
PART 3:
Automata:
Turing Machines

Formal Languages

& Computability Theory:

Church-Turing Thesis

Unsolvability/Undecidability of the Halting Problem

Decidable & Non-Decidable Languages

Semi-Decidable & Non-Semi-Decidable Languages

Grammar:
Unrestricted Grammars
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Languages, Grammars & Automata
SD

D

Context-Free

Languages

Regular

Languages

reg exps

FSMs

cfgs        

PDAs

unrestricted grammars

Turing Machines
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SD Language

Unrestricted 

Grammar

Turing  

Machine

Generates

Accepts

Grammars, SD Languages, and TMs
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A Model of General Purpose 

Computers

A new kind of automaton/ abstract computing 

machine that has two properties:

• powerful enough to describe all 

computable things (unlike FSMs and 

PDAs, like real computers).

• simple enough that we can reason 

formally about it (like FSMs and PDAs, 

unlike real computers).
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Turing Machines

• FSM + an unlimited and unrestricted memory 

(writable tape)!

• A TM is an accurate model of a general purpose 

computer!

• A TM can do everything that a real computer can 

do!

• By Alan Turing in 1936!
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Turing Machines

• An infinite tape (as an unlimited memory)

• A RW tape head

At each step, the machine must:

• read the current symbol

• write on the current square

• move left or right

• choose its next state
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Definition of Deterministic Turing 

Machine

A DTM M is a sixtuple (K, , , , s, H)

• K is a finite set of states;

•  is the input alphabet, which does not 

contain q (blank);

•  is the tape alphabet, which must 

contain q and have  as a subset.  

• s  K is the initial state;

• H  K is the set of halting states;

•  is the transition function:
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Definition of Deterministic Turing 

Machine

 is the transition function:

(K - H)           to      K    {, }

non-halting   tape state     tape  action

state               char char (R or L)

12CS612

Young
Pencil



Deterministic Turing Machine

• The input tape is infinite in both directions.

•  is a function, not a relation.  So this is a definition 

for deterministic Turing machines.

•  must be defined for all state, input pairs unless 

the state is a halting state.

• Turing machines do not necessarily halt. To halt, 

they must enter a halting state. Otherwise they 

loop.

• Turing machines generate output (the contents of 

its tape when halts) so they can compute

functions.
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Example 17.1

TM M takes as input a string in the language 
{aibj, 0  j  i}, and adds b’s as required to make 

the number of b’s equal the number of a’s.  

q aaab q q q

The input:

The output should be:
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Example 17.1

TM M: An informal description!

q aaab q q q

K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, q, $, #}, 

s = 1, H = {6},  =

1.

2. loop

3.

4.
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Example 17.2

TM M: A graphical notation (Transition Diagram)!

q aaab q q q

K = {1, 2, 3, 4, 5, 6},  = {a, b},  = {a, b, q, $, #}, 

s = 1, H = {6},  =
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Configurations

A configuration of a Turing machine M = (K, , , 

s, H) is an element of:

K    ((- {q}) *)  {}      (* (- {q}))   {}

state up scanned after

to scanned square              scanned 

square square
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Example 17.3

Initial configuration is (s, qw).
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Yields

(q1, w1) |-M (q2, w2) iff (q2, w2) is derivable, via 

, in one step.

For any TM M, let |-M* be the reflexive, 

transitive closure of |-M.

Configuration C1 yields configuration C2 if: 

C1 |-M* C2.
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Computations

A path through M is a sequence of 

configurations C0, C1, …, Cn for some n  0 

such that C0 is the initial configuration and:

C0 |-M C1 |-M C2 |-M … |-M Cn.

A computation by M is a path that halts.

If a computation is of length n or has n steps, 

we write: C0 |-M
n Cn
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Halting

• A DFSM M, on input w, is guaranteed to halt 

in |w| steps.

• A PDA M, on input w, is not guaranteed to 

halt. But there exists an algorithm to construct an equivalent 

PDA  M that is guaranteed to halt.

• A TM M, on input w, is not guaranteed to 

halt. And there exists no algorithm to construct an 

equivalent TM that is guaranteed to halt.
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TM Computation and Halting 

• Halt and Accept

• Halt and Reject

• Not Halt  and Loop
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TMs as Language Recognizers
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TMs as Language Recognizers

The input string w on the tape:

qwq, w contains no qs

The initial configuration of M:

(s, qw)

Let M = (K, , , , s, {y, n}). 

