
PART 4:

Complexity Theory:

Complexity

Time Complexity Classes

Space Complexity Classes
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Complexity Theory

• What makes some problems 

computationally hard and others easy?

• Classify solvable problems according to 

their degree of difficulty as easy ones and 

hard ones. 

– Time Complexity

– Space Complexity

• Intractability Theory
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Complexity Hierarchy of Decidable 

Languages

• The class of decidable languages

• The resources (time & space) required by 
the best decision procedures?
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Tractability Hierarchy of Decidable 

Languages

• P

• NP

• PSPACE

• EXPTIME

P  NP  PSPACE  EXPTIME

P  EXPTIME

P  EXPTIME
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Analysis of Complexity
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Decidable Languages

• A language is decidable!

• A problem is solvable!

• A function is computable!
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Are All Decidable Languages Equal?

• L = (ab)*

• WWR = {wwR : w  {a, b}*}

• WW = {ww : w  {a, b}*} 

• SAT = {w : w is a wff in Boolean logic and w is 

satisfiable}

• H = {<M, w> : Turing machine M halts on input 

string w}
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Complexity Theory

• Are all decidable languages / problems/ 

functions equal?

• Find efficient algorithms for decidable 

languages/ problems/ functions!

 The Complexity Theory only applies to 

decidable languages.
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Describe all problems as languages to be 

decided via encoding!

• Decision problems

• Optimization problems

Characterizing Problems as 

Languages
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• CONNECTED = {<G> : G is an undirected graph and G is 

connected}. 

• HAMILTONIANCIRCUIT = {<G> : G is an undirected graph 

that contains a Hamiltonian circuit}.

• PRIMES = {w : w is the binary encoding of a prime number}

• TSP-DECIDE = {<G, cost> : <G> encodes an undirected 

graph with a positive distance attached to each of its edges 

and G contains a Hamiltonian circuit whose total cost is less 

than <cost>}.

Problems as Languages
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Measuring Time and Space 

Complexity
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• We use Turing Machines!

Choosing A Model of Computation
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Analyzing Time & Space Complexity

• “How long will it take P to run?” 

• “How much space will P use?” 

 We will state each answer as a function of 

some number that corresponds to a 

reasonable measure of the size of the input. 
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timereq(M) is a function of n: 

• If M is a deterministic TM that halts on all inputs, 

then:

timereq(M) = f(n) = the maximum number of steps 

that M executes on any input of length n.  

• If M is a nondeterministic TM all of whose 

computational paths halt on all inputs, then:

timereq(M) = f(n) = the number of steps on the 

longest path that M executes on any input of 

length n.

Measuring Time Requirements
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spacereq(M) is a function of n:

• If M is a deterministic TM that halts on all inputs, 

then: 

spacereq(M) = f(n) = the maximum number of tape 

squares that M reads on any input of length n.

• If M is a nondeterministic TM all of whose 

computational paths halt on all inputs, then:

spacereq(M) = f(n) = the maximum number of tape 

squares that M reads on any path that it executes 

on any input of length n.

Measuring Space Requirements
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L = {anbncn : n  0}

Example:  qaabbccqqqqqqqq
Example:  qaaccbqqqqqqqqq

Example 27.1
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Example 17.8

L= AnBnCn = {anbncn : n  0} is decidable!

TM?

TM M: An informal description!

q q q q
qabc q q q
qaabbcc q q q
qabccb q q q
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Example 17.8

L= AnBnCn = {anbncn : n  0} is decidable!

TM?

TM M: A graphical notation!

q q q q
qabc q q q
qaabbcc q q q
qabccb q q q
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1. Move right onto w.  If the first character is q, halt and accept.

2. Loop:
2.1. Mark off an a with a 1.

2.2. Move right to the first b and mark it off with a 2.  If there isn’t

one or if there is a c first, halt and reject.
2.3. Move right to the first c and mark it off with a 3.  If there isn’t

one or there is an a first, halt and reject.

2.4. Move all the way back to the left, then right again past all the
1’s (the marked off a’s).  If there is another a, go back to the 

top of the loop.  If there isn’t, exit the loop.

3. All a’s have found matching b’s and c’s and the read/write head is

just to the right of the region of marked off a’s.  Continue moving

left to right to verify that all b’s and c’s have been marked.  If they

have, halt and accept.  Otherwise halt and reject.

