
PART 3:
Automata:
Turing Machines

Formal Languages

& Computability Theory:

Church-Turing Thesis

Unsolvability/Undecidability of the Halting Problem

Decidable & Non-Decidable Languages

Semi-Decidable & Non-Semi-Decidable Languages

Grammar:
Unrestricted Grammars

1CS612

Languages, Grammars & Automata

2CS612

Young
Pencil

Languages, Grammars & Automata

3CS612

Young
Pencil

Young
Pencil

Languages, Grammars & Automata
SD

D

Context-sensitive

Context-free

DCF

Regular

FSMs

DPDAs

NDPDAs

LBAs

Turing MachinesCS612 4

Young
Pencil

Languages, Grammars & Automata
SD

D

Context-Free

Languages

Regular

Languages

reg exps

FSMs

cfgs

PDAs

unrestricted grammars

Turing Machines

5CS612

Not SD

Young
Pencil

SD Language

Unrestricted

Grammar

Turing

Machine

Generates

Accepts

Grammars, SD Languages, and TMs

6CS612

Young
Pencil

Decidable Languages

and

Semi-Decidable Languages

7CS612

D and SD Languages

SD

D

Context-Free

Languages

Regular

Languages

8CS612

Young
Pencil

• Solvable Languages

• Computable Languages

• Recursive Languages

• Turing Decidable Languages

9CS612

Decidable Languages D

Young
Pencil

Semi-Decidable Languages SD

• Recursively Enumerable (R.E.) Languages

• Partially Decidable Languages

• Turing Recognizable Languages

10CS612

Young
Pencil

RL & CFL is in D

Theorem 20.1 The set of context-free

languages is a proper subset of D.

Proof Idea:

• Every context-free language is decidable, so the context-free

languages are a subset of D.

• There is at least one language, AnBnCn, that is decidable but

not context-free.

• So the context-free languages are a proper subset of D.

11CS612

D and SD Languages

Almost every obvious language that is in SD

is also in D:

• AnBnCn = {anbncn, n ≥ 0}

• {wcw, w  {a, b}*}

• {ww, w  {a, b}*}

• {w = xy=z: x,y,z  {0, 1}* and, when x, y, and z

are viewed as binary numbers, xy = z}

12CS612

Non-D and SD Languages

But there are languages that are in SD but not

in D:

• H = {<M, w> : M halts on input w}

• L = {w: w is the email address of someone who will

respond to a message you just posted to your

newsgroup}

13CS612

Young
Pencil

D is a Subset of SD

Theorem 20.2 Every decidable language is

also semidecidable.

Proof Idea:

14CS612

Young
Pencil

There Exist Languages that Are

Not Semi-Decidable

Theorem 20.3 There are languages that are

not in SD.

Proof Idea: Assume any nonempty alphabet .
Lemma: There is a countably infinite number of SD languages

over .

Lemma: There is an uncountably infinite number of languages

over .

So there are more languages than there are languages in SD.

Thus there must exist at least one language that is in SD.

15CS612

Young
Pencil

D and SD and SD

1. D is a subset of SD. Every decidable language is
also semidecidable.

2. There exists at least one language that is in SD/D,
the donut in the picture.

3. There exist languages that are not in SD.

16CS612

Young
Pencil

Complements of D and SD

17CS612

Closure of D Under Complement

Theorem 20.4 The set D is closed under

complement.

Proof Idea: Proof by construction. If L is in D, then there is a

deterministic Turing machine M that decides it.

M:

y n

From M, we construct M to decide L:

18CS612

Young
Pencil

Non-Closure of SD Under Complement

Theorem 20.5 The set SD is not closed under

complement.

Proof Idea:

Proof by Contradiction

If so, every language in SD would also be in D.

But we know that there is at least one language (H) that is in SD

but not in D.

Contradiction!

19CS612

Young
Pencil

Property of Decidable Languages

Theorem 20.6 A language is in D iff both it

and its complement are in SD.

Proof Idea:

L in D implies L and L are in SD:

• L is in SD because D  SD.

• D is closed under complement

• So L is also in D and thus in SD.

