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Context-free Grammars, Languages, 

and PDAs

Context-free 

Language

Context-free 

Grammar

NPDA

Generates
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The CFL Hierarchy
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Closure Properties & 

Pumping of CFLs

Non-Context-Free Languages
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Languages That Are and 

Are Not Context-Free?

• a*b* context-free?

• AnBn = {anbn : n  0} context-free?

• AnBnCn = {anbncn : n  0} context-free?

• PalEven = {wwR : w  {a, b}*} context-free?

• WW = {ww : w  {a, b}*} context-free?
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Every RL is CFL

Lemma: Every regular language is CF.

Proof Idea:

Every FSM is (trivially) a PDA:
Given an FSM M = (K, , , s, A)  and elements of  of the form: 

(  p,    c, q )

old state,    input,    new state

Construct a PDA M' = (K, , {}, , s, A).  Each (p, c, q) becomes:

((   p,           c,           ),            (q,            ))

old state,  input,  don't new state don't

look at push on 

stack stack

Just don’t use the stack!
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There Exists at Least One Language 

that is CF but Not Regular

Lemma: There exists at least one language 

that is CF but not regular

Proof Idea: 

Proof by Counterexample

L= {anbn, n  0} is context-free but not regular.
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CFLs Properly Contain RLs

Theorem 13.1: The regular languages are a 

proper subset of the context-free languages.

Proof Idea:

In two parts:

• Every regular language is CF.

• There exists at least one language that is CF 

but not regular. 
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How Many CFLs Are There?

Theorem 13.2: There is a countably infinite 

number of CFLs.

Proof Idea: 

• We can lexicographically enumerate all the CFGs.

• There is a countably infinite number of CFGs.

• Thus, a countably infinite number of CFLs.
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There Exist Non-Context-Free 

Languages

• There is a countably infinite number of CFLs.

• There is an uncountable number of 

languages.

 Thus there are more languages than there 

are context-free languages.

 So there must exist some languages that 

are not context-free.

Example: {anbncn : n  0}
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Showing that L is Context-Free

14CS612



Showing that L is Context-Free

Techniques for showing that a language L is 

context-free:

 Exhibit a context-free grammar for L.

 Exhibit a PDA for L.

 Use the closure properties of context-free 

languages. (weaker than they are for regular languages.)
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Showing that L is Not Context-Free
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Parse Tree

• The height of a parse tree is the length of the 

longest path from the root to any leaf.

• The branching factor of a parse tree is the largest 

number of daughter nodes associated with any 

node in the tree.

• The yield of a parse tree is the ordered sequence 

of its leaf nodes.
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Height, Balancing Factor & Yield

Theorem 13.3: The length of the yield of 

any parse tree T with height h and branching 

factor b is  bh.

Proof Idea: 

Proof by Induction on h.

18CS612

Young
Pencil

Young
Pencil



Height, Balancing Factor & Yield

Proof by Induction on h:

• Prove when h=1: 

The length of the yield of any parse tree T with height 

h=1 and branching factor b is 

 b

 b1

• Assume it is true for h=n (Inductive Hypothesis): 

The length of the yield of any parse tree T with height 

h=n and branching factor b is  bh .
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Height, Balancing Factor & Yield

• Prove when h=n+1 using the Inductive Hypothesis: 

The length of the yield of any parse tree T with height 

h=n+1 and branching factor b is 

 (bn)(b1)

 bn+1

 bh
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Context-Free Pumping

CFG G = (V, , R, S) 

n = the # of nonterminals

b = the branching factor

= the length of the longest RHS of any rule

Consider any parse tree T where no 

nonterminal appears no more than once:

• The height of T  n

• The longest string (the yield of T)  bn
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Context-Free Pumping

Consider a string w in L(G) st |w|  bn

Any parse tree that G generates for w

• must contain at least one path that contains 

at least one repeated nonterminal!

• must use at least one recursive rule!

The parse tree must look like:

22CS612



Context-Free Pumping

The parse tree must look like:

S *  uXz *  uvXyz *  uvvxyyz
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Context-Free Pumping

There is another derivation in G:

S *  uXz *  uxz, 

At the point labeled [1], the non-recursive rule2 is used.

uxz is also in L(G).
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Context-Free Pumping

There are infinitely many derivations in G, such as:

S *  uXz *  uvXyz *  uvvXyyz *  uvvxyyz

Those derivations produce the strings: 

uv2xy2z, uv3xy3z, …  

All of those strings are also in L(G).
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Context-Free Pumping

If rule1 = X  Xa, we could get v = .