Example 27.1
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If w  AnBnCn, the loop will be executed n/3 times:

• Each time through the loop, the average number of steps executed 

is 2(n/3 + n/3 + n/6).  

Then M must make one final sweep all the way through w:

• That takes an additional n steps.  

So the total number of steps M executes is:

2(n/3)(n/3 + n/3 + n/6) + n.

If w  AnBnCn, the number of steps executed by M is lower. 

So, 

 timereq(M) = 2(n/3)(n/3 + n/3 + n/6) + n.

 The time required to run M on an input of length n

grows as n2. 

Example 27.1
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M uses only those tape squares that contain its input string, plus 

the blank on either side of it.  

So,

 spacereq(M) = n+2

 The space required to run M on an input of length n

grows as n. 

Example 27.1
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Asymptotic Analysis & Asymptotic 

Notations
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Asymptotic Analysis

• We will ignore small inputs and exact 

execution counts!

• We will ask whether P’s execution time:
– is constant (i.e., it is independent of n),

– grows linearly with n,

– grows faster than n but at a rate that can be described by 

some polynomial function of n (for example, n2), or

– grows at a rate that is faster than any polynomial function of 

n (for example 2n).
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Growth Rates of Functions
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Asymptotic Dominance

Suppose that P, on input of length n, executes:

n3 + 2n + 3 steps.  

As n increases, the n3 term dominates the other two.  

So, we characterize the time required to execute this 

program as n3. 
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Asymptotic Notations
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Asymptotic upper bound: f(n)  O(g(n)) iff there exists 

a positive integer k and a positive constant c such that:

n  k (f(n)  c g(n)).  

Alternatively, if the limit exists:

• f is “big-Oh” of g

• g asymptotically dominates or grows at least as fast as f does.

• g is an upper bound on the growth of f.

Asymptotic Upper Bound - O


 )(
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lim

ng

nf

n

27CS612

Young
Pencil



• n3  O(n3).

• n3  O(n4).

• 3n3  O(n3).

• n3  O(3n).

• n3  O(n!).

• log n  O(n).

Asymptotic Dominance - O
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Asymptotic strong upper bound: f(n)  o(g(n)) iff, for

every positive c, there exists a positive integer k such

that:

n  k (f(n) < c g(n)).  

Alternatively, if the limit exists:

• f is “little-oh” of g

• g grows strictly faster than f does.

Asymptotic Strong Upper Bound - o

0
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n

29CS612

Young
Pencil



Asymptotic lower bound: f(n)  (g(n)) iff there exists

a positive integer k and a positive constant c such that:

n  k (f(n)  c g(n)).  

Alternatively, if the  limit exists:

• f is “big-Omega” of g

• g grows no faster than f. 

Asymptotic Lower Bound - 

0
)(
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nf

n
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Asymptotic strong lower bound: f(n)  (g(n))

iff, for every positive c, there exists a positive integer 

k such that:

n  k (f(n) > c g(n)).  

Alternatively, if the required limit exists:

• f is “little-omega” of g

• g grows strictly slower than f does. 

Asymptotic Strong Lower Bound - 

( )
lim

( )n

f n

g n
 
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Asymptotic tight bound: f(n)  (g(n)) iff there exists a 

positive integer k and positive constants c1, and c2

such that:

n  k (c1 g(n)  f(n)  c2 g(n))     

• f is “Theta” of g

• g is an asymptotically tight bound on the growth of f.

Asymptotic Tight Bound - 
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• f(n)  (g(n)) iff f(n)  O(g(n)), and f(n)  (g(n)).

 g(n) is both an upper bound and a lower 

bound of f(n)! 

• f(n)  (g(n)) iff f(n)  O(g(n)), and g(n)  O(f(n)).

 f(n) and g(n) are upper bounds of each other!

Asymptotic Tight Bound - 
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O and 

Suppose P runs in time f(n) = 2 + 4n.  
2 + 4n  O(n).  

2 + 4n  O (n2).

2 + 4n  O (2n), 

Define :
f(n)  (g(n)) iff f(n)  O(g(n)) and g(n)  O(f(n)).