L and L are in SD implies L is in D:

• M1 semidecides L.

• M2 semidecides L.

• To decide L:

Run M1 and M2 in parallel on w.

Exactly one of them will eventually accept.
20CS61

Young
Pencil

H is Not in SD

21CS612

H is Not in D

The language H = {<M, w> : TM M halts on

input string w} is not decidable.

22CS612

Young
Pencil

Theorem 20.7 The language H = {<M, w> :

TM M does not halt on input string w} is not in

SD (or not Turing-recognizable or Turing

unrecognizable).

Proof Idea:

H is in SD.

If H were also in SD then H would be in D.

But H is not in D.

So H is not in SD.

H is Not in SD

23CS612

Young
Pencil

Enumerating a Language

24CS612

We say that Turing machine M enumerates

the language L iff, for some fixed state p of M:

L = {w : (s, ) |-M* (p, w)}

= {w : (s, q) |-M* (p, w)}

A language is Turing-enumerable iff there is

a Turing machine that enumerates it.

Enumerator: Enumerating a Language

25CS612

Young
Pencil

Theorem 20.8 A language is SD iff it is Turing-

enumerable.

Proof Idea:

Proof by Construction

Proof that Turing-enumerable implies SD:

Proof that SD implies Turing-enumerable:

SD = Turing Enumerable

26CS612

Young
Pencil

M lexicographically enumerates L iff M

enumerates the elements of L in lexicographic

order.

A language L is lexicographically Turing-

enumerable iff there is a Turing machine that

lexicographically enumerates it.

Lexicographic Enumeration

27CS612

Young
Pencil

Theorem 20.9 A language is in D iff it is

lexicographically Turing-enumerable.

Proof Idea:

Proof by Construction

Proof that D implies lexicographically TE:

Proof that lexicographically TE implies D:

D = Lexicographically Turing

Enumerable

28CS612

Young
Pencil

IN SD OUT

Semideciding TM H Reduction

D

Deciding TM AnBnCn Diagonalize

Reduction

Context-Free

CF grammar AnBn Pumping

PDA Closure

Regular

Regular Expression a*b* Pumping

FSM Closure

Language Summary

29CS612

Young
Pencil

Reading Assignment

Chapter 20:

Sections

20.1

20.2

20.3

20.4

20.5

20.6

30CS612

In-Class Exercises

Chapter 20:

1 - a

7

12

13

31CS612

Non-Decidable Languages

and

Non-Semi-Decidable

Languages

32CS612

Two Ways to Describe a Question

• As a language

• As a problem

33CS612

Young
Pencil

The Problem View and The Language View

The Problem View The Language View

Does TM M halt on w? H = {<M, w> :

M halts on w}

Does TM M not halt on w? H = {<M, w> :

M does not halt on w}

Does TM M halt on the empty tape? H = {<M> : M halts on }

Is there any string on which TM M halts? HANY = {<M> : there exists at least

one string on which TM M halts }

Does TM M accept all strings? AALL = {<M> : L(M) = *}

Do TMs Ma and Mb accept the same

languages?

EqTMs =

{<Ma, Mb> : L(Ma) = L(Mb)}

Is the language that TM M accepts regular? TMreg =

{<M>:L(M) is regular}

34CS612

Young
Pencil

Young
Pencil

Non-D Languages

35CS612

There Exist Languages that Are Not

Decidable

Theorem There are languages that are not in D.

Proof Idea: Assume any nonempty alphabet .

Lemma: There is a countably infinite number of D languages

over .

Lemma: There is an uncountably infinite number of languages

over .

So there are more languages than there are languages in D.

Thus there must exist at least one language that is in D.

36CS612

Using Mapping Reduction to Show

L is not Decidable

37CS612

Reduction

A reduction R from L1 to L2 is one or more

Turing machines such that:

If

there exists a Turing machine Oracle that decides

(or semidecides) L2,

then

the Turing machines in R can be

composed with Oracle to build a deciding (or a

semideciding) Turing machine for L1.

L  L means that L is reducible to L.

