CCCCC

PART 4:

Complexity Theory:

Complexity
Time Complexity Classes
Space Complexity Classes

Complexity Theory

« What makes some problems
computationally hard and others easy?

« Classify solvable problems according to

their degree of difficulty as easy ones and
hard ones.

— Time Complexity
— Space Complexity

- Intractability Theory

CS612

Young
Pencil

Young
Pencil

Complexity Hierarchy of Decidable
Languages

t

CS612

"he class of decidable languages

'he resources (time & space) required by
ne best decision procedures?

Young
Pencil

Tractability Hierarchy of Decidable
Languages

.+ P
.+ NP

. PSPACE
EXPTIME

P < NP c PSPACE c EXPTIME
P+ EXPTIME
P c EXPTIME

CS612

Young
Pencil

Young
Pencil

Young
Pencil

CS612

Analysis of Complexity

Decidable Languages

A language is decidable!
« A problem is solvable!

« A function is computable!

CS612

Young
Pencil

Are All Decidable Languages Equal?

e L=(ab)*

« WWR=A{wwR :w e {a, b}*}

« WW={ww :w e {a, b}*}

« SAT ={w : wis a wffin Boolean logic and w is

satisfiable}

* H={<M, w>: Turing machine M halts on input
string w}

CS612 -

Complexity Theory

« Are all decidable languages / problems/
functions equal?

* Find efficient algorithms for decidable
languages/ problems/ functions!

v' The Complexity Theory only applies to
decidable languages.

CS612

Young
Pencil

Characterizing Problems as
Languages

Describe all problems as languages to be
decided via encoding!

* Decision problems
* Optimization problems

CS612

Young
Pencil

Problems as Languages

« CONNECTED ={<G>: G is an undirected graph and G is
connected}.

« HAMILTONIANCIRCUIT = {<G>: G is an undirected graph
that contains a Hamiltonian circuit}.

« PRIMES ={w : wis the binary encoding of a prime number}
« TSP-DECIDE = {<G, cost>: <G> encodes an undirected
graph with a positive distance attached to each of its edges

and G contains a Hamiltonian circuit whose total cost is less
than <cost>}.

CS612 10

Young
Pencil

Measuring Time and Space
Complexity

CS612

11

Choosing A Model of Computation

 We use Turing Machines!

CS612

12

Young
Pencil

Analyzing Time & Space Complexity

* "How long will it take P to run?”

* "How much space will P use?”

v" We will state each answer as a function of
some number that corresponds to a
reasonable measure of the size of the input.

CS612 13

Young
Pencil

Measuring Time Requirements

timereq(M) is a function of n:

* It ivi1s adeterministic TM that halts on all inputs,
then:

timereq(M) = f(n) = the maximum number of steps
that M executes on any input of length n.

 [fMis anondeterministic TM all of whose
computational paths halt on all inputs, then:

timereqg(M) = f(n) = the number of steps on the
longest path that M executes on any input of
length n.

CS612 14

Young
Pencil

Measuring Space Requirements

spaceredg(M) is a function of n:
* It MIs a aeterministic TM that halts on all inputs,
then:

spacereq(M) = f(n) = the maximum number of tape
sguares that M reads on any input of length n.

 |IfMis anondeterministic TM all of whose
computational paths halt on all inputs, then:

spacereq(M) = f(n) = the maximum number of tape
squares that M reads on any path that it executes

on any input of length n.
CS612 15

Young
Pencil

Example 27.1

L ={a"b"c": n >0}

Example: QaabbccUdddaadd
Example: Qaaccolddddaaaadd

1<\"K a,zo b, 3@ \

C 3 Lg
DZ;/\\C%lZ
zsCR

a,b,c,1

CS612

Example 17.8

L=A"B"C" = {a"b"c": n > 0} Is decidable!
TM?

™ M: An informal description!

gl
WUabc QA0

WUaabbcc QU1
Wabccb AU

CS612

17

Example 17.8

L=A"B"C" = {a"b"c": n > 0} Is decidable!
TM?

T™M M: A graphical notation!

Q000 of L D, N

2R G 3 Ly

QabCDDD DZ?) R [(o
QaabbccQQQ \ /

Uabccb QU jl "

y

Y

CS612 18

Example 27.1

1. Move right onto w. If the first character is 4, halt and accept.
2. Loop:
2.1. Mark off an a with a 1.
2.2. Move right to the first b and mark it off with a 2. If there isn’t
one or if there is a c first, halt and reject.
2.3. Move right to the first ¢ and mark it off with a 3. If there isn’t
one or there is an a first, halt and reject.
2.4. Move all the way back to the left, then right again past all the
1’s (the marked off a’s). If there is another a, go back to the

top of the loop. If there isn'’t, exit the loop.

3. All a’s have found matching b’s and ¢’s and the read/write head is
just to the right of the region of marked off a’s. Continue moving
left to right to verify that all b’s and ¢’s have been marked. If they
have, halt and accept. Otherwise halt and reject.

