
PART 4:

Complexity Theory:

Complexity

Time Complexity Classes

Space Complexity Classes

1CS612

Complexity Theory

• What makes some problems

computationally hard and others easy?

• Classify solvable problems according to

their degree of difficulty as easy ones and

hard ones.

– Time Complexity

– Space Complexity

• Intractability Theory

2CS612

Young
Pencil

Young
Pencil

Complexity Hierarchy of Decidable

Languages

• The class of decidable languages

• The resources (time & space) required by
the best decision procedures?

3CS612

Young
Pencil

Tractability Hierarchy of Decidable

Languages

• P

• NP

• PSPACE

• EXPTIME

P  NP  PSPACE  EXPTIME

P  EXPTIME

P  EXPTIME

4CS612

Young
Pencil

Young
Pencil

Young
Pencil

Analysis of Complexity

5CS612

Decidable Languages

• A language is decidable!

• A problem is solvable!

• A function is computable!

6CS612

Young
Pencil

Are All Decidable Languages Equal?

• L = (ab)*

• WWR = {wwR : w  {a, b}*}

• WW = {ww : w  {a, b}*}

• SAT = {w : w is a wff in Boolean logic and w is

satisfiable}

• H = {<M, w> : Turing machine M halts on input

string w}

CS612 7

Complexity Theory

• Are all decidable languages / problems/

functions equal?

• Find efficient algorithms for decidable

languages/ problems/ functions!

 The Complexity Theory only applies to

decidable languages.

8CS612

Young
Pencil

Describe all problems as languages to be

decided via encoding!

• Decision problems

• Optimization problems

Characterizing Problems as

Languages

9CS612

Young
Pencil

• CONNECTED = {<G> : G is an undirected graph and G is

connected}.

• HAMILTONIANCIRCUIT = {<G> : G is an undirected graph

that contains a Hamiltonian circuit}.

• PRIMES = {w : w is the binary encoding of a prime number}

• TSP-DECIDE = {<G, cost> : <G> encodes an undirected

graph with a positive distance attached to each of its edges

and G contains a Hamiltonian circuit whose total cost is less

than <cost>}.

Problems as Languages

10CS612

Young
Pencil

Measuring Time and Space

Complexity

11CS612

• We use Turing Machines!

Choosing A Model of Computation

12CS612

Young
Pencil

Analyzing Time & Space Complexity

• “How long will it take P to run?”

• “How much space will P use?”

 We will state each answer as a function of

some number that corresponds to a

reasonable measure of the size of the input.

CS612 13

Young
Pencil

timereq(M) is a function of n:

• If M is a deterministic TM that halts on all inputs,

then:

timereq(M) = f(n) = the maximum number of steps

that M executes on any input of length n.

• If M is a nondeterministic TM all of whose

computational paths halt on all inputs, then:

timereq(M) = f(n) = the number of steps on the

longest path that M executes on any input of

length n.

Measuring Time Requirements

14CS612

Young
Pencil

spacereq(M) is a function of n:

• If M is a deterministic TM that halts on all inputs,

then:

spacereq(M) = f(n) = the maximum number of tape

squares that M reads on any input of length n.

• If M is a nondeterministic TM all of whose

computational paths halt on all inputs, then:

spacereq(M) = f(n) = the maximum number of tape

squares that M reads on any path that it executes

on any input of length n.

Measuring Space Requirements

15CS612

Young
Pencil

L = {anbncn : n  0}

Example: qaabbccqqqqqqqq
Example: qaaccbqqqqqqqqq

Example 27.1

16CS612

Example 17.8

L= AnBnCn = {anbncn : n  0} is decidable!

TM?

TM M: An informal description!

q q q q
qabc q q q
qaabbcc q q q
qabccb q q q

17CS612

Example 17.8

L= AnBnCn = {anbncn : n  0} is decidable!

TM?

TM M: A graphical notation!

q q q q
qabc q q q
qaabbcc q q q
qabccb q q q

18CS612

1. Move right onto w. If the first character is q, halt and accept.

2. Loop:
2.1. Mark off an a with a 1.

2.2. Move right to the first b and mark it off with a 2. If there isn’t

one or if there is a c first, halt and reject.
2.3. Move right to the first c and mark it off with a 3. If there isn’t

one or there is an a first, halt and reject.

2.4. Move all the way back to the left, then right again past all the
1’s (the marked off a’s). If there is another a, go back to the

top of the loop. If there isn’t, exit the loop.

3. All a’s have found matching b’s and c’s and the read/write head is

just to the right of the region of marked off a’s. Continue moving

left to right to verify that all b’s and c’s have been marked. If they

have, halt and accept. Otherwise halt and reject.