38CS612

Young
Pencil

Young
Pencil

Mapping Reductions

L1 is mapping reducible to L2 (L1 M L2) iff

there exists some computable function f such

that:

x* (x  L1  f(x)  L2).

To decide whether x is in L1, we transform it,

using f, into a new object and ask whether that

object is in L2.

39CS612

Young
Pencil

(R is a reduction from L1 to L2)  (L2 is in D)  (L1 is in D)

If (L1 is in D) is false,

then

at least one of the two antecedents of that

implication must be false. So:

If (R is a reduction from L1 to L2) is true,

then

(L2 is in D) must be false.

Using Mapping Reduction for

Undecidability

40CS612

Young
Pencil

Showing that L2 is not in D:

L1 (known not to be in D) L1 in D But L1 not in D

R

L2 (a new language whose If L2 in D So L2 not in D

decidability we are

trying to determine)

 The direction of reduction is important!

Using Mapping Reduction for

Undecidability

41CS612

Young
Pencil

1. Choose a language L1:

• that is already known not to be in D, and

• that can be reduced to L2.

2. Define the reduction R.

3. Describe the composition C of R with Oracle.

4. Show that C does correctly decide L1 iff Oracle exists. We do

this by showing:

• R can be implemented by Turing machines,

• C is correct:

If x  L1, then C(x) accepts, and

If x  L1, then C(x) rejects.

Using Mapping Reduction for

Undecidability

42CS612

“Does M Halt on ?”

43CS612

Theorem 21.1 H = {<M> : TM M halts on } is

in SD.

Proof Idea:

Proof by Construction
TM T:

T(<M>) =

1. Run M on .

2. Accept.

T accepts <M> iff M halts on , so T semidecides H.

“Does M Halt on ?” is SD

44CS612

Young
Pencil

Theorem 21.1 H = {<M> : TM M halts on } is

not in D.

Proof Idea:

Proof by Contradiction By reduction from H:

H = {<M, w> : TM M halts on input string w}

R

(?Oracle) H {<M> : TM M halts on }

R is a mapping reduction from H to H:

“Does M Halt on  ?” is Undecidable

45CS612

Young
Pencil

R(<M, w>) =

1. Construct <M#>, where M#(x) operates as follows:

1.1. Erase the tape.

1.2. Write w on the tape.

1.3. Run M on w.

2. Return <M#>.

If Oracle exists, C = Oracle(R(<M, w>)) decides H:

C is correct: M# ignores its own input. It halts on everything or

nothing. So:

 <M, w>  H: M halts on w, so M# halts on everything. In

particular, it halts on . Oracle accepts.

 <M, w>  H: M does not halt on w, so M# halts on nothing

and thus not on . Oracle rejects.

H is not in D

46CS612

H is not in D

47CS612

• R can be implemented as a Turing machine.

• C is correct.

• So, if Oracle exists:

C = Oracle(R(<M, w>)) decides H.

• But no machine to decide H can exist.

• So neither does Oracle.

H is not in D

48CS612

“Does M Halt on Anything?”

49CS612

Theorem 21.2 HANY = {<M> : there exists at

least one string on which TM M halts} is in SD,

but not in D.

Proof Idea:

“Does M Halt on Anything?” is SD,

but Undecidable

50CS612

Young
Pencil

Proof Idea:

Proof by Construction By exhibiting a TM T that semidecides it.

The Dovetailing Method

TM T:
T(<M>) =

1. Use dovetailing to try M on all of the elements of *:

 [1]
 [2] a [1]

 [3] a [2] b [1]

 [4] a [3] b [2] aa [1]

 [5] a [4] b [3] aa [2] ab [1]

2. If any instance of M halts, halt and accept.

T will accept iff M halts on at least one string. So T semidecides HANY.

HANY is in SD

51CS612

Young
Pencil

Young
Pencil

HANY is not in D

Proof Idea:

Proof by Contradiction By reduction from H:

H = {<M, w> : TM M halts on input string w}

R

(?Oracle) HANY = {<M> : there exists at least one string on which TM M halts}

R(<M, w>) =

1. Construct <M#>, where M#(x) operates as follows:

1.1. Examine x.

1.2. If x = w, run M on w, else loop.

2. Return <M#>.

52CS612

Young
Pencil

HANY is not in D

If Oracle exists, then C = Oracle(R(<M, w>)) decides H:

C is correct: The only string on which M# can halt is w. So:

 <M, w>  H: M halts on w. So M# halts on w. There

exists at least one string on which M# halts. Oracle

accepts.

