PART 2:

Automata:

Formal Language:

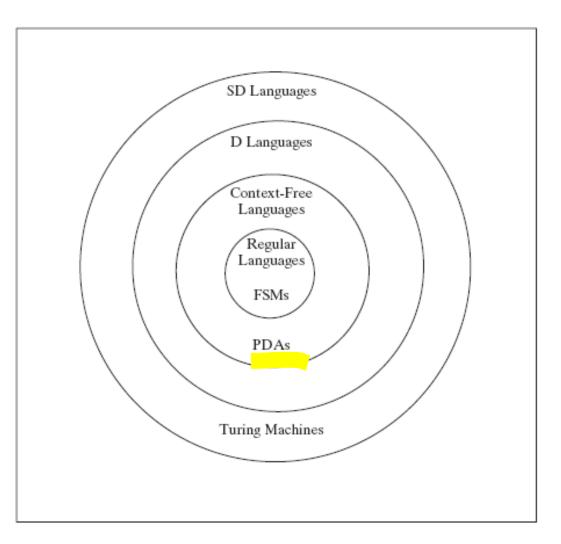
Context-Free Languages Non-Context-Free Languages

Grammar:

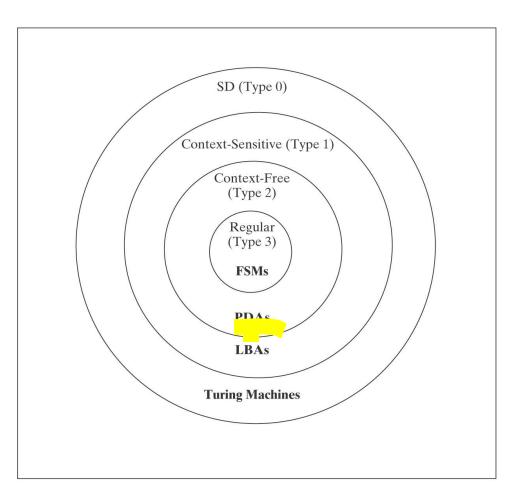
Context-Free Grammars

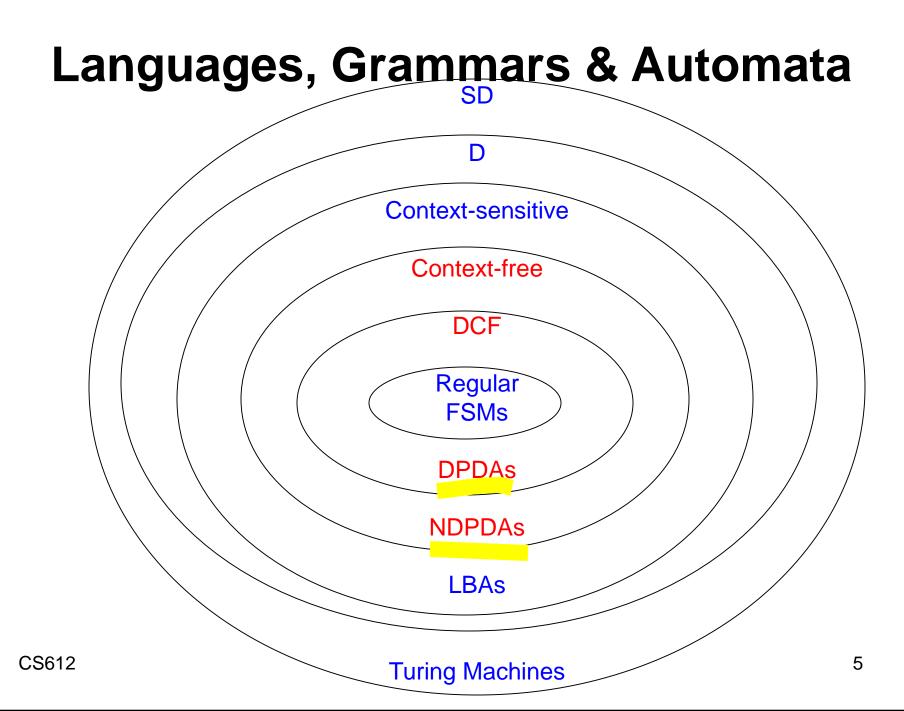
Pushdown Automata

Languages, Grammars & Automata

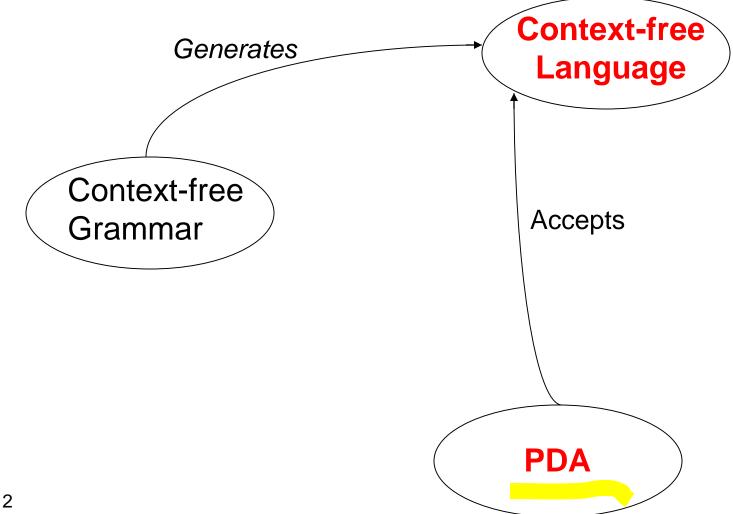


Languages, Grammars & Automata





Context-free Grammars, Languages, and PDAs



Nondeterministic Pushdown Automaton (NPDA)

NPDA = NDFSM + a single stack (unlimited memory)

Definition of Nondeterministic PDA

NPDA is $M = (K, \Sigma, \Gamma, \Delta, s, A)$, where:

K is a finite set of states Σ is the input alphabet

 Γ is the **stack** alphabet

 $s \in K$ is the initial state $A \subseteq K$ is the set of accepting states, and

 Δ is the transition **relation**

Definition of Nondeterministic PDA

 Δ is the transition relation.

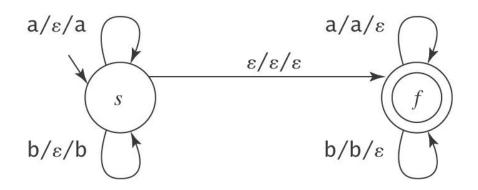
It is a finite subset of

 $(K \times (\Sigma \cup \{\varepsilon\}) \times \Gamma^*) \times (K \times \Gamma^*)$

stateinput or εstring ofstatestring ofsymbolssymbolssymbolssymbolsto popto pushfrom topon topof stackof stackof stack