CS612

19

Example 27.1

If w € APB"C", the loop will be executed n/3 times:

« Each time through the loop, the average number of steps executed
is 2(n/3 + n/3 + n/6).

Then M must make one final sweep all the way through w:
« That takes an additional n steps.

So the total number of steps M executes is:
2(n/3)(n/3 + n/3 + n/6) + n.

If w ¢ APB"C", the number of steps executed by M is lower.

So,

v timereg(M) = 2(n/3)(n/3 + n/3 + n/6) + n.

v The time required to run M on an input of length n
grows as n2.

CS612

20

Example 27.1

M uses only those tape squares that contain its input string, plus
the blank on either side of it.

So,
v’ spacereq(M) = n+2

v The space required to run M on an input of length n
grows as n.

CS612

21

Asymptotic Analysis & Asymptotic
Notations

CS612

22

Asymptotic Analysis

* We will ignore small inputs and exact
execution counts!

« We will ask whether P’s execution time:

— IS constant (i.e., it is independent of n),
— grows linearly with n,

— grows faster than n but at a rate that can be described by
some polynomial function of n (for example, n?), or

— grows at a rate that is faster than any polynomial function of
n (for example 2").

CS612 23

Young
Pencil

Young
Pencil

Growth Rates of Functions

5(
10\) T T T T Ty T nl T 1I T | BN N) !
22 n' n! 3" J2"
1040 |
nlo
1030 |—, —
10% |- —
number of seconds since Big_B;r:g_
1010 | |
“‘-!EHZ!!”a'r 2
1()() - x |]] TR R W B | 1 L TR N N B |] |2r11
10° 10! 10? 10° 10*

CS612

24

Asymptotic Dominance

Suppose that P, on input of length n, executes:
n3 + 2n + 3 steps.
As n increases, the n3 term dominates the other two.

So, we characterize the time required to execute this
program as n3.

CS612

25

Asymptotic Notations

cg(n)

f(n)

f(n)

cg(n)

c; g(n)

f(n)

|
|
i 1 8(n)
|
|

CS612

|
i
|
|
|
k
f(n) € O(g(n))

f(n) € Q(g(n))

k
f(n) € O(g(n))

26

Asymptotic Upper Bound - O

Asymptotic upper bound: f(n) € O(g(n)) iff there exists
a positive integer k and a positive constant ¢ such that:

vn >k (f(n) £ c g(n)).
Alternatively, if the limit exists:

jim (")
= g(n)

< o0

« fis “big-Oh” of g
« g asymptotically dominates or grows at least as fast as f does.
e gis an upper bound on the growth of f.

CS612 57

Young
Pencil

Asymptotic Dominance - O

« n3e O(nd).
* n3e O(n).
« 3n3 e O(n3).
« n3e OE3M).
* n3e O(nl).

* logn e O(n).

CS612

28

Asymptotic Strong Upper Bound - o-

Asymptotic strong upper bound: f(n) € ofg(n)) iff, for
every positive c, there exists a positive integer k such
that:

vn > k (f(n) < c g(n)).

Alternatively, if the limit exists:

im —— f(n) =0
== g(n)

« fis “little-oh” of g
» g grows strictly faster than f does.

CS612 29

Young
Pencil

Asymptotic Lower Bound - Q

Asymptotic lower bound: f(n) € Q(g(n)) Iff there exists

a positive integer k and a positive constant ¢ such that:

vn >k (f(n) > c g(n)).
Alternatively, if the limit exists:

jim ()
N g(n)

« fis “big-Omega’ of g
« g grows no faster than f.

CS612

30

Young
Pencil

Asymptotic Strong Lower Bound - ®

Asymptotic strong lower bound: f(n) € w(g(n))

Iff, for every positive c, there exists a positive integer
k such that:

vn >k (f(n) > c g(n)).

Alternatively, if the required limit exists:

« fis“little-omega” of g

« g grows strictly slower than f does.

CS612 31

Young
Pencil

Asymptotic Tight Bound - ®

Asymptotic tight bound: f(n) € ®(g(n)) iff there exists a

positive integer k and positive constants c,, and ¢,
such that:

vn >k (¢; g(n) < fn) < c, g(n))

im Moo gim W,
e g(n) - g(n)

 fis“Theta” of g
« @ is an asymptotically tight bound on the growth of f.

CS612 32

Young
Pencil

Asymptotic Tight Bound - ®

« f(n) € ®(g(n)) iff f(n) € O(g(n)), and f(n) € Q(g(n)).

v g(n) is both an upper bound and a lower
bound of f(n)!

« f(n) € ®(g(n)) iff f(n) € O(g(n)), and g(n) € O(f(n)).

v f(n) and g(n) are upper bounds of each other!

CS612 33

@O and ©

Suppose P runs in time f(n) = 2 + 4n.
2 +4n € O(n).
2+ 4n € O (n?).
2+4n € O (2",

Define ©:

f(n) € ®(g(n)) iff f(n) € O(g(n)) and g(n) € O(f(n)).