• M accepts a string w iff (s, qw) |-M*  (y, w) for some 

string w.

• M rejects a string w iff (s, qw) |-M*  (n, w) for some 

string w.
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TM M decides a language L  * iff for any

string w  * :

if w  L then TM M accepts w, and

if w  L then TM M rejects w.

TM M will always halt on all inputs!
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A language L is decidable or Turing-

decidable or recursive iff there is a Turing 

Machine M that decides it.  

We say that L is in D (or R) the set of all 

decidable languages.

26CS612

Decidable Languages  D

Young
Pencil

Young
Pencil



• Decidable Languages

• Solvable Languages

• Computable Languages

• Recursive Languages

• Turing-Decidable Languages
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Example 17.8

L= AnBnCn = {anbncn : n  0} is decidable?

TM decides L?

TM M: An informal description!

q q q q
qabc q q q
qaabbcc q q q
qabcc q q q
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Example 17.8

L= AnBnCn = {anbncn : n  0} is decidable?

TM decides L?

TM M: A graphical notation!

q q q q
qabc q q q
qaabbcc q q q
qabcc q q q
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Semideciding a Language 

TM M semidecides (or recognizes) L  M* iff 

for any string w  M*:

if w  L  TM M accepts w

if w  L  TM M does not accept w.  

TM M may either reject

or fail to halt (loop)!
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Semi-Decidable Languages SD

A language L is semidecidable or Turing-

recognizable or recursively-enumerable iff 

there is a Turing Machine that semidecides it. 

We say that SD (or RE) - the set of all 

semidecidable languages.  
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Semi-Decidable Languages SD

• Semi-Decidable Languages

• Recursively Enumerable (R.E.) Languages

• Partially-Decidable Languages

• Turing-Recognizable Languages
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Example 17.10

L = b*a(a  b)* is semidecidable?

TM M semidecides (recognizes) L?

Loop:

1.1 Move one square to the right.  

1.2 If the character under the read/write head is 

an a, halt and accept.  
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Example 17.10

L = b*a(a  b)*

TM M decides L?

Loop:

1.1 Move one square to the right.  

1.2 If the character under the read/write head is 

an a, halt and accept.  

1.3 If it is q, halt and reject.
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TMs Compute Functions
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TMs Compute Functions

TM M = (K, , , , s, {h}). 

Its initial configuration is (s, qw).

Define M(w) = z iff (s, qw) |-M*  (h, qz). 

   = M’s output alphabet. 

f = any function from * to *.  
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TMs Compute Functions

TM M computes f iff for all w  *:

• If w is an input on which f is defined: M(w) = f(w).

• Otherwise M(w) does not halt.

A function f is recursive or computable iff 

there is a Turing Machine M that computes it 

and that always halts.

• Recursive Functions

• Computable Functions
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Example 17.12

succ(n) = n + 1

Represent n in binary, i.e.,  n  0  1{0, 1}*

Input: qnq Output: qn+1q
q1111q Output: q10000q

TM computes succ?

TM M:

1.

2.
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Variants of TMs - Extensions
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Variants of TMs - Extensions

There are many extensions we might like to 

make to our basic Turing machine model.  

Some possible extensions:

• Multiple-tape TMs

• Nondeterministic TMs

 Every extended Turing machine has an 

equivalent basic Turing machine!
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Multi-tape Turing Machines
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Multiple Tapes

The transition function for a k-tape Turing machine:

((K-H) ,  1 to (K , 1, {, , }

,  2 , 2, {, , }

,   . ,   .

,   . ,   .

,   k) , k, {, , })

Input: as before on tape 1, others blank.

Output: as before on tape 1, others ignored.

Note: tape head is allowed to stay put.

42CS612



Equivalence of One-tape DTM and 

Multi-tape DTM

One-tape DTM = Multi-tape DTM
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Adding Tapes Adds No Power

Theorem 17.1 Let M be a k-tape Turing machine for 

some k  1.  Then there is a standard TM M' where 

 ', and:

• On input x, M halts with output z on the first tape 

iff M' halts in the same state with z on its tape. 

• On input x, if M halts in n steps, M' halts in 
O(n2) steps.

