

Automata: Turing Machines

Formal Languages & Computability Theory:

Church-Turing Thesis Unsolvability/Undecidability of the Halting Problem Decidable & Non-Decidable Languages Semi-Decidable & Non-Semi-Decidable Languages

Unrestricted Grammars

Turing Machines

Languages, Grammars & Automata

Languages, Grammars & Automata

Grammars, SD Languages, and TMs

A Model of General Purpose Computers

A new kind of automaton/ abstract computing machine that has two properties:

- powerful enough to describe all computable things (unlike FSMs and PDAs, like real computers).
- simple enough that we can reason formally about it (like FSMs and PDAs, unlike real computers).

Turing Machines

 FSM + an unlimited and unrestricted memory (writable tape)!

- A TM is an accurate model of a general purpose computer!
- A TM can do everything that a real computer can do!
- By Alan Turing in 1936!

Turing Machines

- An infinite tape (as an unlimited memory)
- A RW tape head

At each step, the machine must:

- read the current symbol
- write on the current square
- move left or right
- choose its next state

Definition of Deterministic Turing Machine

A DTM *M* is a sixtuple (*K*, Σ , Γ , δ , *s*, *H*)

- *K* is a finite set of states;
- Σ is the input alphabet, which does not contain □ (blank);
- Γ is the tape alphabet, which must contain \Box and have Σ as a subset.
- $s \in K$ is the initial state;
- $H \subseteq K$ is the set of halting states;
- δ is the transition function:

Definition of Deterministic Turing Machine

 δ is the **transition function**:

Deterministic Turing Machine

- The input tape is infinite in both directions.
- δ is a function, not a relation. So this is a definition for deterministic Turing machines.
- δ must be defined for all state, input pairs unless the state is a halting state.
- Turing machines do not necessarily halt. To halt, they must enter a halting state. Otherwise they loop.
- Turing machines generate output (*the contents of its tape when halts*) so they can compute functions.

TM *M* takes as input a string in the language $\{a^{i}b^{j}, 0 \le j \le i\}$, and adds b's as required to make the number of b's equal the number of a's.

🖸 aaab 🗖 🗖 🗖

The input:

TM M: An informal description!

🖸 aaab 🗖 🗖 🗖

1. 2. loop 3. 4.

TM M: A graphical notation (Transition Diagram)!

🖸 aaab 🖸 🖸 🖸

 $K = \{1, 2, 3, 4, 5, 6\}, \Sigma = \{a, b\}, \Gamma = \{a, b, \Box, \$, \#\}, \\ s = 1, H = \{6\}, \delta =$

Configurations

A configuration of a Turing machine $M = (K, \Sigma, \Gamma, s, H)$ is an element of:

 $K \times ((\Gamma - \{\Box\}) \Gamma^*) \cup \{\varepsilon\} \times \Gamma \times (\Gamma^* (\Gamma - \{\Box\})) \cup \{\varepsilon\}$

state	up	scanned	after
	to scanned	square	scanned
	square		square

Initial configuration is $(s, \Box w)$.

Yields

 $(q_1, w_1) \mid -_M (q_2, w_2)$ iff (q_2, w_2) is derivable, via δ , in one step.

For any TM *M*, let $|-_{M}^{*}$ be the *reflexive*, *transitive closure* of $|-_{M}$.

Configuration C_1 yields configuration C_2 if:

 $C_1 \mid -M^* C_2.$

Computations

A *path* through *M* is a sequence of configurations C_0 , C_1 , ..., C_n for some $n \ge 0$ such that C_0 is the initial configuration and:

$$C_0 \mid -_M C_1 \mid -_M C_2 \mid -_M \dots \mid -_M C_n.$$

A *computation* by *M* is a path that halts.

If a computation is of *length n* or has *n* steps, we write: $C_0 \mid -_M ^n C_n$

- A DFSM M, on input w, is guaranteed to halt in |w| steps.
- A PDA *M*, on input *w*, is not guaranteed to halt. But there exists an algorithm to construct an equivalent PDA *M*' that is guaranteed to halt.
 - A TM *M*, on input *w*, is not guaranteed to halt. And there exists no algorithm to construct an equivalent TM that is guaranteed to halt.

TM Computation and Halting

- Halt and Accept
- Halt and Reject
- Not Halt and Loop

TMs as Language Recognizers

TMs as Language Recognizers

The input string w on the tape: $\Box w \Box$, w contains no \Box s

The initial configuration of M: (s, $\square W$)

Let $M = (K, \Sigma, \Gamma, \delta, s, \{y, n\}).$

- M accepts a string w iff (s, w) |-* (y, w) for some string w.
- M rejects a string w iff (s, w) |-* (n, w) for some string w.

