
PART 2:

Automata:
PDA

Formal Language:
Context-Free Languages

Non-Context-Free Languages

Grammar:
Context-Free Grammars

1CS612

Pushdown Automata

2CS612

Young
Pencil

Young
Pencil

Languages, Grammars & Automata

3CS612

Young
Pencil

Languages, Grammars & Automata

4CS612

Young
Pencil

Languages, Grammars & Automata
SD

D

Context-sensitive

Context-free

DCF

Regular

FSMs

DPDAs

NDPDAs

LBAs

Turing MachinesCS612 5

Young
Pencil

Context-free Grammars, Languages,

and PDAs

Context-free

Language

Context-free

Grammar

PDA

Generates

Accepts

6CS612

Young
Pencil

Nondeterministic Pushdown

Automaton (NPDA)

NPDA = NDFSM + a single stack (unlimited

memory)

7CS612

Young
Pencil

Young
Pencil

Young
Pencil

Definition of Nondeterministic PDA

NPDA is M = (K, , , , s, A), where:

K is a finite set of states

 is the input alphabet

 is the stack alphabet

s  K is the initial state

A  K is the set of accepting states, and

 is the transition relation
8CS612

Young
Pencil

Definition of Nondeterministic PDA

 is the transition relation.

It is a finite subset of

(K  (  {})  *)  (K  *)

state input or  string of state string of

symbols symbols

to pop to push

from top on top

of stack of stack

9CS612

Young
Pencil

Example: NPDA

10CS612

K =

 =

 =

s  K =

A  K =

 =

Configurations of NPDA

A configuration of M is an element of

K  *  *.

The initial configuration of M is (s, w, ).

11CS612

Young
Pencil

Manipulating the Stack
c will be written as cab

a

b

If c1c2…cn is pushed onto the stack:

c1

c2

cn

c

a

b

c1c2…cncab
12CS612

Yields

Let c be any element of   {},

Let 1, 2 and  be any elements of *, and

Let w be any element of *.

Then:

(q1, cw, 1) |-M (q2, w, 2) iff ((q1, c, 1), (q2, 2))  .

Let |-M* be the reflexive, transitive closure of |-M.

C1 yields configuration C2 iff C1 |-M* C2

13CS612

Young
Pencil

Computations Using NPDA

A computation by M is a finite sequence of

configurations C0, C1, …, Cn for some n  0

such that:

• C0 is an initial configuration,

• Cn is of the form (q, , ), for some state

q  KM and some string  in *, and

• C0 |-M C1 |-M C2 |-M … |-M Cn.

14CS612

Young
Pencil

Nondeterminism

If M is in some configuration (q1, s, ) it is

possible that:

•  contains exactly one transition that

matches.

•  contains more than one transition that

matches.

•  contains no transition that matches.

15CS612

Young
Pencil

Accepting

A computation C of M is an accepting

computation iff:

• C = (s, w, ) |-M* (q, , ), and

• q  A.

 All the input is read!

 The stack is empty!

 An accepting state!

M accepts a string w iff at least one of its

computations accepts.

16CS612

Young
Pencil

Young
Pencil

Rejecting

A computation C of M is a rejecting

computation iff:

• C = (s, w, ) |-M* (q, w, ),

• C is not an accepting computation, and

• M has no moves that it can make from

(q, , ).

M rejects a string w iff all of its computations

reject.

17CS612

Young
Pencil

Young
Pencil

Young
Pencil

Other Paths

Other paths may:

• Read all the input and halt in a nonaccepting

state,

• Read all the input and halt in an accepting state

with the stack not empty,

• Loop forever and never finish reading the input,

Reach a dead end where no more input can be

read.

So note that it is possible that, on input w, M

neither accepts nor rejects.
18CS612

Language Accepted by NPDA

The language accepted by M, denoted L(M),

is the set of all strings accepted by M.

19CS612

Young
Pencil

Young
Pencil

Examples & Designing NPDA

20CS612

Example 12.1

M = (K, , , , s, A), where:

K = {s} the states

 = {(,)} the input alphabet

 = {(} the stack alphabet

A = {s}

 contains:

((s, (, ), (s, ())

((s,), (), (s, ))

21CS612

Bal = { w  {), (}* : the parentheses are balanced}

PDA?

()

()(())

((

Example 12.2

22CS612

AnBn = {anbn: n  0}

PDA?

aabb

aaabb

aaa

M = (K, , , , s, A), where:

K = {s, f} the states
 = {a, b, c} the input alphabet

 = {a, b} the stack alphabet

A = {f} the accepting states
 contains: ((s, a, ), (s, a))

((s, b, ), (s, b))

((s, c, ), (f, ))

((f, a, a), (f, ))

((f, b, b), (f, ))

Example 12.3

23CS612

L = {wcwR: w  {a, b}*}

PDA?

abcba

aabcbba

Example 12.4

24CS612

L = {anb2n: n  0}

PDA?

abb

abbbb

aabbb

Deterministic PDA

A PDA M is deterministic iff:

• M contains no pairs of transitions that

compete with each other, and

• Whenever M is in an accepting

configuration it has no available moves.

