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Decidable Languages

and 

Semi-Decidable Languages
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D and SD Languages
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• Solvable Languages

• Computable Languages

• Recursive Languages

• Turing Decidable Languages
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Semi-Decidable Languages SD

• Recursively Enumerable (R.E.) Languages

• Partially Decidable Languages

• Turing Recognizable Languages
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RL & CFL is in D

Theorem 20.1 The set of context-free 

languages is a proper subset of D.

Proof Idea:

• Every context-free language is decidable, so the context-free 

languages are a subset of D.  

• There is at least one language, AnBnCn, that is decidable but 

not context-free. 

• So the context-free languages are a proper subset of D. 

11CS612



D and SD Languages

Almost every obvious language that is in SD 

is also in D:

• AnBnCn = {anbncn, n ≥ 0}

• {wcw, w  {a, b}*}

• {ww, w  {a, b}*}

• {w = xy=z: x,y,z  {0, 1}* and, when x, y, and z

are viewed as binary numbers, xy = z}
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Non-D and SD Languages

But there are languages that are in SD but not 

in D:

• H = {<M, w> : M halts on input w}

• L = {w: w is the email address of someone who will 

respond to a message you just posted to your 

newsgroup}
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D is a Subset of SD

Theorem 20.2 Every decidable language is 

also semidecidable.

Proof Idea:
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There Exist Languages that Are 

Not Semi-Decidable

Theorem 20.3 There are languages that are 

not in SD.

Proof Idea: Assume any nonempty alphabet .  
Lemma: There is a countably infinite number of SD languages 

over .

Lemma: There is an uncountably infinite number of languages 

over .  

So there are more languages than there are languages in SD.

Thus there must exist at least one language that is in SD.
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D and SD and SD

1. D is a subset of SD.  Every decidable language is 
also semidecidable.

2. There exists at least one language that is in SD/D, 
the donut in the picture.

3. There exist languages that are not in SD.  
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Complements of D and SD

17CS612



Closure of D Under Complement

Theorem 20.4 The set D is closed under 

complement.

Proof Idea: Proof by construction. If L is in D, then there is a 

deterministic Turing machine M that decides it.

M:

y n

From M, we construct M to decide L:
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Non-Closure of SD Under Complement

Theorem 20.5 The set SD is not closed under 

complement.

Proof Idea:

Proof by Contradiction

If so, every language in SD would also be in D.

But we know that there is at least one language (H) that is in SD 

but not in D. 

Contradiction!
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Property of Decidable Languages

Theorem 20.6 A language is in D iff both it 

and its complement are in SD.

Proof Idea: 

L in D implies L and L are in SD:  

• L is in SD because D  SD.

• D is closed under complement

• So L is also in D and thus in SD.

L and L are in SD implies L is in D: 

• M1 semidecides L.

• M2 semidecides L.

• To decide L: 

Run M1 and M2 in parallel on w.

Exactly one of them will eventually accept.
20CS61
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H is Not in SD
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H is Not in D

The language H = {<M, w> : TM M halts on 

input string w} is not decidable.
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Theorem 20.7 The language H = {<M, w> : 

TM M does not halt on input string w} is not in 

SD (or not Turing-recognizable or Turing 

unrecognizable).  

Proof Idea:

H is in SD.  

If H were also in SD then H would be in D.  

But H is not in D.  

So H is not in SD. 

H is Not in SD
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Enumerating a Language
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We say that Turing machine M enumerates

the language L iff, for some fixed state p of M:

L = {w : (s, ) |-M* (p, w)}

= {w : (s, q) |-M* (p, w)}

A language is Turing-enumerable iff there is 

a Turing machine that enumerates it.

Enumerator: Enumerating a Language
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Theorem 20.8 A language is SD iff it is Turing-

enumerable.

Proof Idea:

Proof by Construction

Proof that Turing-enumerable implies SD:

Proof that SD implies Turing-enumerable: 

SD = Turing Enumerable
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M lexicographically enumerates L iff M

enumerates the elements of L in lexicographic 

order.  

A language L is lexicographically Turing-

enumerable iff there is a Turing machine that 

lexicographically enumerates it.

Lexicographic Enumeration
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Theorem 20.9 A language is in D iff it is 

lexicographically Turing-enumerable.

