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Turing Machines
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& Computability Theory:
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Decidable & Non-Decidable Languages

Semi-Decidable & Non-Semi-Decidable Languages

Grammar:
Unrestricted Grammars
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The Church-Turing Thesis
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Are We Done?

So far FSM  PDA  TM

Are there still problems we cannot solve?

• There is a countably infinite number of Turing machines since 

we can lexicographically enumerate all the strings that 

correspond to syntactically legal Turing machines.

• There is an uncountably infinite number of languages over 

any nonempty alphabet.  

 So there are more languages than there are Turing 

machines!
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Any New Computational Models?

• There are languages that cannot be 

recognized by any Turing Machine!

• Can we do better by creating some new 

formal models for the real-computers?
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The Entscheidungsproblem 

(Decision Problem)

The Quest to Decide All Mathematical Questions!

• Does there exist an algorithm to decide, given an arbitrary 

sentence w in first order logic, whether w is valid?

• Given a set of axioms A and a sentence w, does there exist 

an algorithm to decide whether w is entailed by A?

• Given a set of axioms, A, and a sentence, w, does there 

exist an algorithm to decide whether w can be proved from 

A?
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Definition of Algorithm

To answer the question, in any of these forms, 

requires formalizing the definition of an 

algorithm:

• Turing: Turing machines.

• Church: Lambda calculus.  

 Turing proved that Turing machines and the 

lambda calculus are equivalent in power!

 Any problem that can be solved in one can be 

solved in the other!
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The Church-Turing Thesis

“All formalisms powerful enough to 

describe everything we think of as a 

computational algorithm are 

equivalent.” 

• This isn’t a formal statement, so we can’t prove it.  

• But many different computational models have been 

proposed and they all turn out to be equivalent!
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• Modern computers (with unbounded memory)

• Turing Machines

• Lambda calculus

• Unrestricted grammars 

Examples of equivalent formalisms
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• Partial recursive functions

• Tag systems (Post machine = FSM plus FIFO queue)

• Post production systems (Post system)

• Markov algorithms

• Conway’s Game of Life

• One dimensional cellular automata

• DNA-based computing

• Lindenmayer systems

Examples of equivalent formalisms
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Lambda Calculus

In the pure lambda calculus, there is no built in data 

type number. All expressions are functions. 

The successor function:

(λ x. x + 1)

(λ x. x + 1) 3 = 4

(λ x. λ y. x + y) 3 4

This expression is evaluated by binding 3 to x to 

create the new function (λ y. 3 + y), which is applied to 

4 to return 7.

10CS612

Young
Pencil



Unrestricted Grammars

An unrestricted or type 0 or phrase structure grammar  

G is a quadruple (V, , R, S) where:

• V is an alphabet,

•  (the set of terminals) is a subset of V,

• R (the set of rules) is a finite subset of (V+  V*),

• S (the start symbol) is an element of V - .

The language generated by G is: {w  * : S G* w}.
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Tag Systems

A Tag system (or a Post machine) is an FSM 

augmented with a FIFO queue.

Tag systems are equivalent in power to Turing 

machines because the TM’s tape can be simulated 

with the FIFO queue.
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Post Production Systems

A Post (production) system P is a quintuple (V, , X, 

R, S):

• V is the rule alphabet,

•  is a subset of V,

• X is a set of variables whose values are drawn 

from V*,

• R (the set of rules) is a finite subset of: 

(V  X)*  (V  X)* 
Every variable on the RHS must also be on the LHS. 

A  B becomes XAY  XBY

• S can be any element of V - .

Young
Pencil



Reading Assignment

Chapter 18:

Sections

18.1

18.2
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In-Class Exercises

Chapter 18:

1 – a & b
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Unsolvability (Undecidability)

of 

the Halting Problem
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Computability Theory

• Computability?

– What are the fundamental capabilities 

and limitations of computers?

– Classify problems as solvable and 

unsolvable.

– Unsolvability/Undecidability Theory
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Formal Models of Computation

• Both deal with formal models of computation: 

– Turing machines

– Lambda calculus
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• Decidable Languages  D 
• Solvable Languages

• Computable Languages

• Recursive Languages

• Turing-Decidable Languages

•  D Turing Undecidable Languages

• Semi-Decidable Languages SD 
• Recursively Enumerable (R.E.) Languages

• Partially Decidable Languages

• Turing Recognizable Languages

•  SD Turing Unrecognizable Languages
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Languages and Machines
SD

D

Context-Free

Languages

Regular

Languages

reg exps

FSMs

cfgs        

PDAs

unrestricted grammars

Turing Machines
20CS612

Not SD

Young
Pencil



TM M decides a language L  * iff for any

string w  * :

if w  L then TM M accepts w, and

if w  L then TM M rejects w.

TM M will always halt on all inputs!
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A language L is decidable or Turing-

decidable or recursive iff there is a Turing 

Machine M that decides it.  

