
PART 4:

Complexity Theory:

Complexity

Time Complexity Classes

Space Complexity Classes
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Time Complexity 

Classes:

P, NP, 

NP-completeness, 

Polynomial-Time Reduction,

EXPTIME
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The Complexity Class P
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P = 

{ Problems Solvable in Polynomial Time by DTMs }
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timereq(M): 

If M is a deterministic Turing Machine that halts on 

all inputs, then:

timereq(M) = f(n) = the maximum number of steps 

that M executes on any input of length n.  

Measuring Time Requirements
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The Language Class P

All and only languages that are decidable by 

a DTM in polynomial time!

L  P iff

• there exists some deterministic Turing 

machine M that decides L, and 
• timereq(M)  O(nk) for some k.

“Deterministic Polynomial-Time Deciding”

We’ll say that L is tractable iff it is in P!
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Most Tractable Problems

Most tractable problems, i.e. problems in P can 

be solved 

• no more than O(n3) on conventional computers.

• no more than O(n16) on a one-tape DTM.
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Closure of P under Complement

If a language L is in P, so is its complement L!

Theorem 28.1: The class P is closed under 

complement.

Proof:

If M accepts L in polynomial time, swap accepting and 

non accepting states to accept L in polynomial time.
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Languages That Are in P

• Every regular language in O(n) time. 

• Every context-free language since there 

exist context-free parsing algorithms that 
run in O(n3) time.

• Some languages that are not context free.  
AnBnCn in O(n2) time.
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Equivalence of Multi-tape and One-

tape TMs

Theorem 17.1: Let M be a k-tape Turing machine for 

some k  1.  Then there is a standard TM M' where  

', and:

• On input x, M halts with output z on the first tape iff

M' halts in the same state with z on its tape. 

• On input x, if M halts in n steps, M' halts in O(n2)

steps.

Proof: Proof by Construction

CS612 9

Young
Pencil



Simulating a Real Computer by a 

Multi-tape TM

Theorem 17.4 A random-access, stored 

program computer can be simulated by a 7-tape 

Turing Machine.  If the computer requires n

steps to perform some operation, the 7-tape 
Turing Machine simulation will require O(n3) 

steps.

Proof Idea: 
Proof by Construction.

simcomputer will use 7 tapes:
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Simulating a Real Computer by a 

One-tape TM

Theorem 17.4 A random-access, stored 

program computer can be simulated by a Turing 

Machine.  If the computer requires n steps to 

perform some operation, the Turing Machine 
simulation will require O(n6) steps.

Proof Idea: 

Proof by Construction.
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To Show That a Language Is In P

 State an algorithm that runs on a 

conventional computer.

 Describe a multi-tape, deterministic Turing 

Machine.

 Describe a one-tape, deterministic Turing 

Machine.
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Theorem 28.2 Every regular language can be 

decided in linear time.  So every regular 

language is in P. 

Proof Idea: 

If L is regular, there exists some DFSM M that decides it.  

Construct a deterministic TM M that simulates M, moving its read/write 

head one square to the right at each step.  When M reads a q, it halts.  If 

it is in an accepting state, it accepts; otherwise it rejects.

On any input of length n, M will execute n + 2 steps.  
So timereq(M)  O(n).

Regular Language is in P
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Context-Free Language is in P

Theorem 28.3 Every context-free language 
can be decided in O(n18) time.  So every 

context-free language is in P. 

Proof Idea: 

The Cocke-Kasami-Younger (CKY) algorithm can parse any 
context-free language in time that is O(n3) if we count operations 

on a conventional computer.  

That algorithm can be simulated on a standard, one-tape Turing 
machine in O(n18) steps.
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CONNECTED is in P

CONNECTED = 

{<G> : G is an undirected graph and G is connected}.

Theorem 28.4
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Eulerian Paths and Circuits
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• An Eulerian path through a graph G is a path that

traverses each edge in G exactly once.

• An Eulerian circuit through a graph G is a path

that starts at some vertex s, ends back in s, and

traverses each edge in G exactly once.



Eulerian Paths and Circuits
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• A connected graph possesses an Eulerian path 

that is not a circuit iff it contains exactly two 

vertices of odd degree.  

Those two vertices will serve as the first and last vertices of the path.

