
PART 3:
Automata:
Turing Machines

Formal Languages

& Computability Theory:

Church-Turing Thesis

Unsolvability/Undecidability of the Halting Problem

Decidable & Non-Decidable Languages

Semi-Decidable & Non-Semi-Decidable Languages

Grammar:
Unrestricted Grammars

1CS612

The Church-Turing Thesis

2CS612

Young
Pencil

Are We Done?

So far FSM PDA TM

Are there still problems we cannot solve?

• There is a countably infinite number of Turing machines since

we can lexicographically enumerate all the strings that

correspond to syntactically legal Turing machines.

• There is an uncountably infinite number of languages over

any nonempty alphabet.

 So there are more languages than there are Turing

machines!

3CS612

Young
Pencil

Young
Pencil

Any New Computational Models?

• There are languages that cannot be

recognized by any Turing Machine!

• Can we do better by creating some new

formal models for the real-computers?

4CS612

Young
Pencil

Young
Pencil

Young
Pencil

The Entscheidungsproblem

(Decision Problem)

The Quest to Decide All Mathematical Questions!

• Does there exist an algorithm to decide, given an arbitrary

sentence w in first order logic, whether w is valid?

• Given a set of axioms A and a sentence w, does there exist

an algorithm to decide whether w is entailed by A?

• Given a set of axioms, A, and a sentence, w, does there

exist an algorithm to decide whether w can be proved from

A?

5CS612

Definition of Algorithm

To answer the question, in any of these forms,

requires formalizing the definition of an

algorithm:

• Turing: Turing machines.

• Church: Lambda calculus.

 Turing proved that Turing machines and the

lambda calculus are equivalent in power!

 Any problem that can be solved in one can be

solved in the other!

6CS612

Young
Pencil

Young
Pencil

Young
Pencil

The Church-Turing Thesis

“All formalisms powerful enough to

describe everything we think of as a

computational algorithm are

equivalent.”

• This isn’t a formal statement, so we can’t prove it.

• But many different computational models have been

proposed and they all turn out to be equivalent!

7CS612

Young
Pencil

Young
Pencil

• Modern computers (with unbounded memory)

• Turing Machines

• Lambda calculus

• Unrestricted grammars

Examples of equivalent formalisms

8CS612

Young
Pencil

• Partial recursive functions

• Tag systems (Post machine = FSM plus FIFO queue)

• Post production systems (Post system)

• Markov algorithms

• Conway’s Game of Life

• One dimensional cellular automata

• DNA-based computing

• Lindenmayer systems

Examples of equivalent formalisms

9CS612

Young
Pencil

Young
Pencil

Lambda Calculus

In the pure lambda calculus, there is no built in data

type number. All expressions are functions.

The successor function:

(λ x. x + 1)

(λ x. x + 1) 3 = 4

(λ x. λ y. x + y) 3 4

This expression is evaluated by binding 3 to x to

create the new function (λ y. 3 + y), which is applied to

4 to return 7.

10CS612

Young
Pencil

Unrestricted Grammars

An unrestricted or type 0 or phrase structure grammar

G is a quadruple (V, , R, S) where:

• V is an alphabet,

• (the set of terminals) is a subset of V,

• R (the set of rules) is a finite subset of (V+ V*),

• S (the start symbol) is an element of V - .

The language generated by G is: {w * : S G* w}.

Young
Pencil

Tag Systems

A Tag system (or a Post machine) is an FSM

augmented with a FIFO queue.

Tag systems are equivalent in power to Turing

machines because the TM’s tape can be simulated

with the FIFO queue.

Young
Pencil

Post Production Systems

A Post (production) system P is a quintuple (V, , X,

R, S):

• V is the rule alphabet,

• is a subset of V,

• X is a set of variables whose values are drawn

from V*,

• R (the set of rules) is a finite subset of:

(V X)* (V X)*
Every variable on the RHS must also be on the LHS.

A B becomes XAY XBY

• S can be any element of V - .

Young
Pencil

Reading Assignment

Chapter 18:

Sections

18.1

18.2

14CS612

In-Class Exercises

Chapter 18:

1 – a & b

15CS612

Unsolvability (Undecidability)

of

the Halting Problem

16CS612

Young
Pencil

Computability Theory

• Computability?

– What are the fundamental capabilities

and limitations of computers?

– Classify problems as solvable and

unsolvable.

– Unsolvability/Undecidability Theory

17CS612

Young
Pencil

Young
Pencil

Formal Models of Computation

• Both deal with formal models of computation:

– Turing machines

– Lambda calculus

18CS612

Young
Pencil

• Decidable Languages D
• Solvable Languages

• Computable Languages

• Recursive Languages

• Turing-Decidable Languages

• D Turing Undecidable Languages

• Semi-Decidable Languages SD
• Recursively Enumerable (R.E.) Languages

• Partially Decidable Languages

• Turing Recognizable Languages

• SD Turing Unrecognizable Languages

19CS612

Computability Hierarchy

Young
Pencil

Young
Pencil

Languages and Machines
SD

D

Context-Free

Languages

Regular

Languages

reg exps

FSMs

cfgs

PDAs

unrestricted grammars

Turing Machines
20CS612

Not SD

Young
Pencil

TM M decides a language L * iff for any

string w * :

if w L then TM M accepts w, and

if w L then TM M rejects w.

TM M will always halt on all inputs!

21CS612

Deciding a Language

Young
Pencil

A language L is decidable or Turing-

decidable or recursive iff there is a Turing

Machine M that decides it.