If rule1 = X  aX, we could get y = .

But it is not possible that both v and y are .  

If they were, then the derivation S * uXz * uxz would also yield w and it 

would create a parse tree with fewer nodes. But, that contradicts the 

assumption that we started with a tree with the smallest possible number of 

nodes. 
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Context-Free Pumping

The height of the subtree rooted at [1] is at most n + 1.

So |vxy|  bn + 1.
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The Context-Free Pumping Theorem

Theorem 13.4:  If L is a context-free language, 

then

k  1  ( strings w  L, where |w|  k

(u, v, x, y, z (w = uvxyz,

vy  , 

|vxy|  k and 

q  0 (uvqxyqz is in L)))).
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The Context-Free Pumping Theorem

Proof Idea:

L is generated by some CFG G = (V, , R, S) with n

nonterminal symbols and branching factor b.  

Let k be bn + 1.  

The longest string that can be generated by G with no 

repeated nonterminals in the resulting parse tree has 

length bn.  

Assuming that b  2, it must be the case that bn + 1 > bn.  

So let w be any string in L(G) where |w|  k.  
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The Context-Free Pumping Theorem

Let w be any string in L(G) where |w|  k.

Let T be any smallest parse tree for w.  

T must have height at least n + 1.   

Choose some path in T of length at least n + 1.  

Let X be the bottom-most repeated nonterminal along 

that path.  

Then w can be rewritten as uvxyz.  
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The Context-Free Pumping Theorem

Then w can be rewritten as uvxyz.  

The tree rooted at [1] has height at most n + 1.  

• Thus its yield, vxy, has length less than or equal 

to bn + 1, which is k.  

• vy   since if vy were  then there would be a 

smaller parse tree for w and we chose T so that 

that wasn’t so.  
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The Context-Free Pumping Theorem

• uxz must be in L because rule2 could have been 

used immediately at [1].  

• For any q  1, uvqxyqz must be in L because 

rule1 could have been used q times before 

finally using rule2.
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Showing That L is not Context-free

• The pumping theorem is true for every context-free 

language!

• If we could show the pumping theorem is not true 

of some language L, then L is not context-free!

• Proof by Contraction:

1. Suppose some language L is contet-free, then it would 

possess certain properties.

2. Show that L does not posses those properties.

3. Therefore, L is not context-free.
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Regular vs CF Pumping Theorems

Similarities:

• We choose w, the string to be pumped. 

• We choose a value for q that shows that w isn’t 

pumpable.

• We may apply closure theorems before we start.

Differences:

• Two regions, v and y, must be pumped in 

tandem.

• We don’t know anything about where in the 

strings v and y will fall.  All we know is that they are 

reasonably “close together”, i.e.,  |vxy|  k.

• Either v or y could be empty, although not both. 
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Example 13.1

L = AnBnCn = {anbncn, n 0} is not context-

free!

Proof Idea: Proof by Contradiction.

Suppose L=AnBnCn is CFL. 

There exists k st any string w where |w|  k must satisfy the CFL 

pumping theorem.

We will show one string that does not satisfy the CFL pumping 

theorem.

Choose  w = ak bk ck
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Example 13.1

Choose  w = ak bk ck

1 | 2 | 3

• If either v or y spans regions, then let q = 2 (i.e., pump in 

once).  The resulting string will have letters out of order and 

thus not be in AnBnCn.

• If both v and y each contain only one distinct character, 

then set q to 2.  Additional copies of at most two different 

characters are added, leaving the third unchanged.  There 

are no longer equal numbers of the three letters, so the 

resulting string is not in AnBnCn. 

So, AnBnCn is not context-free!
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Example 13.2

L = {   , n  0} is not context-free!

Proof Idea: Proof by Contradiction.

Suppose L is CFL. 

Choose n = k2, then n2 = k4.  Choose  w =      .

a n2

4ka
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Example 13.2

Choose n = k2, then n2 = k4.  Choose  w =      .

vy = ap, for some nonzero p.  

Set q to 2.  The resulting string, s, is           .  It must be in L.  

But it isn’t because it is too short: 

w: next longer string in L:

(k2)2 a’s (k2 + 1)2 a’s

k4 a’s k4 + 2k2 + 1  a’s

For s to be in L, p = |vy| would have to be at least 2k2 + 1.  