• A connected graph possess an Eulerian circuit iff

all its vertices have even degree.  



EULERIAN-CIRCUIT is in P

EULERIAN-CIRCUIT = {<G> : G is an undirected 

graph, and G contains an Eulerian circuit} is in P.

Theorem 28.5
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A spanning tree T of a graph G is a subset of the edges 

of G such that: 

• T contains no cycles and

• Every vertex in G is connected to every other vertex 

using just the edges in T.

An unconnected graph has no spanning trees. 

A connected graph G will have at least one spanning 

tree; it may have many.  

Spanning Trees
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A weighted graph is a graph that has a weight 

associated with each edge.  

If G is a weighted graph, the cost of a tree is the sum 

of the costs (weights) of its edges.  

A tree T is a minimum spanning tree of G iff:

• it is a spanning tree and 

• there is no other spanning tree whose cost is lower 

than that of T. 

Minimum Spanning Trees
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MST = {<G, cost> : G is an undirected graph with a 

positive cost attached to each of its edges and there

exists a minimum spanning tree of G with total cost 

less than cost} is in P.

Theorem 28.6

MST is in P
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RELATIVELY-PRIME = {<n, m> : n and m are integers 

that are relatively prime} is in P.

PRIMES = {w : w is the binary encoding of a prime 

number} is in P.

COMPOSITES = {w : w is the binary encoding of a 

nonprime number} is in P.

Primality Testing is in P
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HAMILTONIAN-PATH = {<G> : G is an undirected 

graph and G contains a Hamiltonian path}.   

HAMILTONIAN-CIRCUIT = {<G, s> : G is an 

undirected graph and G contains a Hamiltonian 

circuit}. 

• A Hamiltonian path is a path that visits each vertex exactly 

once. 

• A Hamiltonian circuit is a Hamiltonian path that starts some 

vertex and ends in the same vertex.

Hamiltonian Path and Circuit

CS612 23



TSP-DECIDE = {<G, cost> : <G> encodes an undirected 

graph with a positive distance attached to each of its 

edges and G contains a Hamiltonian circuit whose total 

cost is less than <cost>} is in P???

TSP is in P???
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TSP-DECIDE, and other problems like it, 

share three properties:

1. The problem can be solved by searching through a 

space of partial solutions (such as routes).  The size of 

this space grows exponentially with the size of the 

problem.

2. No better (i.e., not based on search) technique for 

finding an exact solution is known.

3. But, if a proposed solution were suddenly to appear, it 

could be checked for correctness very efficiently.

TSP and Other Problems Like It
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The Complexity Class NP
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NP = 

{ Problems Solvable in Polynomial Time by NDTMs }
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timereq(M): 

If M is a nondeterministic Turing Machine all of whose 

computational paths halt on all inputs, then:

timereq(M) = f(n) = the number of steps on the 

longest path that M executes on any input of length n.

Measuring Time Requirements
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All and only languages that are decidable by a 

NDTM in polynomial time!

L  NP iff:

• there is some NDTM M that decides L, and 
• timereq(M)  O(nk) for some k.

“Nondeterministic Polynomial-Time Deciding”

The Language Class NP
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A Turing Machine V is a verifier for a language 

L iff:

w  L iff c (<w, c>  L(V)).

We’ll call c a certificate.   

Deterministic Verifying
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An alternative definition for the class NP:

L  NP iff

• there exists a deterministic TM V such 

that: V is a verifier for L, and
• timereq(V)  O(nk) for some k.

“Deterministic Polynomial-Time Verifying”

The Language Class NP
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Theorem 28.9 These two definitions are 

equivalent:

(1) L  NP iff there exists a nondeterministic,

polynomial-time TM that decides it.

(2) L  NP iff there exists a deterministic, 

polynomial-time verifier for it.

Nondeterministic Deciding and 

Deterministic Verifying

CS612 31

Young
Pencil

Young
Pencil



 Exhibit an nondeterministic polynomial-time 

decider TM to decide it.

 Exhibit a deterministic polynomial-time 

verifier TM to verify it.

Proving That a Language is in NP
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Languages that are in NP
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TSP-DECIDE = {<G, cost> : <G> encodes an 

undirected graph with a positive distance attached to 

each of its edges and G contains a Hamiltonian circuit 

whose total cost is less than <cost>} is in NP.

