

Automata: Turing Machines

Formal Languages & Computability Theory:

Church-Turing Thesis Unsolvability/Undecidability of the Halting Problem Decidable & Non-Decidable Languages Semi-Decidable & Non-Semi-Decidable Languages

Unrestricted Grammars

The Church-Turing Thesis

Are We Done?

So far FSM \Rightarrow PDA = TM

Are there still problems we cannot solve?

- There is a <u>countably infinite number of Turing machines</u> since we can lexicographically enumerate all the strings that correspond to syntactically legal Turing machines.
- There is an <u>uncountably infinite number of languages</u> over any nonempty alphabet.
- ✓ So there are more languages than there are Turing machines!

Any New Computational Models?

- There are languages that cannot be recognized by any Turing Machine!
- Can we do better by creating **some new formal models** for the real-computers?

The Entscheidungsproblem (Decision Problem)

The Quest to Decide All Mathematical Questions!

- Does there exist an algorithm to decide, given an arbitrary sentence *w* in first order logic, whether *w* is valid?
- Given a set of axioms A and a sentence w, does there exist an algorithm to decide whether w is entailed by A?
- Given a set of axioms, A, and a sentence, w, does there exist an algorithm to decide whether w can be proved from A?

Definition of Algorithm

To answer the question, in any of these forms, requires formalizing the definition of an algorithm:

- Turing: Turing machines.
- Church: Lambda calculus.
- Turing proved that Turing machines and the lambda calculus are equivalent in power!
- Any problem that can be solved in one can be solved in the other!

The Church-Turing Thesis

FAII formalisms powerful enough to describe everything we think of as a computational **algorithm** are **equivalent**."

- This isn't a formal statement, so we can't prove it.
- But many different computational models have been proposed and they all turn out to be equivalent!

Examples of equivalent formalisms

- Modern computers (with unbounded memory)
- Turing Machines
- Lambda calculus
- Unrestricted grammars

Examples of equivalent formalisms

- Partial recursive functions
- Tag systems (Post machine = FSM plus FIFO queue)
- Post production systems (Post system)
- Markov algorithms
- Conway's Game of Life
- One dimensional cellular automata
- DNA-based computing

CS61

Lambda Calculus

In the pure lambda calculus, there is no built in data type number. *All expressions are functions.*

The successor function:

$$(\lambda x. x + 1)$$

 $(\lambda x. x + 1) 3 = 4$
 $(\lambda x. \lambda y. x + y) 3 4$

This expression is evaluated by binding 3 to x to create the new function (λy . 3 + y), which is applied to 4 to return 7.

Unrestricted Grammars

An unrestricted or type 0 or phrase structure grammar G is a quadruple (V, Σ , R, S) where:

- V is an alphabet,
- Σ (the set of terminals) is a subset of *V*,
- *R* (the set of rules) is a finite subset of $(V^+ \times V^*)$,
- S (the start symbol) is an element of $V \Sigma$.

The language generated by *G* is: $\{w \in \Sigma^* : S \Rightarrow_G^* w\}$.

A Tag system (or a Post machine) is an FSM augmented with a FIFO queue.

Tag systems are equivalent in power to Turing machines because the TM's tape can be simulated with the FIFO queue.

Post Production Systems

A Post (production) system P is a quintuple (V, Σ , X, R, S):

- *V* is the rule alphabet,
- Σ is a subset of *V*,
- X is a set of variables whose values are drawn from V*,
- *R* (the set of rules) is a finite subset of: $(V \cup X)^* \times (V \cup X)^*$ Every variable on the RHS must also be on the LHS. $A \rightarrow B$ becomes $XAY \rightarrow XBY$
- S can be any element of $V \Sigma$.

Reading Assignment

Chapter 18:

Sections 18.1 18.2

In-Class Exercises

Chapter 18:

1 – a & b

Unsolvability (Undecidability) of the Halting Problem

Computability Theory

- Computability?
 - What are the fundamental capabilities and limitations of computers?
 - Classify problems as solvable and unsolvable.
 - Unsolvability/Undecidability Theory

Formal Models of Computation

• Both deal with formal models of computation:

– Turing machines
– Lambda calculus

Computability Hierarchy

Decidable Languages D

- Solvable Languages
- Computable Languages
- Recursive Languages
- Turing-Decidable Languages

- D Turing Undecidable Languages

- Semi-Decidable Languages SD
 - Recursively Enumerable (R.E.) Languages
 - Partially Decidable Languages
 - Turing Recognizable Languages

- SD Turing Unrecognizable Languages

Deciding a Language

TM M decides a language $L \subseteq \Sigma^*$ iff for any string $w \in \Sigma^*$: if $w \in L$ then TM *M* accepts *w*, and if $w \notin L$ then TM *M* rejects *w*.

TM M will always halt on all inputs!

A language *L* is *decidable* or *Turingdecidable* or *recursive* iff there is a Turing Machine *M* that decides it.

We say that *L* is in *D* (or *R*) the set of all decidable languages.