 <M, w>  H: M does not halt on w, so neither does M#.

So there exists no string on which M# halts. Oracle

rejects.

But no machine to decide H can exist, so neither does Oracle.

53CS612

HANY is not in D

Proof Idea:

Proof by Contradiction By reduction from H:

H = {<M, w> : TM M halts on input string w}

R

(?Oracle) HANY = {<M> : there exists at least one string on which TM M halts}

R(<M, w>) =

1. Construct the description <M#>, where M#(x) operates as follows:

1.1. Erase the tape.

1.2. Write w on the tape.

1.3. Run M on w.

2. Return <M#>.

54CS612

HANY is not in D

If Oracle exists, then C = Oracle(R(<M, w>)) decides H:

C is correct: M# ignores its own input. It halts on everything or

nothing. So:

 <M, w>  H: M halts on w, so M# halts on everything. So

it halts on at least one string. Oracle accepts.

 <M, w>  H: M does not halt on w, so M# halts on

nothing. So it does not halt on at least one string. Oracle

rejects.

But no machine to decide H can exist, so neither does Oracle.

55CS612

“Does M Halt on Everything?”

56CS612

“Does M Halt on Everything?” is

Undecidable

57CS612

Theorem 21.3 HALL = {<M> : TM M halts on all

inputs} is not in D.

Proof Idea:

Proof by Contradiction By reduction from H:

Young
Pencil

H = {<M> : TM M halts on }

R

(?Oracle) HALL = {<M> : TM M halts on all inputs }

R(<M>) =

1. Construct the description <M#>, where M#(x) operates as follows:

1.1. Erase the tape.

1.2. Run M.

2. Return <M#>.

If Oracle exists, then C = Oracle(R(<M>)) decides H:

• R can be implemented as a Turing machine.

• C is correct: M# halts on everything or nothing, depending on whether M

halts on . So:

 <M>  H: M halts on , so M# halts on all inputs. Oracle accepts.

 <M>  H: M does not halt on , so M# halts on nothing. Oracle rejects.

But no machine to decide H can exist, so neither does Oracle.

HALL is Not in D

58CS612

“Does M accept w?”

59CS612

“Does M accept w?” is Undecidable

60CS612

Theorem 21.4 A = {<M, w> : M accepts w and

w  L(M)} is not in D.

Proof Idea:

Proof by Contradiction By reduction from H:

Young
Pencil

H = {<M, w> : TM M halts on input string w}

R

(?Oracle) A = {<M, w > : w  L(M) }

R(<M, w>) =

1. Construct the description <M#>, where M#(x) operates as follows:

1.1. Erase the tape.

1.2. Write w on the tape.

1.3. Run M on w.

1.4. Accept

2. Return <M#, w>.

If Oracle exists, then C = Oracle(R(<M, w>)) decides H:

• R can be implemented as a Turing machine.

• C is correct: M# accepts everything or nothing. So:

 <M, w>  H: M halts on w, so M# accepts everything. In particular, it accepts w.

Oracle accepts.

 <M, w >  H: M does not halt on w. M# gets stuck in step 1.3 and so accepts

nothing. Oracle rejects.

But no machine to decide H can exist, so neither does Oracle.

A = {<M, w> : w  L(M)} is Not in D

61CS612

Theorem 21.5 A = {<M> : TM M accepts } is not in D.

Proof Idea: Analogous to that for H.

Theorem 21.6 AANY = {<M> : TM M accepts at least one

string} is not in D.

Proof Idea: Analogous to that for HANY.

Theorem AALL = {<M> : = L(M) = *} is not in D.

Proof Idea: Analogous to that for HALL.

A, AANY, and AALL are Undecidable

62CS612

Young
Pencil

“Are Two TMs Equivalent ?”