Example 27.1

19CS612

If w  AnBnCn, the loop will be executed n/3 times:

• Each time through the loop, the average number of steps executed

is 2(n/3 + n/3 + n/6).

Then M must make one final sweep all the way through w:

• That takes an additional n steps.

So the total number of steps M executes is:

2(n/3)(n/3 + n/3 + n/6) + n.

If w  AnBnCn, the number of steps executed by M is lower.

So,

 timereq(M) = 2(n/3)(n/3 + n/3 + n/6) + n.

 The time required to run M on an input of length n

grows as n2.

Example 27.1

20CS612

M uses only those tape squares that contain its input string, plus

the blank on either side of it.

So,

 spacereq(M) = n+2

 The space required to run M on an input of length n

grows as n.

Example 27.1

21CS612

Asymptotic Analysis & Asymptotic

Notations

22CS612

Asymptotic Analysis

• We will ignore small inputs and exact

execution counts!

• We will ask whether P’s execution time:
– is constant (i.e., it is independent of n),

– grows linearly with n,

– grows faster than n but at a rate that can be described by

some polynomial function of n (for example, n2), or

– grows at a rate that is faster than any polynomial function of

n (for example 2n).

CS612 23

Young
Pencil

Young
Pencil

Growth Rates of Functions

24CS612

Asymptotic Dominance

Suppose that P, on input of length n, executes:

n3 + 2n + 3 steps.

As n increases, the n3 term dominates the other two.

So, we characterize the time required to execute this

program as n3.

CS612 25

Asymptotic Notations

26CS612

Asymptotic upper bound: f(n)  O(g(n)) iff there exists

a positive integer k and a positive constant c such that:

n  k (f(n)  c g(n)).

Alternatively, if the limit exists:

• f is “big-Oh” of g

• g asymptotically dominates or grows at least as fast as f does.

• g is an upper bound on the growth of f.

Asymptotic Upper Bound - O


)(

)(
lim

ng

nf

n

27CS612

Young
Pencil

• n3  O(n3).

• n3  O(n4).

• 3n3  O(n3).

• n3  O(3n).

• n3  O(n!).

• log n  O(n).

Asymptotic Dominance - O

28CS612

Asymptotic strong upper bound: f(n)  o(g(n)) iff, for

every positive c, there exists a positive integer k such

that:

n  k (f(n) < c g(n)).

Alternatively, if the limit exists:

• f is “little-oh” of g

• g grows strictly faster than f does.

Asymptotic Strong Upper Bound - o

0
)(

)(
lim 

 ng

nf

n

29CS612

Young
Pencil

Asymptotic lower bound: f(n)  (g(n)) iff there exists

a positive integer k and a positive constant c such that:

n  k (f(n)  c g(n)).

Alternatively, if the limit exists:

• f is “big-Omega” of g

• g grows no faster than f.

Asymptotic Lower Bound - 

0
)(

)(
lim 

 ng

nf

n

30CS612

Young
Pencil

Asymptotic strong lower bound: f(n)  (g(n))

iff, for every positive c, there exists a positive integer

k such that:

n  k (f(n) > c g(n)).

Alternatively, if the required limit exists:

• f is “little-omega” of g

• g grows strictly slower than f does.

Asymptotic Strong Lower Bound - 

()
lim

()n

f n

g n
 

31CS612

Young
Pencil

Asymptotic tight bound: f(n)  (g(n)) iff there exists a

positive integer k and positive constants c1, and c2

such that:

n  k (c1 g(n)  f(n)  c2 g(n))

• f is “Theta” of g

• g is an asymptotically tight bound on the growth of f.

Asymptotic Tight Bound - 

32CS612


)(

)(
lim

ng

nf

n
0

)(

)(
lim 

 ng

nf

n

Young
Pencil

• f(n)  (g(n)) iff f(n)  O(g(n)), and f(n)  (g(n)).

 g(n) is both an upper bound and a lower

bound of f(n)!

• f(n)  (g(n)) iff f(n)  O(g(n)), and g(n)  O(f(n)).

 f(n) and g(n) are upper bounds of each other!

Asymptotic Tight Bound - 

33CS612

O and 

Suppose P runs in time f(n) = 2 + 4n.
2 + 4n  O(n).

2 + 4n  O (n2).

2 + 4n  O (2n),

Define :
f(n)  (g(n)) iff f(n)  O(g(n)) and g(n)  O(f(n)).

So:

2 + 4n  (n), but
2 + 4n  (n2) because n2  O(n).