So:
2 +4n € O(n), but
2 +4n ¢ ©(n?) because n? ¢ O(n).

CS612

34

Example 27.2

timereq(M) = 3n%+23n+100

timereq(M) e O(n?)?
timereq(M) e O(n3)?
timereq(M) e o-(n3)?
timereg(M) e Q(n)?

timereq(M) e Q(n2)?

timereq(M) € ©(n?) ?

CS612

35

Facts About O

Theorem 27.1

1. f(n) e O(f(n)).

CS612

36

Facts About ©

2. Addition:
2.1. O(f(n)) = O(f(n) + c,)

2.2. Iff,(n) € O(g,(n)) and f,(n) € O(g,(n)),
then f,(n) + f,(n) € O(g,(n) + g,(n)).

2.3. O(f,(n) + f,(n)) = O(max(f,(n), f,(n))).

CS612

37

Facts About O

3. Multiplication:
3.1. O(f(n)) = O(c, f(n)).

3.2. Iff,(n) € O(g,(n)) and f,(n) € O(g,(n)),
then f,(n) f,(n) € O(g,(n) g,(n)).

CS612

38

Facts About ©

4. Polynomials:
4.1. If a < b then O(n?d) < O(n®).

4.2.1ff(n) = cnl + ¢, Nt + ... c;n + ¢,
then f(n) € O(n).

CS612

39

Facts About ©

5. Logarithms:
5.1. Foraand b > 1, O(log, n) = O(log, n).

5.2.1f0<a<bandc>1,
then O(n?) c O(n2log, n) € O(nb)

CS612

40

Facts About ©

6. Exponentials (dominate polynomials):
6.1.If 1 <a <Dbthen O@") < O").
6.2. Ifa>0and b > 1 then O(n?) < O(b").

6.3. If f(n) = c,,2" + ¢ni + ¢ Nt + ... cyn + ¢,
then f(n) € O2").

6.4. O(n2") = O(Z(ns)), for some s>1.

CS612

41

Facts About ©

7. Factorial dominates exponentials:

faz1,
then O(a") < O(n!).

CS612

42

Facts About ©

8. Transitivity:

If f(n) € O(f,(n)) and f,(n) € O(f,(n)),
then f(n) € O(f,(n)).

CS612

43

Summarizing ©

O(c) ¢ O(log, n) = O(n°) = O(d") < O(n!)

CS612

44

Young
Pencil

Example 27.3

timereq(M) = 2(n/3)(n/3 + n/3 + n/6) + n
= (5/9)n?+n

« timereq(M) € O(n?)?
« timereq(M) € O(n3)?

« timereq(M) € o-(n3)?

CS612

45

Common Algorithm Growth Rates

A constant growth rate O(1)
* Alogarithmic logarithmic growth rate (log (log N))
» Alogarithmic growth rate (log N)
« Alogarithmic squared growth rate (log 2 N)
* Alinear growth rate O(N)
* Alinear-logarithmic (?) growth rate O(N log N)
« A quadratic growth rate O(N?)
A cubic growth rate O(N3)
« A polynomial growth rate O(NX) for a constant k.

CS612 46

Young
Pencil

Common Algorithm Growth Rates

* An exponential growth rate O(2N)
« A factorial growth rate O(N!)

CS612

a7

Young
Pencil

Tight Bound vs Loose Bound

fl = 0O(1) O(logN) O(N) O(Nlog N) O(N?) O(2N)
Tight bound C— Loose bound
Q1) Q(log N) Q(N) Q(N log N) Q(N?) (2N = |f

Loose bound == Tight bound

CS612

48

Algorithmic Gaps

Given a problem L, we'd like to show:

1. Upper bound: There exists an algorithm that
decides L and that has complexity C,.

2. Lower bound: Any algorithm that decides L must
have complexity at least C..

3.C,=C,?IfC, =C,, we are done.
Often, we’re not done.
For many interesting problems, not done!

CS612

49

The Traveling Salesman Problem

O
15
25
10 28
20
A/O
O /\ 40
7\0
O 23

]

O 9
3

O

“Given n cities and the distances between each pair of them,
find the shortest tour that returns to its starting point and visits

each other city exactly once along the way. ”

CS612

50

The Traveling Salesman Problem

O
15
25
10 28
20
A/O
O /\ 40
7\0
O 23

Given n cities:

Choose a first city
Choose a second
Choose a third

CS612

51

TSP iIs in P?7??

- Upper bound: timereq e O(2(M).
* Lower bound: Don’t have a lower bound that says
polynomial isn’t possible.

BRUTE-FORCE DYNAMIC. ’
SOL-UTTON: PROGRAMMING SELUNG ON ERAY:
’ O (ﬂ‘lzﬂ)
STILL WORKING
ON YOUR ROUTE?®
.

~

SHUT THE

HEW vP

CS612

Reading Assignment

Chapter 27:

Sections
27.1
27.2
27.3
27.4
27.5
27.6
27.7

CS612

53

In-Class Exercises

Chapter 27:

1
6
.

CS612

54

