
PART 3:
Automata:
Turing Machines

Formal Languages

& Computability Theory:

Church-Turing Thesis

Unsolvability/Undecidability of the Halting Problem

Decidable & Non-Decidable Languages

Semi-Decidable & Non-Semi-Decidable Languages

Grammar:
Unrestricted Grammars

1CS612

Turing Machines

2CS612

Young
Pencil

Languages, Grammars & Automata

3CS612

Young
Pencil

Languages, Grammars & Automata

4CS612

Young
Pencil

Languages, Grammars & Automata
SD

D

Context-sensitive

Context-free

DCF

Regular

FSMs

DPDAs

NDPDAs

LBAs

Turing MachinesCS612 5

Young
Pencil

Languages, Grammars & Automata
SD

D

Context-Free

Languages

Regular

Languages

reg exps

FSMs

cfgs

PDAs

unrestricted grammars

Turing Machines

6CS612

Not SD

Young
Pencil

SD Language

Unrestricted

Grammar

Turing

Machine

Generates

Accepts

Grammars, SD Languages, and TMs

7CS612

Young
Pencil

Young
Pencil

A Model of General Purpose

Computers

A new kind of automaton/ abstract computing

machine that has two properties:

• powerful enough to describe all

computable things (unlike FSMs and

PDAs, like real computers).

• simple enough that we can reason

formally about it (like FSMs and PDAs,

unlike real computers).
8CS612

Young
Pencil

Turing Machines

• FSM + an unlimited and unrestricted memory

(writable tape)!

• A TM is an accurate model of a general purpose

computer!

• A TM can do everything that a real computer can

do!

• By Alan Turing in 1936!

9CS612

Young
Pencil

Young
Pencil

Turing Machines

• An infinite tape (as an unlimited memory)

• A RW tape head

At each step, the machine must:

• read the current symbol

• write on the current square

• move left or right

• choose its next state
10CS612

Young
Pencil

Young
Pencil

Young
Pencil

Young
Pencil

Young
Pencil

Young
Pencil

Definition of Deterministic Turing

Machine

A DTM M is a sixtuple (K, , , , s, H)

• K is a finite set of states;

•  is the input alphabet, which does not

contain q (blank);

•  is the tape alphabet, which must

contain q and have  as a subset.

• s  K is the initial state;

• H  K is the set of halting states;

•  is the transition function:

11CS612

Young
Pencil

Young
Pencil

Definition of Deterministic Turing

Machine

 is the transition function:

(K - H)   to K    {, }

non-halting  tape state  tape  action

state char char (R or L)

12CS612

Young
Pencil

Deterministic Turing Machine

• The input tape is infinite in both directions.

•  is a function, not a relation. So this is a definition

for deterministic Turing machines.

•  must be defined for all state, input pairs unless

the state is a halting state.

• Turing machines do not necessarily halt. To halt,

they must enter a halting state. Otherwise they

loop.

• Turing machines generate output (the contents of

its tape when halts) so they can compute

functions.

13CS612

Young
Pencil

Example 17.1

TM M takes as input a string in the language
{aibj, 0  j  i}, and adds b’s as required to make

the number of b’s equal the number of a’s.

q aaab q q q

The input:

The output should be:

14CS612

Example 17.1

TM M: An informal description!

q aaab q q q

K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, q, $, #},

s = 1, H = {6},  =

1.

2. loop

3.

4.

15CS612

Young
Pencil

Example 17.2

TM M: A graphical notation (Transition Diagram)!

q aaab q q q

K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, q, $, #},

s = 1, H = {6},  =

16CS612

Young
Pencil

Configurations

A configuration of a Turing machine M = (K, , ,

s, H) is an element of:

K  ((- {q}) *)  {}    (* (- {q}))  {}

state up scanned after

to scanned square scanned

square square

17CS612

Young
Pencil

Example 17.3

Initial configuration is (s, qw).