Proof Idea:

Proof by Construction

Proof that D implies lexicographically TE:

Proof that lexicographically TE implies D:

D = Lexicographically Turing 

Enumerable
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IN SD OUT

Semideciding TM H                                   Reduction

D

Deciding TM AnBnCn Diagonalize

Reduction

Context-Free

CF grammar AnBn Pumping

PDA Closure

Regular

Regular Expression                  a*b* Pumping

FSM Closure

Language Summary
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Reading Assignment

Chapter 20:

Sections

20.1

20.2

20.3

20.4

20.5

20.6
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In-Class Exercises

Chapter 20:

1 - a

7

12  

13 
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Non-Decidable Languages

and 

Non-Semi-Decidable 

Languages
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Two Ways to Describe a Question

• As a language

• As a problem
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The Problem View and The Language View

The Problem View The Language View

Does TM M halt on w? H = {<M, w> :

M halts on w}

Does TM M not halt on w? H = {<M, w> :

M does not halt on w}

Does TM M halt on the empty tape? H = {<M> : M halts on }

Is there any string on which TM M halts? HANY = {<M> : there exists at least

one string on which TM M halts }

Does TM M accept all strings? AALL =   {<M> : L(M) = *}

Do TMs Ma and Mb accept the same

languages?

EqTMs =

{<Ma, Mb> : L(Ma) = L(Mb)}

Is the language that TM M accepts regular? TMreg =

{<M>:L(M) is regular}
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Non-D Languages
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There Exist Languages that Are Not 

Decidable

Theorem There are languages that are not in D.

Proof Idea: Assume any nonempty alphabet .  

Lemma: There is a countably infinite number of D languages 

over .

Lemma: There is an uncountably infinite number of languages 

over .  

So there are more languages than there are languages in D.

Thus there must exist at least one language that is in D.
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Using Mapping Reduction to Show 

L is not Decidable
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Reduction

A reduction R from L1 to L2 is one or more 

Turing machines such that: 

If 

there exists a Turing machine Oracle that decides 

(or semidecides) L2, 

then 

the Turing machines in R can be

composed with Oracle to build a deciding (or a

semideciding) Turing machine for L1. 

L  L means that L is reducible to L. 
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Mapping Reductions

L1 is mapping reducible to L2 (L1 M L2) iff

there exists some computable function f such 

that:

x* (x  L1  f(x)  L2).

To decide whether x is in L1, we transform it, 

using f, into a new object and ask whether that 

object is in L2.
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(R is a reduction from L1 to L2)  (L2 is in D)  (L1 is in D)

If (L1 is in D) is false, 

then 

at least one of the two antecedents of that 

implication must be false.  So:

If (R is a reduction from L1 to L2) is true, 

then 

(L2 is in D) must be false.

Using Mapping Reduction for 

Undecidability
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Showing that L2 is not in D:

L1 (known not to be in D)      L1 in D          But L1 not in D

R

L2 (a new language whose   If L2 in D         So L2 not in D

decidability we are

trying to determine)

 The direction of reduction is important!

Using Mapping Reduction for 

Undecidability
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1. Choose a language L1:

• that is already known not to be in D, and  

• that can be reduced to L2.

2. Define the reduction R.

3. Describe the composition C of R with Oracle.

4. Show that C does correctly decide L1 iff Oracle exists.  We do 

this by showing:

• R can be implemented by Turing machines,

• C is correct:

If x  L1, then C(x) accepts, and

If x  L1, then C(x) rejects.

Using Mapping Reduction for 

Undecidability
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“Does M Halt on ?”
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Theorem 21.1 H = {<M> : TM M halts on } is 

in SD.

Proof Idea: 

Proof by Construction
TM T:

T(<M>) = 

1. Run M on .

2. Accept.

T accepts <M> iff M halts on , so T semidecides H.

“Does M Halt on ?”  is SD
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Theorem 21.1 H = {<M> : TM M halts on } is 

not in D.  

Proof Idea: 

Proof by Contradiction By reduction from H:

H = {<M, w> : TM M halts on input string w}

R

(?Oracle) H {<M> : TM M halts on }

R is a mapping reduction from H to H:

“Does M Halt on  ?”  is Undecidable
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R(<M, w>) = 

1. Construct <M#>, where M#(x) operates as follows:

1.1. Erase the tape.

1.2. Write w on the tape.

1.3. Run M on w.

2. Return <M#>.

If Oracle exists, C = Oracle(R(<M, w>)) decides H:

C is correct: M# ignores its own input.  It halts on everything or 

nothing.  So:

 <M, w>  H: M halts on w, so M# halts on everything.  In 

particular, it halts on .  Oracle accepts.

 <M, w>  H: M does not halt on w, so M# halts on nothing 

and thus not on .  Oracle rejects.