But many useful PDAs are not deterministic!

25CS612

Young
Pencil

Example 12.5

S  
S  aSa

S  bSb

NPDA?

26CS612

PalEven ={wwR: w  {a, b}*}

CFG:

ababbaba

ababba

Example 12.6

27CS612

L = {w  {a, b}* : #a(w) = #b(w)}

NPDA?

ababbaba

ababba

Example 12.7

L = {ambn : m = n; m, n > 0}

NPDA?

a//a

b/a/

b/a/

1 2

28CS612

Example 12.7

L = {ambn : m ≠ n; m, n > 0}

NPDA?

29CS612

Example 12.7

L1 = {ambn : 0 < n < m }

If input is empty but stack is not (m > n) (accept):

a//a

b/a/

b/a/

/a/

/a/

21 3

30CS612

Example 12.7

L2 = {ambn : 0 < m < n }

If stack is empty but input is not (m < n) (accept):

a//a

b/a/

b/a/

21 4

b//

b//

31CS612

Example 12.7

L = {ambn : m  n; m, n > 0} = L1  L2

32CS612

aab

aaabbbbb

aabb

Example 12.8

L = AnBnCn = {anbncn: n  0}.

NPDA?

33CS612

Example 12.8

L =  AnBnCn

NPDA?

L is the union of two languages:

• {w  {a, b, c}* : the letters are out of order}

• {aibjck: i, j, k  0 and (i  j or j  k)}

34CS612

Example 12.8

NPDA for L =  AnBnCn :

35CS612

Equivalence of NPDAs and CFGs

36CS612

NPDA = CFG

CFL = CFG = NPDA

Young
Pencil

Equivalence of PDAs and CFGs

Theorem 12.1 Given a CFG G, there exists a

NPDA M such that L(G) = L(M).

Proof Idea:

Proof by Construction

37CS612

Equivalence of PDAs and CFGs

Theorem 12.2 Given a NPDA M, there exists a

CFG G such that L(G) = L(M).

Proof Idea:

Proof by Construction

38CS612

Context-Free Languages

A language is context-free iff it is accepted

by some NPDA.

CFL = NPDA

39CS612

Young
Pencil

Equivalence of PDAs and CFGs

Theorem 12.3 A language is context-free iff it

is accepted by some NPDA.

Proof Idea:

• For every CFG there exists an equivalent NPDA.

• For every NPDA there exists an equivalent CFG.

40CS612

Deterministic PDA (DPDA)

41CS612

Deterministic PDAs

A PDA M is deterministic iff:

• M contains no pairs of transitions that

compete with each other, and

• Whenever M is in an accepting

configuration it has no available moves.

42CS612

Definition of Deterministic PDA

DPDA is M = (K, , , , s, A), where:

K is a finite set of states

 is the input alphabet

 is the stack alphabet

s  K is the initial state

A  K is the set of accepting states, and

 is the transition function. It is a finite subset of

(K  (  {})  *)  (K  *)

state input or  string of state string of

symbols symbols

to pop to push

from top on top

of stack of stack
43CS612

Young
Pencil

Young
Pencil

Example: DPDA

44CS612

K =

 =

 =

s  K =

A  K =

 =

Non-Equivalence of NPDA and DPDA

NPDA ≠ DPDA

DPDA is weaker than NPDA!

DPDA accepts a class of languages DCFLs

strictly between the RLs and the CFLs!

DCFL = Unambiguous CFL!

45CS612

Young
Pencil

Young
Pencil

Alternative Equivalent & Not

Equivalent Definitions of a NPDA

46CS612

• Pop and Push?
 any string.

 only a single symbol?

• Accept?
 if the input is consumed and in an accepting state and

the stack is empty.

 if the input is consumed and in an accepting state

(regardless of the stack content)?

 if the input is consumed (regardless of the final state)

and the stack is empty?

 All of these alternatives are equivalent!

Alternative Equivalent

Definitions of a NPDA

47CS612

Young
Pencil

Young
Pencil

Young
Pencil

• NPDA = NDFSM + a stack

• FSM plus a queue (instead of stack)?

 Tag system (Post machine)

 = TM!

• FSM plus two stacks?

 = TM!

Alternative NOT Equivalent

Definitions of a NPDA

48CS612

Young
Pencil

Young
Pencil

Comparing RL and CFL

Regular Languages Context-Free Languages

regular exprs

or

regular grammars context-freegrammars

recognize parse

DFSMs NPDAs

49CS612

Young
Pencil

Reading Assignment

Chapter 12:

Sections

12.1

12.2

12.3

12.4

12.5

12.6

50CS612

In-Class Exercises

Chapter 12:

1 – c & j

4

51CS612