18CS612

Yields

(q1, w1) |-M (q2, w2) iff (q2, w2) is derivable, via

, in one step.

For any TM M, let |-M* be the reflexive,

transitive closure of |-M.

Configuration C1 yields configuration C2 if:

C1 |-M* C2.

19CS612

Young
Pencil

Computations

A path through M is a sequence of

configurations C0, C1, …, Cn for some n  0

such that C0 is the initial configuration and:

C0 |-M C1 |-M C2 |-M … |-M Cn.

A computation by M is a path that halts.

If a computation is of length n or has n steps,

we write: C0 |-M
n Cn

20CS612

Young
Pencil

Halting

• A DFSM M, on input w, is guaranteed to halt

in |w| steps.

• A PDA M, on input w, is not guaranteed to

halt. But there exists an algorithm to construct an equivalent

PDA M that is guaranteed to halt.

• A TM M, on input w, is not guaranteed to

halt. And there exists no algorithm to construct an

equivalent TM that is guaranteed to halt.

21CS612

Young
Pencil

Young
Pencil

TM Computation and Halting

• Halt and Accept

• Halt and Reject

• Not Halt and Loop

22CS612

Young
Pencil

TMs as Language Recognizers

23CS612

TMs as Language Recognizers

The input string w on the tape:

qwq, w contains no qs

The initial configuration of M:

(s, qw)

Let M = (K, , , , s, {y, n}).

• M accepts a string w iff (s, qw) |-M* (y, w) for some

string w.

• M rejects a string w iff (s, qw) |-M* (n, w) for some

string w.

24CS612

Young
Pencil

TM M decides a language L  * iff for any

string w  * :

if w  L then TM M accepts w, and

if w  L then TM M rejects w.

TM M will always halt on all inputs!

25CS612

Deciding a Language

Young
Pencil

Young
Pencil

Young
Pencil

A language L is decidable or Turing-

decidable or recursive iff there is a Turing

Machine M that decides it.

We say that L is in D (or R) the set of all

decidable languages.

26CS612

Decidable Languages D

Young
Pencil

Young
Pencil

• Decidable Languages

• Solvable Languages

• Computable Languages

• Recursive Languages

• Turing-Decidable Languages

27CS612

Decidable Languages D

Young
Pencil

Example 17.8

L= AnBnCn = {anbncn : n  0} is decidable?

TM decides L?

TM M: An informal description!

q q q q
qabc q q q
qaabbcc q q q
qabcc q q q

28CS612

Example 17.8

L= AnBnCn = {anbncn : n  0} is decidable?

TM decides L?

TM M: A graphical notation!

q q q q
qabc q q q
qaabbcc q q q
qabcc q q q

29CS612

Semideciding a Language

TM M semidecides (or recognizes) L  M* iff

for any string w  M*:

if w  L  TM M accepts w

if w  L  TM M does not accept w.

TM M may either reject

or fail to halt (loop)!

30CS612

Young
Pencil

Young
Pencil

Young
Pencil

Semi-Decidable Languages SD

A language L is semidecidable or Turing-

recognizable or recursively-enumerable iff

there is a Turing Machine that semidecides it.

We say that SD (or RE) - the set of all

semidecidable languages.

31CS612

Young
Pencil

Young
Pencil

Young
Pencil

Semi-Decidable Languages SD

• Semi-Decidable Languages

• Recursively Enumerable (R.E.) Languages

• Partially-Decidable Languages

• Turing-Recognizable Languages

32CS612

Young
Pencil

Example 17.10

L = b*a(a  b)* is semidecidable?

TM M semidecides (recognizes) L?

Loop:

1.1 Move one square to the right.

1.2 If the character under the read/write head is

an a, halt and accept.

33CS612

Example 17.10

L = b*a(a  b)*

TM M decides L?

Loop:

1.1 Move one square to the right.

1.2 If the character under the read/write head is

an a, halt and accept.