H is not in D
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H is not in D
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• R can be implemented as a Turing machine.

• C is correct.

• So, if Oracle exists:

C = Oracle(R(<M, w>)) decides H.

• But no machine to decide H can exist.

• So neither does Oracle. 

H is not in D
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“Does M Halt on Anything?” 
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Theorem 21.2 HANY = {<M> : there exists at 

least one string on which TM M halts} is in SD, 

but not in D.

Proof Idea: 

“Does M Halt on Anything?”  is SD, 

but Undecidable
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Proof Idea:

Proof by Construction By exhibiting a TM T that semidecides it. 

The Dovetailing Method

TM T:
T(<M>) = 

1. Use dovetailing to try M on all of the elements of *:

 [1]
 [2] a [1]

 [3] a [2] b [1]

 [4] a [3] b [2] aa [1]

 [5] a [4] b [3] aa [2]   ab [1]

2. If any instance of M halts, halt and accept.

T will accept iff M halts on at least one string.  So T semidecides HANY.

HANY is in SD

51CS612
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HANY is not in D

Proof Idea:

Proof by Contradiction By reduction from H:

H = {<M, w> : TM M halts on input string w}

R

(?Oracle)   HANY = {<M> : there exists at least one string on  which TM M halts}

R(<M, w>) = 

1. Construct <M#>, where M#(x) operates as follows:

1.1. Examine x.

1.2. If x = w, run M on w, else loop.

2. Return <M#>.
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HANY is not in D

If Oracle exists, then C = Oracle(R(<M, w>)) decides H:

C is correct:  The only string on which M# can halt is w.  So:

 <M, w>   H: M halts on w.  So M# halts on w.  There 

exists at least one string on which M# halts.  Oracle 

accepts.

 <M, w>  H: M does not halt on w, so neither does M#. 

So there exists no string on which M# halts.  Oracle 

rejects.

But no machine to decide H can exist, so neither does Oracle. 
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HANY is not in D

Proof Idea:

Proof by Contradiction By reduction from H:

H = {<M, w> : TM M halts on input string w}

R

(?Oracle)   HANY = {<M> : there exists at least one string on  which TM M halts}

R(<M, w>) = 

1. Construct the description <M#>, where M#(x) operates as follows:

1.1. Erase the tape.

1.2. Write w on the tape.

1.3. Run M on w.

2. Return <M#>.

54CS612



HANY is not in D

If Oracle exists, then C = Oracle(R(<M, w>)) decides H:

C is correct:  M# ignores its own input.  It halts on everything or 

nothing.  So:

 <M, w>  H: M halts on w, so M# halts on everything. So 

it halts on at least one string.  Oracle accepts.

 <M, w>  H: M does not halt on w, so M# halts on 

nothing. So it does not halt on at least one string.  Oracle

rejects.

But no machine to decide H can exist, so neither does Oracle. 
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“Does M Halt on Everything?”
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“Does M Halt on Everything?”  is 

Undecidable
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Theorem 21.3 HALL = {<M> : TM M halts on all 

inputs}  is not in D.

Proof Idea:

Proof by Contradiction By reduction from H:
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H = {<M> : TM M halts on }

R

(?Oracle)  HALL = {<M> : TM M halts on all inputs }

R(<M>) = 

1. Construct the description <M#>, where M#(x) operates as follows:

1.1. Erase the tape.

1.2. Run M.

2. Return <M#>.

If Oracle exists, then C = Oracle(R(<M>)) decides H:

• R can be implemented as a Turing machine.

• C is correct:  M# halts on everything or nothing, depending on whether M

halts on .  So:

 <M>  H: M halts on , so M# halts on all inputs.  Oracle accepts.

 <M>  H: M does not halt on , so M# halts on nothing.  Oracle rejects.

But no machine to decide H can exist, so neither does Oracle. 

HALL is Not in D
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“Does M accept w?”
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“Does M accept w?”  is Undecidable
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Theorem 21.4 A = {<M, w> : M accepts w and 

w  L(M)} is not in D.

Proof Idea: 

Proof by Contradiction By reduction from H:
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H = {<M, w> : TM M halts on input string w}

R

(?Oracle)  A = {<M, w > : w  L(M) }

R(<M, w>) = 

1. Construct the description <M#>, where M#(x)  operates as follows:

1.1. Erase the tape.

1.2. Write w on the tape.

1.3. Run M on w. 

1.4. Accept

2. Return <M#, w>.

If Oracle exists, then C = Oracle(R(<M, w>)) decides H:

• R can be implemented as a Turing machine.