Theorem 28.10

TSP-DECIDE is in NP
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HAMILTONIAN-CIRCUIT = {<G, s> : G is an 

undirected graph and G contains a Hamiltonian circuit} 

is in NP.

Theorem 28.22

HAMILTONIAN-CIRCUIT is in NP
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CLIQUE = {<G, k> : G is an undirected graph with 

vertices V and edges E, k is an integer, 1  k  |V|, 

and G contains a k-clique} is in NP.

• A clique in G is a subset of V where every pair of vertices in 

the clique is connected by some edge in E.  

• A k-clique is a clique that contains exactly k vertices.

Theorem 28.11

CLIQUE is is NP
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SAT = {w : w is a Boolean wff and w is satisfiable} is 

in NP.

The Satisfiability Problem
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SAT = {w : w is a Boolean wff and w is satisfiable} is 

in NP.

Theorem 28.12

SAT is in NP
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C-SAT: A Restricted Satisfiability Problem

• A literal is either a variable or a variable preceded 
by a single negation symbol.

• A clause is either a single literal or the disjunction of 
two or more literals.

• A wff is in conjunctive normal form (or CNF) iff it 
is either a single clause or the conjunction of two or 
more clauses.

– Normal form for Boolean expressions
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A Restricted Satisfiability Problem:

C-SAT = {  w : w is a wff in Boolean logic, 

w is in conjunctive normal form, &

w is satisfiable} is in NP.

C-SAT is in NP
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k-SAT: A Restricted Satisfiability Problem

• A wff is in k-conjunctive normal form (or k-CNF) iff 
it is in conjunctive normal form and each clause 
contains exactly k literals.
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A Restricted Satisfiability Problem:

k-SAT = {  w : w is a wff in Boolean logic, 

w is in k-conjunctive normal form, &

w is satisfiable} is in NP.

k-SAT is in NP
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3-SAT: A Restricted Satisfiability Problem

• A wff is in 3-conjunctive normal form (or 3-CNF) iff 
it is in conjunctive normal form and each clause 
contains exactly three literals.
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A Restricted Satisfiability Problem:

3-SAT = {  w : w is a wff in Boolean logic, 

w is in 3-conjunctive normal form, &

w is satisfiable} is in NP.

Theorem 28.13

3-SAT is in NP
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INDEPENDENT-SET is in NP

INDEPENDENT-SET = {<G, k> : G is an undirected 

graph and G contains an independent set of at least k

vertices} is in NP.  

An independent set is a set of vertices no two of which 

are adjacent.
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VERTEX-COVER is in NP

VERTEX-COVER = {<G, k>: G is an undirected 

graph and there exists a vertex cover of G that 

contains at most k vertices} is in NP. 

A vertex cover C of a graph G = (V, E) is a subset of 

V such that every edge in E touches at least one of 

the vertices in C. 
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SUBSET-SUM = {<S, k> : S is a multiset of integers, 

k is an integer, and there exists some subset of S

whose elements sum to k} is in NP.

SUBSET-SUM is in NP
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SET-PARTITION = {<S> : S is a multiset (i.e., 

duplicates are allowed) of objects each of which has 

an associated cost and there exists a way to divide S

into two subsets, A and S – A, such that the sum of 

the costs of the elements in A equals the sum of the 

costs of the elements in S - A} is in NP.

SET-PARTITION is in NP
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KNAPSACK = {<S, v, c> : S is a set of objects each of 

which has an associated cost and an associated 

value, v and c are integers, and there exists some 

way of choosing elements of S (duplicates allowed) 

such that the total cost of the chosen objects is at 

most c and their total value is at least v} is in NP.

Notice that, if the cost of each item equals its value, then the

KNAPSACK problem becomes the SUBSET-SUM problem.

KNAPSACK is in NP
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The Relationship Between P and NP
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The P  NP Question?



Every language in P is also in NP!

Theorem 28.14   P  NP

Proof Idea: 

P is Contained in NP
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• Is P = NP? NP  P?

No one knows!

The Relationship Between P and NP
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• Here are some things we know:

P  NP 

NP  EXPTIME

PSPACE  EXPTIME

P  NP  PSPACE  EXPTIME

P  EXPTIME (Deterministic Time Hirearchy Theorem)

The Relationship Between P and NP
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Polynomial Time Reduction
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A mapping reduction R from L1 to L2 is a Turing 

machine that implements some computable 

function f with the property that: 

x (x  L1  f(x)  L2).