1.3 If it is q, halt and reject.

34CS612

TMs Compute Functions

35CS612

TMs Compute Functions

TM M = (K, , , , s, {h}).

Its initial configuration is (s, qw).

Define M(w) = z iff (s, qw) |-M* (h, qz).

   = M’s output alphabet.

f = any function from * to *.

36CS612

Young
Pencil

TMs Compute Functions

TM M computes f iff for all w  *:

• If w is an input on which f is defined: M(w) = f(w).

• Otherwise M(w) does not halt.

A function f is recursive or computable iff

there is a Turing Machine M that computes it

and that always halts.

• Recursive Functions

• Computable Functions
37CS612

Young
Pencil

Young
Pencil

Young
Pencil

Example 17.12

succ(n) = n + 1

Represent n in binary, i.e., n  0  1{0, 1}*

Input: qnq Output: qn+1q
q1111q Output: q10000q

TM computes succ?

TM M:

1.

2.

38CS612

Variants of TMs - Extensions

39CS612

Variants of TMs - Extensions

There are many extensions we might like to

make to our basic Turing machine model.

Some possible extensions:

• Multiple-tape TMs

• Nondeterministic TMs

 Every extended Turing machine has an

equivalent basic Turing machine!

40CS612

Young
Pencil

Multi-tape Turing Machines

41CS612

Multiple Tapes

The transition function for a k-tape Turing machine:

((K-H) , 1 to (K , 1, {, , }

, 2 , 2, {, , }

, . , .

, . , .

, k) , k, {, , })

Input: as before on tape 1, others blank.

Output: as before on tape 1, others ignored.

Note: tape head is allowed to stay put.

42CS612

Equivalence of One-tape DTM and

Multi-tape DTM

One-tape DTM = Multi-tape DTM

43CS612

Young
Pencil

Adding Tapes Adds No Power

Theorem 17.1 Let M be a k-tape Turing machine for

some k  1. Then there is a standard TM M' where 

 ', and:

• On input x, M halts with output z on the first tape

iff M' halts in the same state with z on its tape.

• On input x, if M halts in n steps, M' halts in
O(n2) steps.

Proof Idea:

Proof by Construction.

44CS612

Young
Pencil

A Nondeterministic TM is a sixtuple (K, , ,

, s, H) where

 the transition relation is a subset of:

((K - H)  )  (K    {, })

Nondeterministic Turing Machines

45CS612

Young
Pencil

Nondeterministic Deciding

TM M = (K, , , , s, {y, n}) be a nondeterministic TM.

Let w be an element of *.

• M accepts w iff at least one of its computations

accepts.

• M rejects w iff all of its computations reject.

M decides a language L  * iff, w:

• There is a finite number of paths that M can

follow on input w,

• All of those paths halt, and

• w  L iff M accepts w.
CS612 46

Young
Pencil

Nondeterministic Semideciding

TM M = (K, , , , s, H) be a nondeterministic TM.

M semidecides a language L  * iff for all w  *:

• w  L iff (s, qw) yields at least one accepting

configuration.

CS612 47

Young
Pencil

TM M computes a function f iff, w  *:

• All of M’s computations halt, and

• All of M’s computations result in f(w).

Nondeterministic Function

Computation

CS612 48

Equivalence of DTMs and NDTMs

DTM = NDTM

49CS612

Young
Pencil

Adding Nondeterminism Adds No

Power

Theorem 17.2 If a nondeterministic TM M

decides or semidecides a language, or

computes a function, then there is a standard

TM M' semideciding or deciding the same

language or computing the same function.

Proof Idea:

Proof by construction.

Constructions for deciding/semideciding and for function computation.

50CS612

Young
Pencil

Turing Machines and Computers

51CS612

Simulating a Real Computer by a TM

• An unbounded number of memory cells addressed by the integers

starting at 0.

• An instruction set composed of basic operations including load, store,

add, subtract, jump, conditional jump, and halt. Here’s a simple

example program:

R 10

MIR 10

CJUMP 1001

A 10111

ST 10111

• A program counter.