• C is correct:  M# accepts everything or nothing.  So: 

 <M, w>  H: M halts on w, so M# accepts everything.  In particular, it accepts w.  

Oracle accepts. 

 <M, w >  H: M does not halt on w.  M# gets stuck in step 1.3 and so accepts 

nothing.  Oracle rejects. 

But no machine to decide H can exist, so neither does Oracle. 

A = {<M, w> : w  L(M)} is Not in D
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Theorem 21.5 A = {<M> : TM M accepts } is not in D.  

Proof Idea: Analogous to that for H.  

Theorem 21.6 AANY = {<M> : TM M accepts at least one 

string} is not in D.  

Proof Idea: Analogous to that for HANY.  

Theorem AALL = {<M> : = L(M) = *} is not in D.  

Proof Idea: Analogous to that for HALL. 

A, AANY, and AALL are Undecidable
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“Are Two TMs Equivalent ?”
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“Are Two TMs Equivalent?” is 

Undecidable
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Theorem 21.8 EqTMs={<Ma, Mb>: L(Ma)=L(Mb)}

is not in D.

Proof Idea: 

Proof by Contradiction By reduction from AALL :
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AALL =    {<M> : L(M) = *}

R

(Oracle)  EqTMs = {<Ma, Mb>: L(Ma)=L(Mb)}

R(<M>) = 

1. Construct the description of M#(x):

1.1. Accept.

2. Return <M, M#>.

If Oracle exists, then C = Oracle(R(<M>)) decides AALL:

• C is correct:  M# accepts everything.  So if L(M) = L(M#), M must 

also accept everything.  So:

 <M>  AALL: L(M) = L(M#).  Oracle accepts.

 <M>  AALL: L(M)  L(M#).  Oracle rejects.

But no machine to decide AALL can exist, so neither does Oracle. 

EqTMs={<Ma, Mb>: L(Ma)=L(Mb)} is Not in D
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Example 21.8

L = {<M> : TM M contains an even number of states}

Are All Questions about TMs 

Undecidable?
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Example 21.9

L = {<M, w> : M halts on w within 3 steps}. 



Rice’s Theorem
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Property of the SD language

A nontrivial property of the SD language is 

one that is not simply:

• True for all languages, 

or

• False for all languages.
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Rice’s Theorem

Theorem 21.10 No nontrivial property of the 

SD languages is decidable.

or

Every nontrivial property of the SD languages 

is undecidable.

or

Any language that can be described as: 

{<M>: P(L(M)) = True} for any nontrivial 

property P, is not in D.  
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Applying Rice’s Theorem

To use Rice’s Theorem to show that a 

language L is not in D we must:

• Specify property P.

• Show that the domain of P is the SD languages.

• Show that P is nontrivial: P is true of at least one 

language & P is false of at least one language.
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Applying Rice’s Theorem?

• L = {<M> : L(M) contains only even length strings}.  

• L = {<M> : L(M) contains an odd number of strings}.

• L = {<M> : L(M) contains all strings that start with a}.

• L = {<M> : L(M) is infinite}.

• L = {<M> : L(M) is regular}.

• L = {<M> : M contains an even number of states}.

• L = {<M> : M has an odd number of symbols in its tape alphabet}.

• L = {<M> : M accepts  within 100 steps}.

• L = {<M>: M accepts }.

• L = {<Ma, Mb> : L(Ma) = L(Mb)}.
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“Is L(M) Regular?” 
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“Is L(M) Regular?” is Undecidable

Theorem 21.11 TMreg{<M> : L(M) is regular} 

is not in D?

Proof Idea: 

By Rice’s Theorem:

• P = True if L is regular and False otherwise.

• The domain of P is the set of SD languages since it is the set 

of languages accepted by some TM.

• P is nontrivial:
P(a*) = True.

P(AnBn) = False.
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Non-SD Languages
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There Exist Languages that Are Not 

Semi-Decidable

Theorem 20.3 There are languages that are 

not in SD.

Proof Idea: Assume any nonempty alphabet .  

Lemma: There is a countably infinite number of SD languages 

over .

Lemma: There is an uncountably infinite number of languages 

over .  

So there are more languages than there are languages in SD.

Thus there must exist at least one language that is in SD.
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Intuition: Non-SD languages usually involve 

either infinite search or knowing a TM will 

infinite loop.

Examples:

• H = {<M, w> : TM M does not halt on w}.  