Example: NPDA

 $K = \\ \Sigma = \\ \Gamma = \\ s \in K = \\ A \subseteq K = \\ \Delta =$

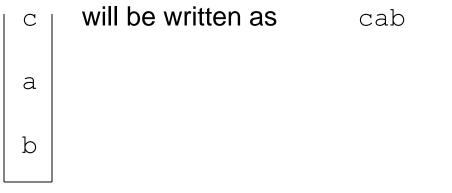


Configurations of NPDA

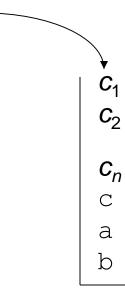
A configuration of *M* is an element of $K \times \Sigma^* \times \Gamma^*$.

The initial configuration of M is (s, w, ε) .

Manipulating the Stack



If $c_1 c_2 \dots c_n$ is pushed onto the stack:



Yields

Let *c* be any element of $\Sigma \cup \{\varepsilon\}$, Let γ_1 , γ_2 and γ be any elements of Γ^* , and Let *w* be any element of Σ^* .

Then:

 $(q_1, cw, \gamma_1\gamma) \mid M(q_2, w, \gamma_2\gamma) \text{ iff } ((q_1, c, \gamma_1), (q_2, \gamma_2)) \in \Delta.$

Let $|-_{M}^{*}$ be the *reflexive, transitive closure* of $|-_{M}$.

 C_1 yields configuration C_2 iff $C_1 \mid -M^* C_2$

Computations Using NPDA

A computation by *M* is a finite sequence of configurations $C_0, C_1, ..., C_n$ for some $n \ge 0$ such that:

- C_0 is an initial configuration,
- C_n is of the form (q, ε, γ) , for some state $q \in K_M$ and some string γ in Γ^* , and

•
$$C_0 \mid -_M C_1 \mid -_M C_2 \mid -_M \dots \mid -_M C_n$$
.