Proof Idea:

Proof by Construction.
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A Nondeterministic TM is a sixtuple (K, , , 

, s, H) where 

 the transition relation is a subset of:

((K - H)  )  (K    {, })

Nondeterministic Turing Machines
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Nondeterministic Deciding

TM M = (K, , , , s, {y, n}) be a nondeterministic TM.  

Let w be an element of *.  

• M accepts w iff at least one of its computations 

accepts.

• M rejects w iff all of its computations reject.

M decides a language L  * iff, w:

• There is a finite number of paths that M can 

follow on input w,

• All of those paths halt, and

• w  L iff M accepts w.
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Nondeterministic Semideciding

TM M = (K, , , , s, H) be a nondeterministic TM. 

M semidecides a language L  * iff for all w  *: 

• w  L iff (s, qw) yields at least one accepting 

configuration.
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TM M computes a function f iff, w  *:

• All of M’s computations halt, and

• All of M’s computations result in f(w).

Nondeterministic Function 

Computation
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Equivalence of DTMs and NDTMs

DTM = NDTM
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Adding Nondeterminism Adds No 

Power

Theorem 17.2 If a nondeterministic TM M 

decides or semidecides a language, or 

computes a function, then there is a standard 

TM M' semideciding or deciding the same 

language or computing the same function.

Proof Idea:

Proof by construction.

Constructions for deciding/semideciding and for function computation. 
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Turing Machines and Computers
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Simulating a Real Computer by a TM

• An unbounded number of memory cells addressed by the integers 

starting at 0.  

• An instruction set composed of basic operations including load, store, 

add,   subtract, jump, conditional jump, and halt.  Here’s a simple 

example program:

R 10

MIR 10

CJUMP 1001

A 10111

ST 10111

• A program counter.

• An address register.

• An accumulator.

• A small fixed number of special purpose registers.

• An input file.

• An output file.
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Simulating a Real Computer by a TM

Theorem 17.4 A random-access, stored 

program computer can be simulated by a 

Turing Machine.  If the computer requires n

steps to perform some operation, the Turing 
Machine simulation will require O(n6) steps.

Proof Idea: Proof by construction.
simcomputer will use 7 tapes:

● Tape 1: the computer’s memory. 

● Tape 2: the program counter.

● Tape 3: the address register.

● Tape 4: the accumulator.  

● Tape 5: the op code of the current instruction.

● Tape 6: the input file.

● Tape 7: the output file, initially blank.
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The Universal Turing Machine
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Encoding TMs as Strings 

We need to describe TM M = (K, , , , s, H) as 

a string <M>:

• The states

• The tape alphabet

• The transitions

55CS612

Young
Pencil

Young
Pencil



Example 17.20

Consider M = ({s, q, h}, {a, b, c}, {q, a, b, c}, , s, {h}):

<M> = (q00,a00,q01,a00,), (q00,a01,q00,a10,), 

(q00,a10,q01,a01,), (q00,a11,q01,a10,), 

(q01,a00,q00,a01,), (q01,a01,q01,a10,), 

(q01,a10,q01,a11,), (q01,a11,h11,a01,)

state symbol 

s q (q,q, )

s a (s,b,)

s b (q,a, )

s c (q,b, )

q q (s,a, )

q a (q,b,)

q b (q,b, )

q c (h,a, )

state/symbol representation

s q00

q q01

h h10

q a00

a a01

b a10

c a11
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Enumerating Turing Machines

Theorem 17.7 There exists an infinite 

lexicographic enumeration of:

• All syntactically valid TMs.

• All syntactically valid TMs with specific input 

alphabet .

• All syntactically valid TMs with specific input 

alphabet  and specific tape alphabet .       
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The Universal Turing Machine

Problem:  All our machines so far are 

hardwired!

Question: Can we build a programmable TM 

that accepts as input: <an arbitrary TM M, an 

input string w> and simulate the operation of 

M on w?

 Yes, it’s called the Universal Turing 

Machine!  
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On input <M, w>, the Universal Turing 

Machine U must:

• Halt iff M halts on w.

• If M is a deciding or semideciding machine, then: If 

M accepts, accept. If M rejects, reject.

• If M computes a function, then U(<M, w>) must 

equal M(w).

Specification of the Universal TM
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The UTM U will use 3 tapes:

• Tape 1: M’s tape.  

• Tape 2: <M>, the “program” that U is running.