CS612 34

Example 27.2

timereq(M) = 3n2+23n+100

• timereq(M)  O(n2)?

• timereq(M)  O(n3)?

• timereq(M)  o (n3)?

• timereq(M)  (n)?

• timereq(M)  (n2)?

• timereq(M)  (n2) ?

35CS612

Facts About O

Theorem 27.1

1. f(n)  O(f(n)).

36CS612

2. Addition:

2.1. O(f(n)) = O(f(n) + c0)

2.2. If f1(n)  O(g1(n)) and f2(n)  O(g2(n)),

then f1(n) + f2(n)  O(g1(n) + g2(n)).

2.3. O(f1(n) + f2(n)) = O(max(f1(n), f2(n))).

Facts About O

37CS612

3. Multiplication:

3.1. O(f(n)) = O(c0 f(n)).

3.2. If f1(n)  O(g1(n)) and f2(n)  O(g2(n)),

then f1(n) f2(n)  O(g1(n) g2(n)).

Facts About O

38CS612

4. Polynomials:

4.1. If a ≤ b then O(na)  O(nb).

4.2. If f(n) = cjn
j + cj-1n

j-1 + … c1n + c0,
then f(n)  O(nj).

Facts About O

39CS612

5. Logarithms:

5.1. For a and b > 1, O(loga n) = O(logb n).

5.2. If 0 < a < b and c > 1,
then O(na)  O(na logc n)  O(nb)

Facts About O

40CS612

6. Exponentials (dominate polynomials):

6.1. If 1 < a ≤ b then O(an)  O(bn).

6.2. If a > 0 and b > 1 then O(na)  O(bn).

6.3. If f(n) = cj+12
n + cjn

j + cj-1n
j-1 + … c1n + c0,

then f(n)  O(2n).

6.4. O(nt2n)  O(), for some s>1.

Facts About O

41CS612

)(2
sn

7. Factorial dominates exponentials:

If a ≥ 1,
then O(an)  O(n!).

Facts About O

42CS612

8. Transitivity:

If f(n)  O(f1(n)) and f1(n)  O(f2(n)),

then f(n)  O(f2(n)).

Facts About O

43CS612

Summarizing O

O(c)  O(loga n)  O(nb)  O(dn)  O(n!)

44CS612

Young
Pencil

Example 27.3

timereq(M) = 2(n/3)(n/3 + n/3 + n/6) + n

= (5/9)n2+n

• timereq(M)  O(n2)?

• timereq(M)  O(n3)?

• timereq(M)  o (n3)?

45CS612

Common Algorithm Growth Rates

• A constant growth rate O(1)

• A logarithmic logarithmic growth rate (log (log N))

• A logarithmic growth rate (log N)

• A logarithmic squared growth rate (log 2 N)

• A linear growth rate O(N)

• A linear-logarithmic (?) growth rate O(N log N)

• A quadratic growth rate O(N2)

• A cubic growth rate O(N3)

• A polynomial growth rate O(Nk) for a constant k.

CS612 46

Young
Pencil

Common Algorithm Growth Rates

• An exponential growth rate O(2N)

• A factorial growth rate O(N!)

CS612 47

Young
Pencil

Tight Bound vs Loose Bound

48

O(1) O(log N) O(N) O(N log N) O(N2) O(2N)f =

Tight bound Loose bound

(1) (log N) (N) (N log N) (N2) (2N) f=

Loose bound Tight bound

CS612

Algorithmic Gaps

Given a problem L, we’d like to show:

1. Upper bound: There exists an algorithm that

decides L and that has complexity C1.

2. Lower bound: Any algorithm that decides L must

have complexity at least C2.

3. C1 = C2? If C1 = C2, we are done.

Often, we’re not done.

For many interesting problems, not done!

49CS612

The Traveling Salesman Problem

“Given n cities and the distances between each pair of them,

find the shortest tour that returns to its starting point and visits

each other city exactly once along the way. ”

15

20

25

8

9

23

40

10

4

7
3

28

CS612 50

The Traveling Salesman Problem

15

20

25

8

9

23

40

10

4

7
3

28

Given n cities:

Choose a first city n

Choose a second n-1

Choose a third n-2

… n!
CS612 51

• Upper bound: timereq  O().

• Lower bound: Don’t have a lower bound that says

polynomial isn’t possible.

TSP is in P???

CS612 52

)(2
kn

Reading Assignment

Chapter 27:

Sections

27.1

27.2

27.3

27.4

27.5

27.6

27.7

53CS612

In-Class Exercises

Chapter 27:

1

6

7

54CS612