63CS612

“Are Two TMs Equivalent?” is

Undecidable

64CS612

Theorem 21.8 EqTMs={<Ma, Mb>: L(Ma)=L(Mb)}

is not in D.

Proof Idea:

Proof by Contradiction By reduction from AALL :

Young
Pencil

AALL = {<M> : L(M) = *}

R

(Oracle) EqTMs = {<Ma, Mb>: L(Ma)=L(Mb)}

R(<M>) =

1. Construct the description of M#(x):

1.1. Accept.

2. Return <M, M#>.

If Oracle exists, then C = Oracle(R(<M>)) decides AALL:

• C is correct: M# accepts everything. So if L(M) = L(M#), M must

also accept everything. So:

 <M>  AALL: L(M) = L(M#). Oracle accepts.

 <M>  AALL: L(M)  L(M#). Oracle rejects.

But no machine to decide AALL can exist, so neither does Oracle.

EqTMs={<Ma, Mb>: L(Ma)=L(Mb)} is Not in D

65CS612

Example 21.8

L = {<M> : TM M contains an even number of states}

Are All Questions about TMs

Undecidable?

66CS612

Example 21.9

L = {<M, w> : M halts on w within 3 steps}.

Rice’s Theorem

67CS612

Property of the SD language

A nontrivial property of the SD language is

one that is not simply:

• True for all languages,

or

• False for all languages.

68CS612

Young
Pencil

Young
Pencil

Rice’s Theorem

Theorem 21.10 No nontrivial property of the

SD languages is decidable.

or

Every nontrivial property of the SD languages

is undecidable.

or

Any language that can be described as:

{<M>: P(L(M)) = True} for any nontrivial

property P, is not in D.

69CS612

Young
Pencil

Young
Pencil

Applying Rice’s Theorem

To use Rice’s Theorem to show that a

language L is not in D we must:

• Specify property P.

• Show that the domain of P is the SD languages.

• Show that P is nontrivial: P is true of at least one

language & P is false of at least one language.

70CS612

Young
Pencil

Applying Rice’s Theorem?

• L = {<M> : L(M) contains only even length strings}.

• L = {<M> : L(M) contains an odd number of strings}.

• L = {<M> : L(M) contains all strings that start with a}.

• L = {<M> : L(M) is infinite}.

• L = {<M> : L(M) is regular}.

• L = {<M> : M contains an even number of states}.

• L = {<M> : M has an odd number of symbols in its tape alphabet}.

• L = {<M> : M accepts  within 100 steps}.

• L = {<M>: M accepts }.

• L = {<Ma, Mb> : L(Ma) = L(Mb)}.

71CS612

“Is L(M) Regular?”

72CS612

“Is L(M) Regular?” is Undecidable

Theorem 21.11 TMreg{<M> : L(M) is regular}

is not in D?

Proof Idea:

By Rice’s Theorem:

• P = True if L is regular and False otherwise.

• The domain of P is the set of SD languages since it is the set

of languages accepted by some TM.

• P is nontrivial:
P(a*) = True.

P(AnBn) = False.

73CS612

Non-SD Languages

74CS612

There Exist Languages that Are Not

Semi-Decidable

Theorem 20.3 There are languages that are

not in SD.

Proof Idea: Assume any nonempty alphabet .

Lemma: There is a countably infinite number of SD languages

over .

Lemma: There is an uncountably infinite number of languages

over .

So there are more languages than there are languages in SD.

Thus there must exist at least one language that is in SD.

75CS612

Young
Pencil

Intuition: Non-SD languages usually involve

either infinite search or knowing a TM will

infinite loop.

Examples:

• H = {<M, w> : TM M does not halt on w}.

• L = {<M> : L(M) = *}.

• L = {<M> : TM M halts on nothing}.

Non-SD Languages

76CS612

Young
Pencil

 Contradiction/ L is the complement of an SD/D

Language.

 Reduction from a known non-SD language

Proving that Languages are not SD

77CS612

Young
Pencil

“Does There Exist No String on which

M Halts?”

78CS612

Theorem 21.15 HANY = {<M> : there does not exist

any string on which TM M halts} is not in SD (or not

Turing-recognizable or Turing unrecognizable).