• Tape 3: M’s state.

How The Universal TM U Works
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Reading Assignment

Chapter 17:

Sections

17.1

17.2

17.3

17.6

17.7
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In-Class Exercises

Chapter 17:

1

8

13

14   
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Unrestricted Grammars
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Languages, Grammars & Automata
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Languages, Grammars & Automata
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Languages, Grammars & Automata
SD

D

Context-sensitive

Context-free 

DCF

Regular

FSMs

DPDAs

NDPDAs

LBAs

Turing MachinesCS612 66
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Languages, Grammars & Automata
SD

D

Context-Free

Languages

Regular

Languages

reg exps

FSMs

cfgs        

PDAs

unrestricted grammars

Turing Machines
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SD Language

Unrestricted 

Grammar

Turing  

Machine

Generates

Accepts

Grammars, SD Languages, and TMs
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Unrestricted Grammars

An unrestricted or type 0 or phrase structure 

grammar G is a quadruple (V, , R, S) where:

• V is an alphabet,

•  (the set of terminals) is a subset of V,

• R (the set of rules) is a finite subset of (V+  V*),

• S (the start symbol) is an element of V - .

The language generated by G is: {w  * : S G* w}.
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Example 23.1

L = AnBnCn = {anbncn, n  0}.

UG?

S  aBSc

S  
Ba aB

Bc bc

Bb bb

abc

aaabbbccc
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Example 23.2

L = {w  {a, b, c}* : #a(w) = #b(w) = #c(w)}

UG?

S  ABCS

S  

AB  BA

BC  CB

AC  CA

BA  AB

CA  AC

CB  BC
A  a

B  b

C  c
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Equivalence of Unrestricted 

Grammars and Turing Machines

UG = TM = SD
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Equivalence of Unrestricted 

Grammars and Turing Machines

Theorem 23.1 A language is generated by an 

unrestricted grammar if and only if it is 

semidecided by some Turing Machine M, i.e., 

it is in SD.

Proof Idea:

Proof by Construction

Only if (grammar  TM): by construction of an NDTM.

If (TM  grammar): by construction of a grammar that

mimics the behavior of a semideciding TM.
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Reading Assignment

Chapter 23:

Sections

23.1

23.2
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Context-Sensitive Languages,

Context-Sensitive Grammars

and

Linear Bounded Automata (LBA)
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Languages, Grammars & Automata
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Languages, Grammars & Automata
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Languages, Grammars & Automata
SD

D

Context-sensitive

Context-free 

DCF

Regular

FSMs

DPDAs

NDPDAs

LBAs
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Is There Anything In Between PDAs 

and Turing Machines?
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Context-Sensitive Grammars, Context-

Sensitive Languages, and LBAs

CS Language

CS Grammar

LBA

L

Accepts
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Linear Bounded Automata

A linear bounded automaton is an NDTM the 

length of whose tape is equal to |w| + 2.

Example: AnBnCn = {anbncn : n  0} 

qaabbccqqqqqqqqq
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Context-Sensitive Languages

A language is context sensitive iff there exists 

an LBA that accepts it.

CSL = LBA   

Note: 

It is not known whether, for every nondeterministic LBA there exists 

an equivalent deterministic one.
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Context-Sensitive Grammars

A context-sensitive grammar G = (V, , R, 

S) is an unrestricted grammar in which R

satisfies the following constraints:

• The left-hand side of every rule contains at least 

one nonterminal symbol.

• No length-reducing rules. 

 With one exception: R may contain the rule S  .  

If it does, then S does  not occur on the right hand side of 

any rule.
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Context-Sensitive Grammars

L = AnBn = {anbn, n  0}.

• A grammar that is not context-sensitive:  
S  aSb

S  

• An equivalent, context-sensitive grammar:

S  

S  T
T  aTb

T  ab
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Equivalence of Context-Sensitive 

Languages and Linear Bounded Automata

CSL = LBA = CSG
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Equivalence of CSG and LBA

Theorem 24.3 The set of languages that can 

be generated by a context-sensitive 

grammar is identical to the class that can be 

accepted by an LBA.
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Context-Sensitive Languages and D

Theorem 24.4 The context-sensitive 

languages are a proper subset of D.
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The Chomsky Hierarchy
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Reading Assignment

Chapter 24:

Sections

24.1
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