But |vxy|  k, so p can’t be that large. Thus s is not in L. 

So, L is not context-free.  

4ka

pka 4
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Example 13.3

L = {anbman, n, m  0 and n  m} is not 

context-free!

Proof Idea: Proof by Contradiction.

Suppose L is CFL. 

Choose w = akbkak
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Example 13.3

Choose w = akbkak

aaa … aaabbb … bbbaaa … aaa
|          1         |        2 |         3         |

So, L is not context-free.  
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WcW = {wcw : w  {a, b}*} is not context-free!

Proof Idea: Proof by Contradiction.

Suppose WcW is CFL. 

Choose w = akbkcakbk.  

Example 13.4
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Choose w = akbkcakbk.  

aaa … aaabbb …  bbbcaaa … aaabbb … bbb

|         1 | 2 |3|        4             |         5            |

• If v or y overlaps region 3, set q to 0.  The resulting string will no 
longer contain a c.

• If both v and y occur before region 3 or they both occur after region 

3, then set q to 2.   One side will be longer than the other.

• If either v or y overlaps region 1, then set q to 2.  In order to make the 

right side match, something would have to be pumped into region 4.  

Violates |vxy|  k. 

• If either v or y overlaps region 2, then set q to 2.  In order to make the 

right side match, something would have to be pumped into region 5.  

Violates |vxy|  k. 

So WcW is not context-free!

Example 13.4

42CS612



Closure and Non-Closure Properties 

of CFLs
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Closure Theorems for CFLs

The context-free languages are closed under:

• Union

• Concatenation

• Kleene star

• Reverse

• Letter substitution
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Closure Theorems for CFLs

Theorem 13.5 The CFLs are closed under 

union, concatenation, Kleene star, reverse, 

and letter substitution.

Proof Idea:

Proof by Construction.
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Closure Under Union

Let G1 = (V1, 1, R1, S1), and G2 = (V2, 2, R2, S2).

Assume that G1 and G2 have disjoint sets of 

nonterminals, not including S.

Let L = L(G1)  L(G2).

We can show that L is CF by exhibiting a CFG for it:

G = (V1  V2  {S}, 1  2, 

R1  R2  {S  S1, S  S2}, 

S) 

46CS612



Closure Under Concatenation

Let G1 = (V1, 1, R1, S1), and G2 = (V2, 2, R2, S2).

Assume that G1 and G2 have disjoint sets of 

nonterminals, not including S.

Let L = L(G1)L(G2).

We can show that L is CF by exhibiting a CFG for it:

G = (V1  V2  {S}, 1  2, 

R1  R2  {S  S1 S2}, 

S) 
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Closure Under Kleene Star

Let G = (V, , R, S1). 

Assume that G does not have the nonterminal S.

Let L = L(G)*.

We can show that L is CF by exhibiting a CFG for it:

G = (V1  {S}, 1, 

R1  {S  , S  S S1}, 

S) 
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Non-Closure Theorems for CFLs

The context-free languages are not closed 

under:

• Intersection

• Complement 

• Difference
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Non-Closure Theorems for CFLs

Theorem 13.6 The CFLs are NOT closed 

under intersection, complement or difference.

Proof Idea:

Proof by Counterexample.
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Non-Closure Under Intersection

L1 = {anbncm: n, m  0}     

L2 = {ambncn: n, m  0}     

Both L1 and L2 are context-free.

But now consider:

L  = L1  L2

= {anbncn: n  0} not context-free!
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Non-Closure Under Complement

L1  L2 = (L1  L2)

• The context-free languages are closed under 

union.

• So if they were closed under complement, they 

would be closed under intersection (which they 

are not).

Example:  AnBnCn is context-free. But (AnBnCn) = AnBnCn

is not context-free. 
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Non-Closure Under Difference

L = * - L.

• * is context-free.  

• If the context-free languages were closed under 

difference, the complement of any context-free 

language would necessarily be context-free.  

• But that is not so. 
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Closure Theorems for CFLs with RLs

Theorem 13.7 The CFLs are closed under 

intersection with the regular languages.

Proof Idea:

Proof by Construction.
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Closure Theorems for CFLs with RLs

Theorem 13.8 The difference L1 – L2 between 

a CFL L1 and a RL L2 is context-free.