Deciding a Language

TM M decides a language $L \subseteq \Sigma^*$ iff for any string $w \in \Sigma^-$: if $w \in L$ then TM M accepts w, and if $w \notin L$ then TM M rejects w.

TM M will always halt on all inputs!

Decidable Languages D

A language *L* is *decidable* or *Turingdecidable* or *recursive* iff there is a Turing Machine *M* that decides it.

We say that *L* is in *D* (or *R*) the set of all decidable languages.

Decidable Languages D

- Decidable Languages
- Solvable Languages
- <u>Computable</u> Languages
- <u>Recursive</u> Languages
- Turing-Decidable Languages

L= $A^n B^n C^n = \{a^n b^n c^n : n \ge 0\}$ is **decidable**?

TM decides L?

TM M: An informal description!

D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D

L= $A^n B^n C^n = \{a^n b^n c^n : n \ge 0\}$ is **decidable**?

TM decides L?

TM M: A graphical notation!

Semideciding a Language

TM *M* semidecides (or recognizes) $L \subseteq \Sigma_M^*$ iff for any string $w \in \Sigma_M^*$:

if $w \in L \rightarrow TM$ *M* accepts *w*

if $w \notin L \rightarrow TM M$ does not accept w.

TM M may either reject or fail to halt (loop)!

Semi-Decidable Languages SD

A language *L* is **semidecidable** or **Turingrecognizable** or **recursively-enumerable** iff there is a Turing Machine mat semidecides it.

We say that **SD** (or **RE**) - the set of all semidecidable languages.

Semi-Decidable Languages SD

- Semi-Decidable Languages
- <u>Recursively Enumerable (R.E.) Languages</u>
- Partially-Decidable Languages
- Turing-Recognizable Languages

 $L = b^*a(a \cup b)^*$ is semidecidable?

TM M semidecides (recognizes) L?

Loop:

- 1.1 Move one square to the right.
- 1.2 If the character under the read/write head is an a, halt and accept.

$$\begin{array}{c} \Box, b \\ > R \\ \hline \\ \end{array} \xrightarrow{} y$$

$$\mathsf{L} = \mathsf{b}^* \mathsf{a} (\mathsf{a} \cup \mathsf{b})^*$$

TM M decides L?

TMs Compute Functions

TMs Compute Functions

TM $M = (K, Σ, Γ, δ, s, \{h\}).$

Its initial configuration is $(s, \Box w)$.

Define M(w) = z iff $(s, \square w) |_{-M^*} (h, \square z)$.

 $\Sigma' \subseteq \Sigma = M$'s output alphabet.

 $f = any function from \Sigma^* to \Sigma'^*$.
TMs Compute Functions

TM *M* computes *f* iff for all $w \in \Sigma^*$:

- If w is an input on which f is defined: M(w) = f(w).
- Otherwise M(w) does not halt.

A function *f* is *recursive* or *computable* iff there is a Turing Machine *M* that computes it and that <u>always halts</u>.

- <u>Recursive</u> Functions
- <u>Computable</u> Functions

Example 17.12

succ(n) = n + 1

Represent n in binary, i.e., $n \in 0 \cup 1\{0, 1\}^*$ Input: $\square n \square$ Output: $\square n+1\square$ $\square 1111\square$ Output: $\square 10000\square$

TM computes succ?

Variants of TMs - Extensions

Variants of TMs - Extensions

There are many extensions we might like to make to our basic Turing machine model.

Some possible extensions:

- Multiple-tape TMs
- Nondeterministic TMs

Every extended Turing machine has an equivalent basic Turing machine!

Multi-tape Turing Machines

		a	b	b	a			
• • •		b	a	b	b	a		
		Ť						
• • •		1	2	2	1		• • • • • •	
	-		-		1			

Multiple Tapes

The transition function for a *k*-tape Turing machine:

$$((K-H), \Gamma_{1} \text{ to } (K, \Gamma_{1'}, \{\leftarrow, \rightarrow, \uparrow\}), \Gamma_{2}, \Gamma_{2'}, \{\leftarrow, \rightarrow, \uparrow\})$$

$$(K, \Gamma_{1'}, \{\leftarrow, \rightarrow, \uparrow\}), \Gamma_{2'}, \{\leftarrow, \rightarrow, \uparrow\})$$

Input: as before on tape 1, others blank. Output: as before on tape 1, others ignored.

Note: tape head is allowed to stay put.

Equivalence of One-tape DTM and Multi-tape DTM

One-tape DTM = Multi-tape DTM

Adding Tapes Adds No Power

Theorem 17.1 Let *M* be a *k*-tape Turing machine for some $k \ge 1$. Then there is a standard TM M' where $\Sigma \subseteq \Sigma'$, and:

- On input *x*, *M* halts with output *z* on the first tape iff *M*' halts in the same state with *z* on its tape.
- On input x, if M halts in n steps, M' halts in O(n²) steps.