If L1  L2 and TM M decides L2, then   

C(x) = M(R(x)) will decide L1.  

Mapping Reduction
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If R from L1 to L2 is deterministic polynomial 

time reduction then

L1 P L2

• L1 must be in P if L2 is: if L2 is in P then there exists some 

deterministic, polynomial-time Turing machine M that decides it.  So 

M(R(x)) is also a deterministic, polynomial-time Turing machine and 

it decides L1.

• L1 must be in NP if L2 is: if L2 is in NP then there exists some 

nondeterministic, polynomial-time Turing machine M that decides it.  

So M(R(x)) is also a nondeterministic, polynomial-time Turing 

machine  and it decides L1.

Deterministic Polynomial Time 

Mapping Reduction
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Given L1 and L2 and L1 P L2, we can use reduction 

to:

• Prove that L1 is in P or in NP because we already 

know that L2 is.

• Prove that L1 would be in P or in NP if we could 

somehow show that L2 is.  

− When we do this, we cluster languages of similar 

complexity (even if we’re not yet sure what that 

complexity is).

− In other words, L1 is no harder than L2 is.

Using Polynomial Time Mapping 

Reduction in Complexity Proofs
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3-SAT = { w : w is a wff in Boolean logic, w is in 3-

conjunctive normal form, & w is satisfiable } 

INDEPENDENT-SET = {<G, k> : G is an undirected 

graph and G contains an independent set of at least

k vertices}  

3-SAT is Reducible to INDEPENDENT-SET 
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Theorem 28.15  3-SAT P INDEPENDENT-SET

Proof Idea:

A deterministic, polynomial-time reduction R from 3-SAT 

to INDEPENDENT-SET!

3-SAT P INDEPENDENT-SET

CS612 59

Young
Pencil



R: A mapping from a Boolean formula in 3-

conjunctive normal form to a graph

• Strings in 3-SAT describe formulas that 

contain literals and clauses.  

(P  Q  R)  (R  S  Q)

• Strings in INDEPENDENT-SET describe 

graphs that contain vertices and edges.  

101/1/11/11/10/10/100/100/101/11/101

3-SAT P INDEPENDENT-SET
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R(<f: Boolean formula with k clauses>) = 

1. Build a graph G by doing the following:

1.1. Create one vertex for each instance of each literal

in f.

1.2. Create an edge between each pair of vertices 

for symbols in the same clause.

1.3. Create an edge between each pair of vertices for 

complementary literals.

2. Return <G, k>.

3-SAT P INDEPENDENT-SET
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(P  Q  W)  (P  S  T) 

3-SAT P INDEPENDENT-SET
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• R is a deterministic, polynomial-time reduction.

• Show <f>  3-SAT iff R(<f>)  INDEPENDENT-

SET by showing:

• <f>  3-SAT  R(<f>)  INDEPENDENT-SET 

• R(<f>)  INDEPENDENT-SET  <f>  3-SAT

3-SAT P INDEPENDENT-SET
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<f>  3-SAT  R(<f>)  INDEPENDENT-SET:  

<f>  3-SAT.  There is a satisfying assignment A to the symbols 

in f. So, G contains an independent set S of size k, built by: 

1. From each clause gadget choose one literal that is made 

positive by A.  

2. Add the vertex corresponding to that literal to S.  

S will contain exactly k vertices and S is an independent set:

• No two vertices come from the same clause so step 1.2 

could not have created an edge between them.

• No two vertices correspond to complimentary literals so step 

1.3 could not have created an edge between them.

3-SAT P INDEPENDENT-SET
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R(<f>)  INDEPENDENT-SET  <f>  3-SAT:

R(<f>)  INDEPENDENT-SET. So, the graph G that R builds 

contains an independent set S of size k.  

No two vertices in S come from the same clause gadget.  Since S

contains at least k vertices, no two are from the same clause, and f 

contains k clauses, S must contain one vertex from each clause.  

Build A as follows: 
1. Assign True to each literal that corresponds to a vertex in S.    