We say that L is in D (or R) the set of all 

decidable languages.
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• Decidable Languages

• Solvable Languages

• Computable Languages

• Recursive Languages

• Turing-Decidable Languages

23CS612

Decidable Languages  D

Young
Pencil



Decidable Languages/ Problems/ 

Functions

• A language is decidable!

• A problem is solvable!

• A function is computable!
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Semideciding a Language 

TM M semidecides (or recognizes) L  M* iff 

for any string w  M*:

if w  L  TM M accepts w

if w  L  TM M does not accept w.  

TM M may either reject

or fail to halt (loop)!
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Semi-Decidable Languages SD

A language L is semidecidable or Turing-

recognizable or recursively-enumerable iff 

there is a Turing Machine that semidecides it. 

We say that SD (or RE) - the set of all 

semidecidable languages.  
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Semi-Decidable Languages SD

• Semi-Decidable Languages

• Recursively Enumerable (R.E.) Languages

• Partially-Decidable Languages

• Turing-Recognizable Languages
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Unsolvability, Undecidability &

Uncomputability

• Problems that Computers Cannot Solve

• Languages that Computers Cannot Decide

• Functions that Computers Cannot Compute
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Languages/ Problems/ Functions

• Languages: decidable? vs undecidable?

• Problems: solvable?  vs unsolvable?

• Functions: computable vs uncomputable?
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There Exist Languages that Are Not 

Decidable

Theorem There are languages that are not in 

D.

Proof Idea: Assume any nonempty alphabet .  

Lemma: There is a countably infinite number of D languages 

over .

Lemma: There is an uncountably infinite number of languages 

over .  

So there are more languages than there are languages in D. 

Thus there must exist at least one language that is in D.
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The Halting Problem Language:

H = {<M, w> : TM M halts on input string w}

The language H is semidecidable (or Turing-

recognizable), but is not decidable.

The Halting Problem
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Theorem 19.1 The language H = {<M,w> : TM 

M halts on input string w} is semidecidable (or 

Turing-recognizable).  

Proof Idea:

Proof by Construction

The TM MH :

MH(<M, w>) = 

1. Run M on w.

2. Accept

MH acccepts iff M halts on w.  Thus, MH semidecides H. 32CS612
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Undecidability of the Halting Problem

Theorem 19.2 The language H = {<M, w> : TM 

M halts on input string w} is not decidable.

Proof Idea:

Proof by Contraction

If H were decidable, then some TM MH would decide it. 

The TM MH would implement the specification:

halts(<M: string, w: string>) =

If <M> is a Turing machine description 

and M halts on input w

then accept.  

else reject. 33CS612
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Undecidability of the Halting Problem

Consider the TM Trouble:

Trouble(x: string) =  if halts(x, x) then loop forever

else halt.

If there exists an MH that computes the function halts, 

the TM Trouble exists. 
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Undecidability of the Halting Problem

Consider Trouble(<Trouble>)?  

• Invoke  MH (<Trouble, Trouble>) , i.e., halts(<Trouble, 

Trouble>)  

• If halts reports that Trouble(<Trouble>) halts, Trouble loops.

• But if halts reports that Trouble(<Trouble>) does not halt, 

then Trouble halts.

Contradiction! 

Thus, there exists no TM MH.  

So, H is not decidable!
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Enumerating Turing Machines

There exists an infinite lexicographic 

enumeration of:

• All syntactically valid TMs.

• All syntactically valid TMs with specific input 

alphabet .

• All syntactically valid TMs with specific input 

alphabet  and specific tape alphabet .       
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• Lexicographically enumerate all Turing machines.

• Lexicographically enumerate all possible input strings.

• Let 1 mean TM halting on the input, blank mean non halting.

Viewing the Halting Problem as 

Diagonalization

i
1

i
2

i
3

… <Trouble> …

machine
1

1

machine
2

1

machine
3

1

… 1

Trouble 1 1

… 1 1 1

… 1
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H is the Key to the Difference 

Between D and SD

Theorem 19.3 If H were in D then every SD 

language would be in D.

Proof Idea:

Proof by Construction

Let L be any SD language. There exists a TM ML that 

semidecides it. 

If H were also in D, then there would exist an O that decides it.  
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If H were in D then Every SD is in D

TM M'(w: string) = 

1. Run O on <ML, w>. 

2. If O accepts (i.e., ML will halt), then:

2.1. Run ML on w.

2.2. If it accepts, accept.  Else reject.

3. Else reject.

So, if H were in D, all SD languages would be 

decidable!

To decide whether w is in L(ML):
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The Entscheidungsproblem is 

Unsolvable

Theorem The Entscheidungsproblem is 

unsolvable.
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IN SD OUT

Semideciding TM H                                   Reduction

D

Deciding TM AnBnCn Diagonalize

Reduction

Context-Free

CF grammar AnBn Pumping

PDA Closure

Regular

Regular Expression                  a*b* Pumping

FSM Closure

Language Summary
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Reading Assignment

Chapter 19:

Sections

19.1

19.2

19.3
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In-Class Exercises

Chapter 19:

1

2

43CS612