Nondeterminism

If *M* is in some configuration (q_1, s, γ) it is possible that:

- ∆ contains exactly one transition that matches.
- Δ contains more than one transition that matches.
- Δ contains no transition that matches.

Accepting

A computation *C* of *M* is an *accepting computation* iff:

- $C = (s, w, \varepsilon) \mid -M^* (q, \varepsilon, \varepsilon)$, and
- $q \in A$.
- ✓ All the input is read!
- ✓ The stack is empty!
- ✓ An accepting state!

M accepts a string *w* iff <u>at least one</u> of its computations <u>accepts</u>.

Rejecting

A computation *C* of *M* is a *rejecting computation* iff:

•
$$C = (s, w, \varepsilon) \mid -M^* (q, w', \alpha),$$

- C is not an accepting computation, and
- *M* has no moves that it can make from (*q*, ε, α).

M rejects a string *w* iff <u>all</u> of its computations <u>reject</u>.

Other Paths

Other paths may:

- Read all the input and halt in a nonaccepting state,
- Read all the input and halt in an accepting state with the stack not empty,
- Loop forever and never finish reading the input, Reach a dead end where no more input can be read.

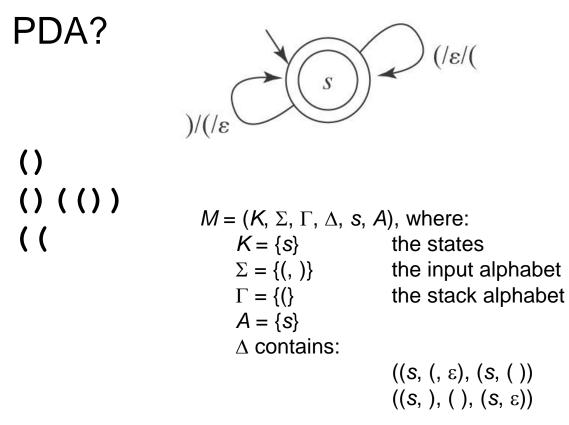
So note that it is possible that, on input *w*, *M* neither accepts nor rejects.

Language Accepted by NPDA

The *language accepted by M*, denoted *L(M)*, is the set of all strings <u>accepted</u> by *M*.

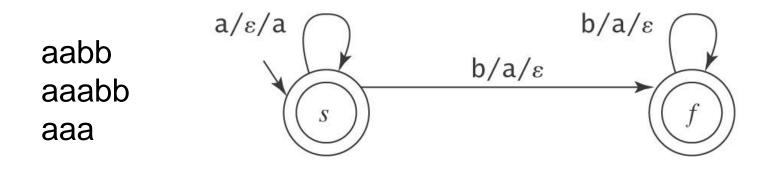
Examples & Designing NPDA

Bal = { $w \in \{$), (}* : the parentheses are balanced}



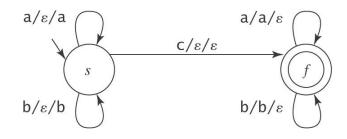
$$A^nB^n = \{a^nb^n: n \ge 0\}$$

PDA?



$$\mathsf{L} = \{ \mathsf{W} \subset \mathsf{W}^{\mathsf{R}} \colon \mathsf{W} \in \{\mathsf{a}, \mathsf{b}\}^* \}$$

PDA?



abcba aabcbba $M = (K, \Sigma, \Gamma, \Delta, s, A), \text{ where:}$ $K = \{s, f\} \text{ the states}$ $\Sigma = \{a, b, c\} \text{ the input alphabet}$ $\Gamma = \{a, b\} \text{ the stack alphabet}$ $A = \{f\} \text{ the accepting states}$ $\Delta \text{ contains:} ((s, a, \varepsilon), (s, a))$ $((s, b, \varepsilon), (s, b))$ $((s, c, \varepsilon), (f, \varepsilon))$ $((f, a, a), (f, \varepsilon))$ $((f, b, b), (f, \varepsilon))$

CS612

 $L = \{a^n b^{2n}: n \ge 0\}$

PDA?