2. Assign arbitrary values to all other literals.  

Since each clause will contain at least one literal whose value is 

True, the value of f will be True.

3-SAT P INDEPENDENT-SET
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NP-Complete Problems
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NP-Hard and NP-Complete 

Languages

1. L is in NP.

2. Every language in NP is deterministic polynomial-

time reducible to L. 

• L is NP-complete iff it possesses both property 1 

and property 2. 

• L is NP-hard iff it possesses property 2.

A language L might have these properties:

All NP-complete languages can be viewed as being 

equivalently hard.

An NP-hard language is at least as hard as any other 

language in NP.
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NP-Hard vs. NP-Complete

SUDOKU = {<b>: b is a configuration of an nn grid 

and b has a solution under the rules of Sudoku}.

• NP-complete.

CHESS = {<b>: b is a configuration of an nn chess 

board and there is a guaranteed win for the current 

player}.

• NP-hard, not thought to be in NP.

• If fixed number of pieces: PSPACE-complete.

• If varialbe number of pieces: EXPTIME-complete.
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SAT: The Satisfiability Problem

The Satisfiability Problem:

Given a Boolean expression, is it satisfiable?

SAT = {w : w is a wff in Boolean logic and w is satisfiable}

CS612 69



SAT is NP-Complete

 The first NP-complete language! 

 The Cook-Levin Theorem
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The Cook-Levin Theorem

Theorem 28.16 SAT is NP-complete.

Proof Idea: 

 SAT is in NP and

 SAT is NP-hard.
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Theorem 28.12 SAT = {w : w is a wff in 

Boolean logic and w is satisfiable} is in NP.

SAT is in NP
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SAT is NP-Hard

Let L be any language in NP.   

Let M be one of the NDTMs that decides L.

Define an algorithm that, given M, constructs a 

reduction R with the property that:

w  L iff R(w)  SAT.

R takes a string w and returns a Boolean wff that is 

satisfiable iff w  L.
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SAT is NP-Hard

On input w, R uses <M> and constructs a description 

of the Boolean formula:

DescribeMonw = Conj1  Conj2  Conj3  Conj4.

DescribeMonw will have a satisfying assignment to its 

variables iff there exists some computational path 

along which M accepts w.  

So, for any NP language L, L  SAT. 

Then, show that R(w) operates in polynomial time. 
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Other NP-Complete Languages
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Some NP-Complete Languages

 CSAT

 3-SAT

 INDEPENDENT-SET

 VETREX-COVER

 CLIQUE

 TSP-DECIDE

 DIRECTED-HAMILTONIAN-CIRCUIT 

 HAMILTONIAN-CIRCUIT

 SUBSET-SUM

 SET-PARTITION

 KNAPSACK

 SUDOKU
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Proving that L is NP-Complete
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Proving that L is NP-Complete

Theorem 28.17 If L1 is NP-complete, L1 P L2, 
and L2 is in NP, then L2 is also NP-complete.

Proof Idea: 
If L1 is NP-complete then every other NP language is deterministic, 
polynomial-time reducible to it.  

So let L be any NP language and let RL be the Turing machine that 
reduces L to L1.  

If L1 P L2, let R2 be the Turing machine that implements that reduction.  

Then L can be deterministic, polynomial-time reduced to L2 by first 
applying RL and then applying R2.  

Since L2 is in NP and every other language in NP is deterministic, 
polynomial-time reducible to it, L2 is NP-complete.
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Proving that a New L is NP-Complete

NPL1 NPL2 NPL3 NPL4 NPL...

L1

L

1. Show that L is in NP, 

2. Choose L1 any known NP-complete and 

Show that L1 P L.
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3-SAT: A Restricted Satisfiability 

Problem

3-SAT = {<w> : w is a wff in Boolean logic, w

is in 3-conjunctive normal form and w is 

satisfiable}. 

(P  R  T)  (S  R  W)
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3-SAT is NP-Complete

Theorem 28.18 3-SAT is NP-complete.

Proof Idea: 

 3-SAT is in NP. 

 3-SAT is NP-hard by SAT P 3-SAT
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Theorem 28.13 3-SAT = {w : w is a wff in 

Boolean logic and w is in 3-conjunctive normal 

form, and w is satisfiable} is in NP.