Proof Idea:
Proof by Contradiction

HANY is HANY where

HANY = {<M> : there exists at least one string on which TM M halts}.

We already know:

● HANY is in SD.

● HANY is not in D.

So HANY is not in SD because, if it were, then HANY would be in D but it

isn’t.

“Does There Exist No String on which

M Halts?” is Not SD

79CS612

If there is a reduction R from L1 to L2 and L1 is

not SD, then L2 is not SD.

So, we must:

• Choose a language L1 that is known not to be in SD.

• Hypothesize the existence of a semideciding TM

Oracle.

Using Reduction for Unsemidecidability

80CS612

Theorem 21.15 Proof Idea:

Proof by Contradiction By reduction from  H:

H = {<M, w> : TM M does not halt on input string w}

R

(?Oracle) HANY = {<M> : there does not exist a string

on which TM M halts}

R(<M, w>) =
1. Construct the description <M#> of M#(x):

1.1. Erase the tape.

1.2. Write w on the tape.

1.3. Run M on w.

2. Return <M#>.

“Does There Exist No String on which

M Halts?” is Not SD

81CS612

If Oracle exists, then C = Oracle(R(<M, w>)) semidecides H:

• C is correct: M# ignores its input. It halts on everything or

nothing, depending on whether M halts on w. So:

 <M, w>  H: M does not halt on w, so M# halts on nothing.

Oracle accepts.

 <M, w>  H: M halts on w, so M# halts on everything. Oracle

does not accept.

But no machine to semidecide H can exist, so neither does

Oracle.

“Does There Exist No String on which

M Halts?” is Not SD

CS612 82

83CS612

Summary of D, SD/D or  SD?

• Decidable Languages D

• Solvable Languages

• Computable Languages

• Recursive Languages

• Turing Decidable Languages

• Semi-Decidable Languages SD

• Recursively Enumerable (R.E.) Languages

• Partially Decidable Languages

• Turing Recognizable Languages

•  D Turing Undecidable Languages

•  SD Turing Unrecognizable Languages
84CS612

D, SD/D or  SD?

Young
Pencil

The Problem View The Language View Status

Does TM M have an even number of

states?

{<M> : M has an even number of

states}

D

Does TM M halt on w? H = {<M, w> : M halts on w} SD/D

Does TM M halt on the empty tape? H = {<M> : M halts on } SD/D

Is there any string on which TM M

halts?

HANY = {<M> : there exists at

least one string on which TM M

halts }

SD/D

Does TM M halt on all strings? HALL = {<M> : M halts on *} SD

Does TM M accept w? A = {<M, w> : M accepts w} SD/D

Does TM M accept ? A = {<M> : M accepts } SD/D

Is there any string that TM M accepts? AANY {<M> : there exists at least

one string that TM M accepts }

SD/D

85CS612

Does TM M accept all strings? AALL = {<M> : L(M) = *} SD

Do TMs Ma and Mb accept the same

languages?

EqTMs = {<Ma, Mb> : L(Ma) =

L(Mb)}

SD

Does TM M not halt on any string? HANY = {<M> : there does not

exist any string on which M halts}

SD

Does TM M not halt on its own

description?

{<M> : TM M does not halt on

input <M>}

SD

Is TM M minimal? TMMIN = {<M>: M is minimal} SD

Is the language that TM M accepts

regular?

TMreg = {<M> : L(M) is regular} SD

Does TM M accept the language

AnBn?

Aanbn = {<M> : L(M) = AnBn} SD

86CS612

IN SD OUT

Semideciding TM H Reduction

D

Deciding TM AnBnCn Diagonalize

Reduction

Context-Free

CF grammar AnBn Pumping

PDA Closure

Regular

Regular Expression a*b* Pumping

FSM Closure

Language Summary

87CS612

Young
Pencil

Reading Assignment

Chapter 21:

Sections

21.1

21.2

21.3

21.4

21.6

21.7

88CS612

In-Class Exercises

Chapter 21:

1 – c & i

4

5 - a

9 - b

11 – a & d

14

89CS612