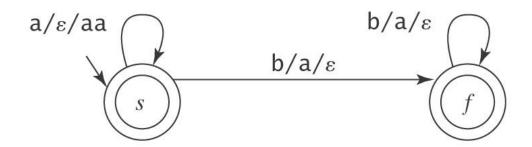


abb abbbb aabbb

Deterministic PDA

A PDA *M* is **deterministic** iff:

- Δ_M contains no pairs of transitions that compete with each other, and
- Whenever *M* is in an accepting configuration it has no available moves.

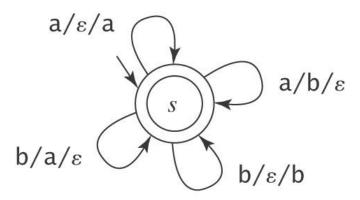
But many useful PDAs are not deterministic!

PalEven ={ ww^{R} : $w \in \{a, b\}^{*}$ } CFG: $S \rightarrow \epsilon$ $S \rightarrow a S a$ $S \rightarrow bSb$ NPDA? $a/\epsilon/a$ $a/a/\varepsilon$ $\varepsilon/\varepsilon/\varepsilon$ S b/b/ε b/ε/b

ababbaba ababba

$$L = \{ w \in \{ a, b \}^* : \#_a(w) = \#_b(w) \}$$

NPDA?

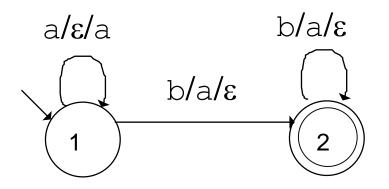


ababbaba ababba

CS612

$$L = \{a^m b^n : m = n; m, n > 0\}$$

NPDA?

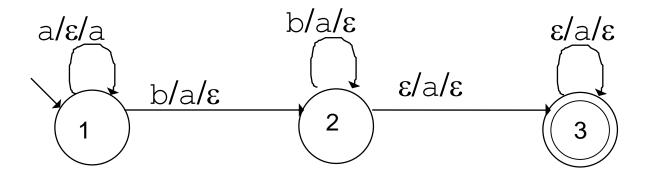


 $\mathsf{L} = \{ \mathsf{a}^m \mathsf{b}^n : m \neq n; m, n > 0 \}$

NPDA?

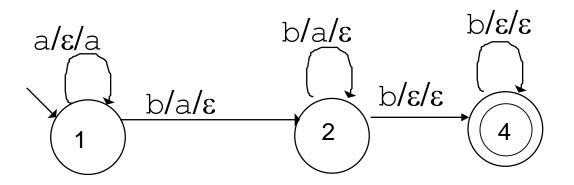
$$L_1 = \{a^m b^n : 0 < n < m\}$$

If input is empty but stack is not (m > n) (accept):



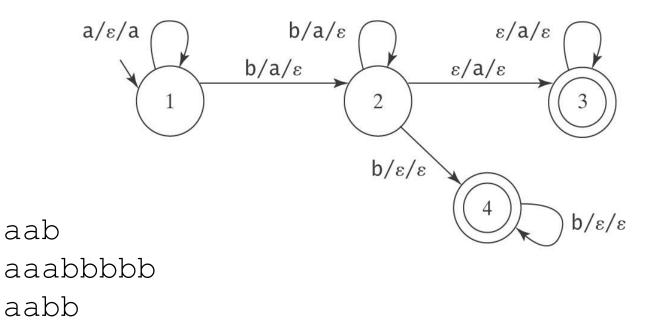
$$L_2 = \{a^m b^n : 0 < m < n\}$$

If stack is empty but input is not (m < n) (accept):



Example 12.7

 $L = \{a^m b^n : m \neq n; m, n > 0\} = L_1 \cup L_2$



$$\mathsf{L} = \mathsf{A}^{\mathsf{n}}\mathsf{B}^{\mathsf{n}}\mathsf{C}^{\mathsf{n}} = \{ \mathsf{a}^{n} \mathsf{b}^{n} \mathsf{c}^{n} \colon n \ge 0 \}.$$

NPDA?

