FSM plus two stacks?

 = TM!

Alternative NOT Equivalent 

Definitions of a NPDA
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Comparing RL and CFL

Regular Languages Context-Free Languages

regular exprs

or

regular grammars context-freegrammars

recognize parse

DFSMs NPDAs
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Reading Assignment

Chapter 12:

Sections

12.1

12.2

12.3

12.4

12.5

12.6
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In-Class Exercises

Chapter 12:

1 – c & j

4   
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