3-SAT is in NP
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SAT P 3-SAT

A polynomial-time reduction R from SAT to 3-SAT:

R(w: wff of Boolean logic) =

1. Use conjunctiveBoolean to construct w, 

where w is in conjunctive normal form and w

is equivalent to w. (Theorem B.1)

2. Use 3-conjunctiveBoolean to construct w, 

where w is in 3-conjunctive normal form and 

w is satisfiable iff w is. (Theorem B.2)

3. Return w.
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SAT P 3-SAT

Does R run in polynomial time?

1. For R to be a reduction from SAT to 3-SAT, it is 

sufficient to assure that w is satisifiable iff w is. 

2. There exists a polynomial-time algorithm that 

constructs, from any wff w, a w that meets that 

requirement. 

3. If we replace step one of R with that algorithm, 

R can be a polynomial-time reduction from SAT 

to 3-SAT.
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INDEPENDENT-SET

INDEPENDENT-SET = {<G, k> : G is an 

undirected graph and G contains an 

independent set of at least k vertices}.
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INDEPENDENT-SET is NP-Complete

Theorem 28.19 INDEPENDENT-SET is NP-

complete.

Proof Idea: 

 INDEPENDENT-SET is in NP and

 INDEPENDENT-SET is NP-hard by

3-SAT P INDEPENDENT-SET
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INDEPENDENT-SET is in NP

Proof: 

Ver(<G, k, c>) =

1. Check that the number of vertices in c is at least k and no 

more than |V|.  If it is not, reject.  

2. For each vertex v in c: 

For each edge e in E that has v as one endpoint:

Check that the other endpoint of e is not in c.  

Timereq(Ver)  O(|c||E||c|).  

|c| and |E| are polynomial in |<G, k>|.  

So Ver runs in polynomial time.  
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3-SAT P INDEPENDENT-SET

Theorem 28.15  3-SAT P INDEPENDENT-SET

3-SAT P INDEPENDENT-SET

CS612 88

Young
Pencil



NP-Complete Problems So Far

SAT

P

3-SAT

P

INDEPENDENT-SET
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VERTEX-COVER

VERTEX-COVER = {<G, k>: G is an 

undirected graph and there exists a vertex 

cover of G that contains at most k vertices}. 

A vertex cover C of a graph G = (V, E) is a subset of 

V such that every edge in E touches at least one of 

the vertices in C. 
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VERTEX-COVER is NP-Complete

Theorem 28.20 VERTEX-COVER is NP-

complete.

Proof Idea:

 VERTEX-COVER is in NP, and 

 VERTEX-COVER is NP-hard  by

3-SAT P VERTEX-COVER
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VERTEX-COVER is in NP

Proof:

Ver(<G, k, c>) =

1. Check that the number of vertices in c is at most 

min(k, |V|).  If not, reject.  

2. For each vertex v in c do:

Find all edges in E that have v as one endpoint 

and mark each such edge.  

3. Make one final pass through E and check whether

every edge is marked.  If all of them are, accept; 

otherwise reject.  

Timereq(Ver)  O(|c||E|). Both |c| and |E| are polynomial in 
|<G, k>|.  So Ver runs in polynomial time. 
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VERTEX-COVER is NP-Hard

3-SAT P VERTEX-COVER
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3-SAT P VERTEX-COVER

A reduction R maps a Boolean formula in 3-

conjunctive normal form to a graph:

Given a wff f, R will exploit two kinds of gadgets:

• A variable gadget:  For each variable x in f,  R will build a simple 
graph with two vertices and one edge between them.  Label one of 
the vertices x and the other one x.

• A clause gadget:  For each clause c in f, R will build a graph with 
three vertices, one for each literal in c.  There will be an edge 
between each pair of vertices in this graph.

• Then R will build an edge from every vertex in a clause gadget to 
the vertex of the variable gadget with the same label. 
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3-SAT P VERTEX-COVER

(P  Q  T)  (P  Q  S)
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3-SAT P VERTEX-COVER

R(<f>) =

1. Build a graph G as described above.

2. Let k = v + 2c.

3. Return <G, k>.

• R runs in polynomial time.  

• To show that it is correct, we must show that:

<f>  3-SAT iff R(<f>)  VERTEX-COVER 
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3-SAT P VERTEX-COVER

<f>  3-SAT  R(<f>)  VERTEX-COVER: 

There exists a satisfying assignment A for f.  