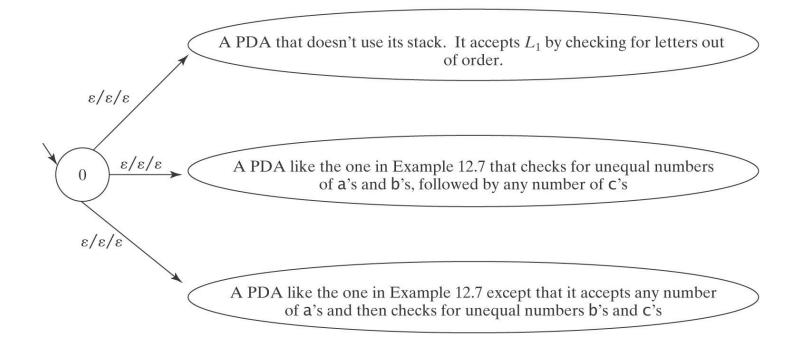
 $L = \neg A^n B^n C^n$

NPDA?

L is the union of two languages:

- $\{w \in \{a, b, c\}^* : the letters are out of order\}$
- $\{a^{i}b^{j}c^{k}: i, j, k \ge 0 \text{ and } (i \ne j \text{ or } j \ne k)\}$

NPDA for $L = \neg A^n B^n C^n$:



Equivalence of NPDAs and CFGs

CFL = CFG = NPDA

Equivalence of PDAs and CFGs

Theorem 12.1 Given a CFG G, there exists a NPDA M such that L(G) = L(M).

Proof Idea:

Proof by Construction

Equivalence of PDAs and CFGs

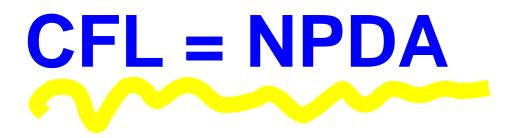
Theorem 12.2 Given a NPDA M, there exists a CFG G such that L(G) = L(M).

Proof Idea:

Proof by Construction

Context-Free Languages

A language is *context-free* iff it is accepted by **some NPDA**.



Equivalence of PDAs and CFGs

Theorem 12.3 A language is context-free iff it is accepted by some NPDA.

Proof Idea:

- For every CFG there exists an equivalent NPDA.
- For every NPDA there exists an equivalent CFG.

Deterministic PDA (DPDA)

Deterministic PDAs

A PDA *M* is *deterministic* iff:

- Δ_M contains no pairs of transitions that compete with each other, and
- Whenever *M* is in an accepting configuration it has no available moves.

Definition of Deterministic PDA

DPDA is $M = (K, \Sigma, \Gamma, \Delta, s, A)$, where: *K* is a finite set of states Σ is the input alphabet Γ is the stack alphabet $s \in K$ is the initial state $A \subseteq K$ is the set of accepting states, and Δ is the transition function. It is a finite subset of

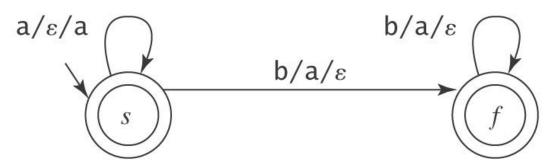
 $(K \times (\Sigma \cup \{\epsilon\}) \times \Gamma^*) \times (K \times \Gamma^*)$ stateinput or ϵ string ofstatestring ofsymbolssymbolssymbolssymbolsto popto pushon topof stackof stackof stack

CS612

43

Example: DPDA

 $K = \\ \Sigma = \\ \Gamma = \\ s \in K = \\ A \subseteq K = \\ \Delta =$



Non-Equivalence of NPDA and DPDA

NPDA ≠ DPDA
✓ DPDA is weaker than NPDA!

✓ DPDA accepts a class of languages DCFLs strictly between the RLs and the CFLs!

✓ DCFL = Unambiguous CFL!

Alternative Equivalent & Not Equivalent Definitions of a NPDA

Alternative Equivalent Definitions of a NPDA

- Pop and Push?
 - any string.
 - only a single symbol?

Accept?

- if the input is consumed and in an accepting state and the stack is empty.
- if the input is consumed and in an accepting state (regardless of the stack content)?
- if the input is consumed (regardless of the final state) and the stack is empty?

✓ All of these alternatives are equivalent!

Alternative NOT Equivalent Definitions of a NPDA

- NPDA = NDFSM + a stack
- FSM plus a queue (instead of stack)?
 ✓ Tag system (Post machine)
 ✓ = TM!
- FSM plus two stacks?
 ✓ = TM!

DFSMs

Reading Assignment

Chapter 12:

Sections 12.1 12.2 12.3 12.4 12.5 12.6

In-Class Exercises

Chapter 12:

1 – c & j 4