So:

2 + 4n  (n), but 
2 + 4n  (n2) because n2  O(n).  
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Example 27.2

timereq(M) = 3n2+23n+100

• timereq(M)  O(n2)?

• timereq(M)  O(n3)?

• timereq(M)  o (n3)?

• timereq(M)  (n)?

• timereq(M)  (n2)?

• timereq(M)  (n2) ?
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Facts About O

Theorem 27.1

1. f(n)  O(f(n)).
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2. Addition:

2.1. O(f(n)) = O(f(n) + c0)

2.2. If f1(n)  O(g1(n)) and f2(n)  O(g2(n)),

then f1(n) + f2(n)  O(g1(n) + g2(n)).

2.3. O(f1(n) + f2(n)) = O(max(f1(n), f2(n))).

Facts About O
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3. Multiplication:

3.1. O(f(n)) = O(c0 f(n)).

3.2. If f1(n)  O(g1(n)) and f2(n)  O(g2(n)),

then f1(n) f2(n)  O(g1(n) g2(n)).

Facts About O
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4. Polynomials:

4.1. If a ≤ b then O(na)  O(nb).

4.2. If f(n) = cjn
j + cj-1n

j-1 + … c1n + c0,
then f(n)  O(nj).

Facts About O
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5. Logarithms:

5.1. For a and b > 1, O(loga n) = O(logb n).

5.2. If 0 < a < b and c > 1,
then O(na)  O(na logc n)  O(nb)

Facts About O
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6. Exponentials (dominate polynomials):

6.1. If 1 < a ≤ b then O(an)  O(bn).

6.2. If a > 0 and b > 1 then O(na)  O(bn).

6.3. If f(n) = cj+12
n + cjn

j + cj-1n
j-1 + … c1n + c0,

then f(n)  O(2n).

6.4. O(nt2n)  O( ), for some s>1.

Facts About O
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7. Factorial dominates exponentials:

If a ≥ 1,
then O(an)  O(n!).

Facts About O
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8. Transitivity:

If f(n)  O(f1(n)) and f1(n)  O(f2(n)),

then f(n)  O(f2(n)).

Facts About O
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Summarizing O

O(c)  O(loga n)  O(nb)  O(dn)  O(n!) 
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Example 27.3

timereq(M) = 2(n/3)(n/3 + n/3 + n/6) + n

= (5/9)n2+n

• timereq(M)  O(n2)?

• timereq(M)  O(n3)?

• timereq(M)  o (n3)?
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Common Algorithm Growth Rates

• A constant growth rate O(1) 

• A logarithmic logarithmic growth rate  (log (log N))

• A logarithmic growth rate  (log N)

• A logarithmic squared growth rate  (log 2 N)

• A linear growth rate O(N)

• A linear-logarithmic (?) growth rate O(N log N) 

• A quadratic growth rate  O(N2)

• A cubic growth rate O(N3) 

• A polynomial growth rate O(Nk) for a constant k.
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Common Algorithm Growth Rates

• An exponential growth rate O(2N)

• A factorial growth rate O(N!)
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Tight Bound vs Loose Bound

48

O(1)   O(log N)   O(N)  O(N log N)  O(N2) O(2N)f =

Tight bound Loose bound

(1) (log N) (N) (N log N) (N2) (2N) f=

Loose bound Tight bound
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Algorithmic Gaps

Given a problem L, we’d like to show:

1. Upper bound: There exists an algorithm that 

decides L and that has complexity C1.

2. Lower bound: Any algorithm that decides L must 

have complexity at least C2.

3. C1 = C2? If C1 = C2, we are done. 

Often, we’re not done. 

For many interesting problems, not done!
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The Traveling Salesman Problem

“Given n cities and the distances between each pair of them, 

find the shortest tour that returns to its starting point and visits 

each other city exactly once along the way. ”
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The Traveling Salesman Problem

15
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9

23

40

10

4

7
3

28

Given n cities:

Choose a first city n

Choose a second n-1

Choose a third n-2

… n!
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• Upper bound: timereq  O(        ). 

• Lower bound: Don’t have a lower bound that says 

polynomial isn’t possible.

TSP is in P???
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Reading Assignment

Chapter 27:

Sections

27.1

27.2

27.3

27.4

27.5

27.6

27.7
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In-Class Exercises

Chapter 27:

1

6

7

54CS612