Decidable Languages D

Decidable Languages

- Solvable Languages
- Computable Languages
- Recursive Languages
 - Turing-Decidable Languages

•

Decidable Languages/ Problems/ Functions

- A language is decidable!
- A problem is solvable!
- A function is computable!

TM *M* semidecides (or recognizes) $L \subseteq \Sigma_M^*$ iff for any string $w \in \Sigma_M^*$:

if $w \in L \rightarrow TM$ *M* accepts *w*

if $w \notin L \rightarrow TM M$ does not accept w.

TM M may either reject or fail to halt (loop)!

Semi-Decidable Languages SD

A language *L* is *semidecidable* or *Turingrecognizable* or *recursively-enumerable* iff there is a Turing Machine that semidecides it.

We say that **SD** (or **RE**) - the set of all semidecidable languages.

Semi-Decidable Languages SD

- Semi-Decidable Languages
- Recursively Enumerable (R.E.) Languages
- Partially-Decidable Languages
- Turing-Recognizable Languages

Unsolvability, Undecidability & Uncomputability

- Problems that Computers Cannot Solve
- Languages that Computers Cannot Decide
 - Functions that Computers Cannot Compute

Languages/ Problems/ Functions

Languages: decidable? vs undecidable?
Problems: solvable? vs unsolvable?
Functions: computable vs uncomputable?

There Exist Languages that Are Not Decidable

Theorem There are languages that are not in D.

Proof Idea: Assume any nonempty alphabet Σ .

Lemma: There is a countably infinite number of D languages over Σ . **Lemma:** There is an uncountably infinite number of languages over Σ .

So there are more languages than there are languages in D. Thus there must exist at least one language that is in \neg D.

The Halting Problem

The Halting Problem Language:

H = {<*M*, *w*> : TM *M* halts on input string *w*}

The language H is **semidecidable (or Turingrecognizable)**, but is **not decidable**.

Semidecidability of The Halting Problem

Theorem 19.1 The language $H = \{<M, w> : TM M$ halts on input string w} is **semidecidable (**or **Turing-recognizable)**.

Proof Idea: Proof by Construction

The TM M_H :

 $M_{H}(<M, w>) =$ 1. Run *M* on *w*. 2. Accept

 $^{CS61}M_{H}$ accepts iff *M* halts on *w*. Thus, M_{H} semidecides H.

Undecidability of the Halting Problem

Theorem 19.2 The language **H** = {<*M*, *w*> : TM *M* halts on input string *w*} is **not decidable**.

Proof Idea:

Proof by Contraction

If H were decidable, then some TM M_H would decide it. The TM M_H would implement the specification:

halts(<M: string, w: string>) =

If <*M*> is a Turing machine description and *M* halts on input *w* then accept.

cs612 else reject.

Undecidability of the Halting Problem

Consider the TM *Trouble*:

Trouble(x: string) = if halts(x, x) then loop foreverelse halt.

If there exists an $M_{\rm H}$ that computes the function *halts*, the TM *Trouble* exists.

Undecidability of the Halting Problem

Consider *Trouble*(*<Trouble>*)?

- Invoke M_H (<Trouble, Trouble>), i.e., halts(<Trouble, Trouble>)
- If halts reports that Trouble(<Trouble>) halts, Trouble loops.
- But if *halts* reports that *Trouble*(*<Trouble>*) does not halt, then *Trouble* halts.

Contradiction!

Thus, there exists no TM M_{H} .

So, H is not decidable!

Enumerating Turing Machines

There exists an infinite lexicographic enumeration of:

- All syntactically valid TMs.
- All syntactically valid TMs with specific input alphabet Σ .
- All syntactically valid TMs with specific input alphabet Σ and specific tape alphabet Γ .

Viewing the Halting Problem as Diagonalization

- Lexicographically enumerate all Turing machines.
- Lexicographically enumerate all possible input strings.
- Let 1 mean TM halting on the input, blank mean non halting.

	i ₁	i ₂	i ₃		<trouble></trouble>	
$machine_1$	1					
$machine_2$		1				
$machine_3$					1	
				1		
Trouble			1			1
	1	1	1			
				1		

H is the Key to the Difference Between D and SD

Theorem 19.3 If H were in D then every SD language would be in D.

Proof Idea:

Proof by Construction

Let *L* be any SD language. There exists a TM M_L that semidecides it.

If H were also in D, then there would exist an O that decides it.

If H were in D then Every SD is in D

To decide whether w is in $L(M_L)$:

TM *M*'(*w*: string) =

Run O on <*M_L*, *w*>.
 If O accepts (i.e., *M_L* will halt), then:

 Run *M_L* on *w*.
 If it accepts, accept. Else reject.

 Else reject.

So, if H were in D, all SD languages would be decidable!

The Entscheidungsproblem is Unsolvable

Theorem The Entscheidungsproblem is unsolvable.

Reading Assignment

Chapter 19:

Sections 19.1 19.2 19.3

In-Class Exercises

Chapter 19:

- 1
- 2