• An address register.

• An accumulator.

• A small fixed number of special purpose registers.

• An input file.

• An output file.

52CS612

Young
Pencil

Simulating a Real Computer by a TM

Theorem 17.4 A random-access, stored

program computer can be simulated by a

Turing Machine. If the computer requires n

steps to perform some operation, the Turing
Machine simulation will require O(n6) steps.

Proof Idea: Proof by construction.
simcomputer will use 7 tapes:

● Tape 1: the computer’s memory.

● Tape 2: the program counter.

● Tape 3: the address register.

● Tape 4: the accumulator.

● Tape 5: the op code of the current instruction.

● Tape 6: the input file.

● Tape 7: the output file, initially blank.

53CS612

Young
Pencil

The Universal Turing Machine

54CS612

Encoding TMs as Strings

We need to describe TM M = (K, , , , s, H) as

a string <M>:

• The states

• The tape alphabet

• The transitions

55CS612

Young
Pencil

Young
Pencil

Example 17.20

Consider M = ({s, q, h}, {a, b, c}, {q, a, b, c}, , s, {h}):

<M> = (q00,a00,q01,a00,), (q00,a01,q00,a10,),

(q00,a10,q01,a01,), (q00,a11,q01,a10,),

(q01,a00,q00,a01,), (q01,a01,q01,a10,),

(q01,a10,q01,a11,), (q01,a11,h11,a01,)

state symbol 

s q (q,q, )

s a (s,b,)

s b (q,a, )

s c (q,b, )

q q (s,a, )

q a (q,b,)

q b (q,b, )

q c (h,a, )

state/symbol representation

s q00

q q01

h h10

q a00

a a01

b a10

c a11

56CS612

Enumerating Turing Machines

Theorem 17.7 There exists an infinite

lexicographic enumeration of:

• All syntactically valid TMs.

• All syntactically valid TMs with specific input

alphabet .

• All syntactically valid TMs with specific input

alphabet  and specific tape alphabet .

57CS612

Young
Pencil

The Universal Turing Machine

Problem: All our machines so far are

hardwired!

Question: Can we build a programmable TM

that accepts as input: <an arbitrary TM M, an

input string w> and simulate the operation of

M on w?

 Yes, it’s called the Universal Turing

Machine!

58CS612

Young
Pencil

On input <M, w>, the Universal Turing

Machine U must:

• Halt iff M halts on w.

• If M is a deciding or semideciding machine, then: If

M accepts, accept. If M rejects, reject.

• If M computes a function, then U(<M, w>) must

equal M(w).

Specification of the Universal TM

59CS612

Young
Pencil

The UTM U will use 3 tapes:

• Tape 1: M’s tape.

• Tape 2: <M>, the “program” that U is running.

• Tape 3: M’s state.

How The Universal TM U Works

60CS612

Reading Assignment

Chapter 17:

Sections

17.1

17.2

17.3

17.6

17.7

61CS612

In-Class Exercises

Chapter 17:

1

8

13

14

62CS612

Unrestricted Grammars

CS612 63

Young
Pencil

Languages, Grammars & Automata

64CS612

Young
Pencil

Languages, Grammars & Automata

65CS612

Young
Pencil

Languages, Grammars & Automata
SD

D

Context-sensitive

Context-free

DCF

Regular

FSMs

DPDAs

NDPDAs

LBAs

Turing MachinesCS612 66

Young
Pencil

Languages, Grammars & Automata
SD

D

Context-Free

Languages

Regular

Languages

reg exps

FSMs

cfgs

PDAs

unrestricted grammars

Turing Machines

67CS612

Not SD

Young
Pencil

SD Language

Unrestricted

Grammar

Turing

Machine

Generates

Accepts

Grammars, SD Languages, and TMs

68CS612

Young
Pencil

Unrestricted Grammars

An unrestricted or type 0 or phrase structure

grammar G is a quadruple (V, , R, S) where:

• V is an alphabet,

•  (the set of terminals) is a subset of V,

• R (the set of rules) is a finite subset of (V+  V*),

• S (the start symbol) is an element of V - .