Proof Idea: Proof by Construction.

Nondeterministic Turing Machines

A Nondeterministic TM is a sixtuple (K, Σ , Γ , Δ , s, H) where

 Δ the transition relation is a *subset* of:

 $((K - H) \times \Gamma) \times (K \times \Gamma \times \{\leftarrow, \rightarrow\})$

Nondeterministic Deciding

TM $M = (K, \Sigma, \Gamma, \Delta, s, \{y, n\})$ be a nondeterministic TM. Let *w* be an element of Σ^* .

- M accepts w iff <u>at least one</u> of its computations <u>accepts</u>.
- *M rejects w* iff <u>all</u> of its computations <u>reject</u>.

M decides a language $L \subseteq \Sigma^*$ iff, $\forall w$:

- There is a finite number of paths that *M* can follow on input *w*,
- All of those paths halt, and
- $w \in L$ iff *M* accepts *w*.

Nondeterministic Semideciding

TM $M = (K, \Sigma, \Gamma, \Delta, s, H)$ be a nondeterministic TM.

M semidecides a language $L \subseteq \Sigma^*$ iff for all $w \in \Sigma^*$:

• $w \in L$ iff $(s, \square w)$ yields <u>at least one</u> accepting configuration.

Nondeterministic Function Computation

TM M computes a function *f* iff, $\forall w \in \Sigma^*$:

- <u>All</u> of *M*'s computations halt, and
- <u>All</u> of *M*'s computations result in *f*(*w*).

Equivalence of DTMs and NDTMs

DTM = NDTM

Adding Nondeterminism Adds No Power

Theorem 17.2 If a nondeterministic TM M decides or semidecides a language, or computes a function, then there is a standard TM M' semideciding or deciding the same language or computing the same function.

Proof Idea:

Proof by construction.

Constructions for deciding/semideciding and for function computation.

Turing Machines and Computers

Simulating a Real Computer by a TM

- An unbounded number of memory cells addressed by the integers starting at 0.
- An instruction set composed of basic operations including load, store, add, subtract, jump, conditional jump, and halt. Here's a simple example program:
 - R10MIR10CJUMP1001A10111ST10111
- A program counter.
- An address register.
- An accumulator.
- A small fixed number of special purpose registers.
- An input file.
- An output file.

Simulating a Real Computer by a TM

Theorem 17.4 A random-access, stored program computer can be simulated by a Turing Machine. If the computer requires nsteps to perform some operation, the Turing Machine simulation will require $O(n^6)$ steps.

Proof Idea: Proof by construction.

simcomputer will use 7 tapes:

- Tape 1: the computer's memory.
- Tape 2: the program counter.
- Tape 3: the address register.
- Tape 4: the accumulator.
- Tape 5: the op code of the current instruction.
- Tape 6: the input file.
- Tape 7: the output file, initially blank.

The Universal Turing Machine

Encoding TMs as Strings

We need to describe TM $M = (K, \Sigma, \Gamma, \delta, s, H)$ as a string $\langle M \rangle$:

- The states
- The tape alphabet
- The transitions

Example 17.20

Consider $M = (\{s, q, h\}, \{a, b, c\}, \{\Box, a, b, c\}, \delta, s, \{h\}):$

state	symbol	δ
S		(q, \Box, \rightarrow)
S	a	(s,b,\rightarrow)
S	b	(<i>q</i> ,a,←)
S	С	(q, b, \leftarrow)
q		(s,a, \rightarrow)
q	a	(q, b, \rightarrow)
q	b	(q, b, \leftarrow)
q	С	(<i>h</i> ,a, ←)

state/symbol	representation		
S	d00		
q	q01		
h	h10		
	a00		
a	a01		
b	a10		
С	a11		

Enumerating Turing Machines

Theorem 17.7 There exists an infinite lexicographic enumeration of:

- All syntactically valid TMs.
- All syntactically valid TMs with specific input alphabet Σ .
- All syntactically valid TMs with specific input alphabet Σ and specific tape alphabet Γ .

The Universal Turing Machine

Problem: All our machines so far are hardwired!

Question: Can we build a programmable TM that accepts as input: *<an arbitrary TM M, an input string w> and simulate the operation of M on w?*

 ✓ Yes, it's called the Universal Turing Machine!

Specification of the Universal TM

On input *<M*, *w*>, the Universal Turing Machine *U* must:

- Halt iff *M* halts on *w*.
- If *M* is a deciding or semideciding machine, then: If *M* accepts, accept. If *M* rejects, reject.
- If M computes a function, then U(<M, w>) must equal M(w).