We say that L is in D (or R) the set of all

decidable languages.

22CS612

Decidable Languages D

Young
Pencil

• Decidable Languages

• Solvable Languages

• Computable Languages

• Recursive Languages

• Turing-Decidable Languages

23CS612

Decidable Languages D

Young
Pencil

Decidable Languages/ Problems/

Functions

• A language is decidable!

• A problem is solvable!

• A function is computable!

24CS612

Young
Pencil

Semideciding a Language

TM M semidecides (or recognizes) L M* iff

for any string w M*:

if w L TM M accepts w

if w L TM M does not accept w.

TM M may either reject

or fail to halt (loop)!

25CS612

Young
Pencil

Semi-Decidable Languages SD

A language L is semidecidable or Turing-

recognizable or recursively-enumerable iff

there is a Turing Machine that semidecides it.

We say that SD (or RE) - the set of all

semidecidable languages.

26CS612

Young
Pencil

Semi-Decidable Languages SD

• Semi-Decidable Languages

• Recursively Enumerable (R.E.) Languages

• Partially-Decidable Languages

• Turing-Recognizable Languages

27CS612

Young
Pencil

Unsolvability, Undecidability &

Uncomputability

• Problems that Computers Cannot Solve

• Languages that Computers Cannot Decide

• Functions that Computers Cannot Compute

28CS612

Young
Pencil

Young
Pencil

Languages/ Problems/ Functions

• Languages: decidable? vs undecidable?

• Problems: solvable? vs unsolvable?

• Functions: computable vs uncomputable?

29CS612

Young
Pencil

There Exist Languages that Are Not

Decidable

Theorem There are languages that are not in

D.

Proof Idea: Assume any nonempty alphabet .

Lemma: There is a countably infinite number of D languages

over .

Lemma: There is an uncountably infinite number of languages

over .

So there are more languages than there are languages in D.

Thus there must exist at least one language that is in D.

30CS612

Young
Pencil

The Halting Problem Language:

H = {<M, w> : TM M halts on input string w}

The language H is semidecidable (or Turing-

recognizable), but is not decidable.

The Halting Problem

31CS612

Young
Pencil

Theorem 19.1 The language H = {<M,w> : TM

M halts on input string w} is semidecidable (or

Turing-recognizable).

Proof Idea:

Proof by Construction

The TM MH :

MH(<M, w>) =

1. Run M on w.

2. Accept

MH acccepts iff M halts on w. Thus, MH semidecides H. 32CS612

Semidecidability of The Halting

Problem

Young
Pencil

Undecidability of the Halting Problem

Theorem 19.2 The language H = {<M, w> : TM

M halts on input string w} is not decidable.

Proof Idea:

Proof by Contraction

If H were decidable, then some TM MH would decide it.

The TM MH would implement the specification:

halts(<M: string, w: string>) =

If <M> is a Turing machine description

and M halts on input w

then accept.

else reject. 33CS612

Young
Pencil

Undecidability of the Halting Problem

Consider the TM Trouble:

Trouble(x: string) = if halts(x, x) then loop forever

else halt.

If there exists an MH that computes the function halts,

the TM Trouble exists.

34CS612

Undecidability of the Halting Problem

Consider Trouble(<Trouble>)?

• Invoke MH (<Trouble, Trouble>) , i.e., halts(<Trouble,

Trouble>)

• If halts reports that Trouble(<Trouble>) halts, Trouble loops.

• But if halts reports that Trouble(<Trouble>) does not halt,

then Trouble halts.

Contradiction!

Thus, there exists no TM MH.

So, H is not decidable!

35CS612

Enumerating Turing Machines

There exists an infinite lexicographic

enumeration of:

• All syntactically valid TMs.

• All syntactically valid TMs with specific input

alphabet .

• All syntactically valid TMs with specific input

alphabet and specific tape alphabet .

36CS612

Young
Pencil

• Lexicographically enumerate all Turing machines.

• Lexicographically enumerate all possible input strings.

• Let 1 mean TM halting on the input, blank mean non halting.

Viewing the Halting Problem as

Diagonalization

i
1

i
2

i
3

… <Trouble> …

machine
1

1

machine
2

1

machine
3

1

… 1

Trouble 1 1

… 1 1 1

… 1

37CS612

Young
Pencil

H is the Key to the Difference

Between D and SD

Theorem 19.3 If H were in D then every SD

language would be in D.

Proof Idea:

Proof by Construction

Let L be any SD language. There exists a TM ML that

semidecides it.

If H were also in D, then there would exist an O that decides it.

38CS612

Young
Pencil

Young
Pencil

If H were in D then Every SD is in D

TM M'(w: string) =

1. Run O on <ML, w>.

2. If O accepts (i.e., ML will halt), then:

2.1. Run ML on w.

2.2. If it accepts, accept. Else reject.

3. Else reject.

So, if H were in D, all SD languages would be

decidable!

To decide whether w is in L(ML):

39CS612

Young
Pencil

The Entscheidungsproblem is

Unsolvable

Theorem The Entscheidungsproblem is

unsolvable.

40CS612

IN SD OUT

Semideciding TM H Reduction

D

Deciding TM AnBnCn Diagonalize

Reduction

Context-Free

CF grammar AnBn Pumping

PDA Closure

Regular

Regular Expression a*b* Pumping

FSM Closure

Language Summary

41CS612

Young
Pencil

Young
Pencil

Young
Pencil

Reading Assignment

Chapter 19:

Sections

19.1

19.2

19.3

42CS612

In-Class Exercises

Chapter 19:

1

2

43CS612