The language generated by G is: {w  * : S G* w}.

CS612 69

Young
Pencil

Young
Pencil

Example 23.1

L = AnBnCn = {anbncn, n  0}.

UG?

S  aBSc

S  
Ba aB

Bc bc

Bb bb

abc

aaabbbccc

CS612 70

Example 23.2

L = {w  {a, b, c}* : #a(w) = #b(w) = #c(w)}

UG?

S  ABCS

S  

AB  BA

BC  CB

AC  CA

BA  AB

CA  AC

CB  BC
A  a

B  b

C  c

CS612 71

Equivalence of Unrestricted

Grammars and Turing Machines

UG = TM = SD

CS612 72

Young
Pencil

Equivalence of Unrestricted

Grammars and Turing Machines

Theorem 23.1 A language is generated by an

unrestricted grammar if and only if it is

semidecided by some Turing Machine M, i.e.,

it is in SD.

Proof Idea:

Proof by Construction

Only if (grammar  TM): by construction of an NDTM.

If (TM  grammar): by construction of a grammar that

mimics the behavior of a semideciding TM.

CS612 73

Reading Assignment

Chapter 23:

Sections

23.1

23.2

74CS612

Context-Sensitive Languages,

Context-Sensitive Grammars

and

Linear Bounded Automata (LBA)

CS612 75

Languages, Grammars & Automata

76CS612

Languages, Grammars & Automata

77CS612

Young
Pencil

Languages, Grammars & Automata
SD

D

Context-sensitive

Context-free

DCF

Regular

FSMs

DPDAs

NDPDAs

LBAs

Turing MachinesCS612 78

Young
Pencil

Young
Pencil

Is There Anything In Between PDAs

and Turing Machines?

CS612 79

Young
Pencil

Young
Pencil

Context-Sensitive Grammars, Context-

Sensitive Languages, and LBAs

CS Language

CS Grammar

LBA

L

Accepts

CS612 80

Young
Pencil

Linear Bounded Automata

A linear bounded automaton is an NDTM the

length of whose tape is equal to |w| + 2.

Example: AnBnCn = {anbncn : n  0}

qaabbccqqqqqqqqq

CS612 81

Young
Pencil

Context-Sensitive Languages

A language is context sensitive iff there exists

an LBA that accepts it.

CSL = LBA

Note:

It is not known whether, for every nondeterministic LBA there exists

an equivalent deterministic one.

CS612 82

Young
Pencil

Context-Sensitive Grammars

A context-sensitive grammar G = (V, , R,

S) is an unrestricted grammar in which R

satisfies the following constraints:

• The left-hand side of every rule contains at least

one nonterminal symbol.

• No length-reducing rules.

 With one exception: R may contain the rule S  .

If it does, then S does not occur on the right hand side of

any rule.

CS612 83

Young
Pencil

Context-Sensitive Grammars

L = AnBn = {anbn, n  0}.

• A grammar that is not context-sensitive:
S  aSb

S  

• An equivalent, context-sensitive grammar:

S  

S  T
T  aTb

T  ab

CS612 84

Equivalence of Context-Sensitive

Languages and Linear Bounded Automata

CSL = LBA = CSG

CS612 85

Young
Pencil

Equivalence of CSG and LBA

Theorem 24.3 The set of languages that can

be generated by a context-sensitive

grammar is identical to the class that can be

accepted by an LBA.

CS612 86

Context-Sensitive Languages and D

Theorem 24.4 The context-sensitive

languages are a proper subset of D.

CS612 87

Young
Pencil

The Chomsky Hierarchy

88CS612

Young
Pencil

Reading Assignment

Chapter 24:

Sections

24.1

89CS612