How The Universal TM U Works

The UTM *U* will use 3 tapes:

- Tape 1: *M*'s tape.
- Tape 2: $\langle M \rangle$, the "program" that U is running.
- Tape 3: *M*'s state.

Reading Assignment

Chapter 17:

Sections 17.1 17.2 17.3 17.6 17.7

In-Class Exercises

Chapter 17:

Unrestricted Grammars

Languages, Grammars & Automata

Languages, Grammars & Automata

CS612

Grammars, SD Languages, and TMs

Unrestricted Grammars

An *unrestricted* or *type 0* or *phrase structure grammar G* is a quadruple (V, Σ, R, S) where:

- V is an alphabet,
- Σ (the set of terminals) is a subset of *V*,
- R (the set of rules) is a finite subset of $(V^+ \times V^*)$,
- S (the start symbol) is an element of V Σ .

The language generated by *G* is: $\{w \in \Sigma^* : S \Rightarrow_G^* w\}$.

Example 23.1

$$\mathsf{L} = \mathsf{A}^{\mathsf{n}}\mathsf{B}^{\mathsf{n}}\mathsf{C}^{\mathsf{n}} = \{ \mathsf{a}^{n} \mathsf{b}^{n} \mathsf{c}^{n}, \ n \ge 0 \}.$$

UG?

 $S \rightarrow aBSc$ $S \rightarrow \varepsilon$ $Ba \rightarrow aB$ $Bc \rightarrow bc$ $Bb \rightarrow bb$

abc aaabbbccc

Example 23.2

$$\mathsf{L} = \{ w \in \{ \mathsf{a}, \mathsf{b}, \mathsf{c} \}^* : \#_\mathsf{a}(w) = \#_\mathsf{b}(w) = \#_\mathsf{c}(w) \}$$

UG?

 $S \rightarrow ABCS$ $S \rightarrow \varepsilon$ $AB \rightarrow BA$ $BC \rightarrow CB$ $AC \rightarrow CA$ $BA \rightarrow AB$ $CA \rightarrow AC$ $CB \rightarrow BC$ $A \rightarrow a$ $B \rightarrow b$ $C \rightarrow c$

Equivalence of Unrestricted Grammars and Turing Machines

UG = TM = SD
Equivalence of Unrestricted Grammars and Turing Machines

Theorem 23.1 A language is generated by an **unrestricted grammar** if and only if it is semidecided by some **Turing Machine** M, i.e., it is in **SD**.

Proof Idea:

Proof by Construction

Only if $(grammar \rightarrow TM)$: by construction of an NDTM.

If $(TM \rightarrow grammar)$: by construction of a grammar that mimics the behavior of a semideciding TM.

Reading Assignment

Chapter 23:

Sections 23.1 23.2

Context-Sensitive Languages, Context-Sensitive Grammars and Linear Bounded Automata (LBA)

Languages, Grammars & Automata

Languages, Grammars & Automata

Is There Anything In Between PDAs and Turing Machines?

Context-Sensitive Grammars, Context-Sensitive Languages, and LBAs

80

A *linear bounded automaton* is an NDTM the length of whose tape is equal to |w| + 2.

Example: $A^n B^n C^n = \{a^n b^n c^n : n \ge 0\}$ <u>aabbcc</u>

CS612

Context-Sensitive Languages

A language is *context sensitive* iff there exists an LBA that accepts it.

Note:

It is not known whether, for every nondeterministic LBA there exists an equivalent deterministic one.

Context-Sensitive Grammars

A context-sensitive grammar $G = (V, \Sigma, R, S)$ is an unrestricted grammar in which R satisfies the following constraints:

- The left-hand side of every rule contains at least one nonterminal symbol.
 - No length-reducing rules.
- With one exception: R may contain the rule S → ε. If it does, then S does not occur on the right hand side of any rule.

Context-Sensitive Grammars

$$\mathsf{L}=\mathsf{A}^{\mathsf{n}}\mathsf{B}^{\mathsf{n}}=\{\mathsf{a}^{n}\mathsf{b}^{n},\ n\geq 0\}.$$

- A grammar that is not context-sensitive: $S \rightarrow aSb$ $S \rightarrow \varepsilon$
- An equivalent, context-sensitive grammar:

$$S \rightarrow \varepsilon$$
$$S \rightarrow T$$
$$T \rightarrow aTb$$
$$T \rightarrow ab$$

Equivalence of Context-Sensitive Languages and Linear Bounded Automata

CSL = LBA = CSG

Equivalence of CSG and LBA

Theorem 24.3 The set of languages that can be generated by a **context-sensitive grammar** is identical to the class that can be accepted by an **LBA**.

Context-Sensitive Languages and D

Theorem 24.4 The **context-sensitive languages** are a proper subset of **D**.

The Chomsky Hierarchy

Reading Assignment

Chapter 24:

Sections 24.1