Proof Idea:

Proof by Construction.
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L = {anbn: n  0 and n  1776} is context-free!  

L = {anbn: n  0} – {a1776b1776}.  

Here,
{anbn: n  0} is context-free.  

{a1776b1776} is regular.

So, L is context-free.

Example 13.5
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Deterministic CFLs
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Deterministic PDAs

A PDA M is deterministic iff:

• M contains no pairs of transitions that 

compete with each other, and

• Whenever M is in an accepting 

configuration it has no available moves.  
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An NDPDA for L

L = a*  {anbn : n > 0}.

NDPDA?
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A DPDA for L$

L = a*  {anbn : n > 0}.

DPDA?
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Deterministic CFLs

A language L is deterministic context-free

iff L$ ($= an end-of-string marker) can be 

accepted by some deterministic PDA.

DCFL = DPDA  
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Non-Equivalence of NPDA and DPDA

• NPDA ≠ DPDA

• DPDA is weaker than NPDA!
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DCFLs and CFLs

Theorem 13.13 There exist CLFs that are not 

deterministic.

Proof Idea:
Proof By Example. 

Let L = {aibjck, i  j or j  k}.  L is CF.  If L is DCF then so is:

L = L.
= {aibjck, i, j, k  0 and i = j = k} 

{w  {a, b, c}* : the letters are out of order}.

But then so is:

L = L  a*b*c*.

= {anbncn, n 0}.

But it isn’t.  So L is context-free but not deterministic context-free.
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DCFLs and Unambiguous CFGs

Theorem 13.14 Every RL is deterministic CFL.

Theorem 13.15 For every deterministic CFL, 

there exists an unambiguous CFG.
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The CFL Hierarchy
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The CFL Hierarchy

66CS612

• L1 = {aibjck : i, j, k  0 and (i = j) or (j = k)} = {anbncm: n, m  0} 

{anbmcm: n, m  0}

• L2 = {anbncmd : n, m  0}  {anbmcme : n, m  0}  

• PalEven = {wwR : w  {a, b}*}

• AnBn = {anbn : n  0}
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IN OUT

Context-Free

CF grammar AnBn Pumping

PDA Closure

Closure

R grammar Regular

Regular Expression                  a*b* Pumping

FSM Closure

Language Summary
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Reading Assignment

Chapter 13:

Sections

13.1

13.2

13.3

13.4
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In-Class Exercises

Chapter 13:

1 – a & j & q

3

69CS612



Algorithms and Decision 

Procedures 

for 

Context-Free Languages
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Membership

71

Theorem 14.1 Given a context-free language 

L and a string w, there exists a decision 

procedure that answers the question, is w  L?
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Emptiness & Finiteness

72

Theorem 14.4 Given a CFL L, there exists a 

decision procedure that answers the question, 

is L(M) = ? & is L finite?
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Equivalence of DCFLs

Theorem 14.5 Given two deterministic

context-free languages L1 and L2, there exists a 

decision procedure to determine whether 

L1 = L2?
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Undecidable Questions about CFLs

• Is L = *? (Totality)

• Is the complement of L context-free?

• Is L regular?

• Is L1 = L2? (Equivalence)

• Is L1  L2?

• Is L1  L2 = ?

• Is L inherently ambiguous?

• Is G ambiguous?
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Reading Assignment

Chapter 14:

Sections

14.1

14.2

14.3
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In-Class Exercises

Chapter 14:

1 - a
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Context Free Languages: Summary

Context-Free Languages

● context-free grammars

● = NDPDAs

● parse

● find unambiguous grammars

● reduce nondeterminism in PDAs

● find efficient parsers

● closed under:

♦ concatenation

♦ union

♦ Kleene star

♦ intersection w/ reg. langs

● pumping theorem

● D  ND
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RLs vs CFLs:Summary

Regular Languages Context-Free Languages

● regular exprs. ● context-free grammars

or

● regular grammars

● = DFSMs ● = NDPDAs

● recognize ● parse

● minimize FSMs ● find unambiguous grammars

● reduce nondeterminism in PDAs

● find efficient parsers

● closed under: ● closed under:

♦ concatenation ♦ concatenation

♦ union ♦ union

♦ Kleene star ♦ Kleene star

♦ complement

♦ intersection ♦ intersection w/ reg. langs

● pumping theorem ● pumping theorem

● D = ND ● D  ND
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