• L = {<M> : L(M) = *}.  

• L = {<M> : TM M halts on nothing}.  

Non-SD Languages 
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 Contradiction/ L is the complement of an SD/D 

Language. 

 Reduction from a known non-SD language

Proving that Languages are not SD 
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“Does There Exist No String on which 

M Halts?”
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Theorem 21.15 HANY = {<M> : there does not exist 

any string on which TM M halts} is not in SD (or not 

Turing-recognizable or Turing unrecognizable).

Proof Idea: 
Proof by Contradiction

HANY is HANY where 

HANY = {<M> : there exists at least one string on which TM M halts}.  

We already know:

● HANY is in SD.

● HANY is not in D.

So HANY is not in SD because, if it were, then HANY would be in D but it 

isn’t.

“Does There Exist No String on which 

M Halts?” is Not SD
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If there is a reduction R from L1 to L2 and L1 is 

not SD, then L2 is not SD.

So, we must:

• Choose a language L1 that is known not to be in SD.

• Hypothesize the existence of a semideciding TM 

Oracle.

Using Reduction for Unsemidecidability 
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Theorem 21.15 Proof Idea: 

Proof by Contradiction By reduction from  H:

H = {<M, w> : TM M does not halt on input string w}

R

(?Oracle) HANY = {<M> : there does not exist a string 

on which TM M halts}

R(<M, w>) = 
1. Construct the description <M#> of M#(x):

1.1. Erase the tape.

1.2. Write w on the tape.

1.3. Run M on w.

2. Return <M#>.

“Does There Exist No String on which 

M Halts?” is Not SD
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If Oracle exists, then C = Oracle(R(<M, w>)) semidecides H:

• C is correct:  M# ignores its input.  It halts on everything or

nothing, depending on whether M halts on w.  So:

 <M, w>  H: M does not halt on w, so M# halts on nothing. 

Oracle accepts.

 <M, w>  H: M halts on w, so M# halts on everything.  Oracle

does not accept.

But no machine to semidecide H can exist, so neither does 

Oracle. 

“Does There Exist No String on which 

M Halts?” is Not SD

CS612 82
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Summary of D, SD/D or  SD?



• Decidable Languages  D

• Solvable Languages

• Computable Languages

• Recursive Languages

• Turing Decidable Languages

• Semi-Decidable Languages SD

• Recursively Enumerable (R.E.) Languages

• Partially Decidable Languages

• Turing Recognizable Languages

•  D Turing Undecidable Languages

•  SD Turing Unrecognizable Languages
84CS612
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The Problem View The Language View Status

Does TM M have an even number of 

states?

{<M> : M has an even number of 

states}

D

Does TM M halt on w? H = {<M, w> : M halts on w} SD/D

Does TM M halt on the empty tape? H = {<M> : M halts on } SD/D

Is there any string on which TM M

halts?

HANY = {<M> : there exists at 

least one string on which TM M

halts }

SD/D

Does TM M halt on all strings? HALL = {<M> : M halts on *} SD 

Does TM M accept w? A = {<M, w> : M accepts w} SD/D

Does TM M accept ? A = {<M> : M accepts } SD/D

Is there any string that TM M accepts? AANY {<M> : there exists at least 

one string that TM M accepts }

SD/D
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Does TM M accept all strings? AALL =  {<M> : L(M) = *} SD 

Do TMs Ma and Mb accept the same 

languages?

EqTMs  = {<Ma, Mb> : L(Ma) = 

L(Mb)}

SD 

Does TM M not halt on any string? HANY = {<M> : there does not 

exist any string on which M halts}

SD 

Does TM M not halt on its own 

description?

{<M> : TM  M does not halt on 

input <M>}

SD

Is TM M minimal? TMMIN = {<M>: M is minimal} SD

Is the language that TM M accepts 

regular?

TMreg = {<M> : L(M) is regular} SD

Does TM M accept the language 

AnBn?

Aanbn =  {<M> : L(M) = AnBn} SD
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IN SD OUT

Semideciding TM H                                   Reduction

D

Deciding TM AnBnCn Diagonalize

Reduction

Context-Free

CF grammar AnBn Pumping

PDA Closure

Regular

Regular Expression                  a*b* Pumping

FSM Closure

Language Summary
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Reading Assignment

Chapter 21:

Sections

21.1

21.2

21.3

21.4

21.6

21.7
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In-Class Exercises

Chapter 21:

1 – c & i

4

5 - a

9 - b

11 – a & d

14
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