G contains a vertex cover C of size k:

1. From each variable gadget, add to C the vertex that 

corresponds to the literal that is true in A.  

2. Since A is a satisfying assignment, there must exist at 

least one true literal in each clause.  Pick one and put the 

vertices corresponding to the other two into C.

C contains exactly k vertices and C is a cover of G.
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3-SAT P VERTEX-COVER

R(<f>)  VERTEX-COVER  <f>  3-SAT: 

The graph G that R builds contains a vertex cover C

of size k. 
C must:

• Contain at least one vertex from each variable gadget in order to 

cover the internal edge in the variable gadget.

• Contain at least two vertices from each clause gadget in order to 

cover all three internal edges in the clause gadget.

Satisfying those two requirements uses up all k = v + 2c

vertices. 

CS612 98



3-SAT P VERTEX-COVER

We can use C to show that there exists some 

satisfying assignment A for f.  

To build A,

• assign the value True to each literal that is the label for one 

of the vertices of C that comes from a variable gadget. 

Then,

A is a satisfying assignment for f iff it assigns the value True to 

at least one literal in each of f’s clauses. 
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TSP-DECIDE is NP-Complete

3-SAT 

P

DIRECTED-HAMILTONIAN-CIRCUIT (DHC) 

P

HAMILTONIAN-CIRCUIT (HC)

P

TSP-DECIDE

All of these languages are NP-complete:
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DIRECTED-HAMILTONIAN-CIRCUIT 

(DHC) is NP-Complete

Theorem 28.21: DIRECTED-HAMILTONIAN-
CIRCUIT is in NP-complete.

Proof Idea: By polynomial-time reduction from 

3-SAT.
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HAMILTONIAN-CIRCUIT (HC) is NP-

Complete

Theorem 28.22 HAMILTONIAN-CIRCUIT is in 
NP-complete.

Proof Idea: By polynomial-time reduction from

DIRECTED-HAMILTONIAN-CIRCUIT. 
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TSP-DECIDE  is NP-Complete

Theorem 28.23 TSP-DECIDE is in NP-
complete.

Proof Idea: By polynomial-time reduction from

HAMILTONIAN-CIRCUIT. 
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P vs. NP-Complete Problems

1. Circuit problems

2. SAT problems

3. Path problems

4. Covering problems

5. Map coloring problems

6. Linear programming problems
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1. Two Similar Circuit Problems

• EULERIAN-CIRCUIT, in which we check that there 

is a circuit that visits every edge exactly once, is in 

P.  

• HAMILTONIAN-CIRCUIT, in which we check that 

there is a circuit that visits every vertex exactly 

once, is NP-complete. 
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2. Two Similar SAT Problems

• 2-SAT = {<w> : w is a wff in Boolean logic, w is in 
2-conjunctive normal form and w is satisfiable} is 
in P.

(P  R)  (S  T) 

• 3-SAT = {<w> : w is a wff in Boolean logic, w is in 
3-conjunctive normal form and w is satisfiable} is 
NP-complete.  

(P  R  T)  (S  T  W) 

CS612 106



3. Two Similar Path Problems

• SHORTEST-PATH = {<G, u, v, k>: G is an 
undirected graph, u and v are vertices in G, k  0, 
and there exists a path from u to v whose length is 
at most k} is in P.  

• LONGEST-PATH = {<G, u, v, k>: G is an 
undirected graph, u and v are vertices in G, k  0, 
and there exists a path with no repeated edges 
from u to v whose length is at least k} is NP-
complete. 
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4. Two Similar Covering Problems

• EDGE-COVER = {<G, k>: G is an undirected graph 
and there exists an edge cover of G that contains at 
most k edges} is in P. 

• VERTEX-COVER = {<G, k>: G is an undirected 
graph and there exists a vertex cover of G that 
contains at most k vertices} is NP-complete. 
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5. Two Similar Coloring Problems

• 2-COLORABLE = {<m> : m can be colored with 2 

colors} is in P. 

• 3-COLORABLE = {<m> : m can be colored with 3 

colors} is NP-complete. 
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6. Two Similar Linear Programming 

Problems

• LINEAR-PROGRAMMING = {<a set of linear 
inequalities Ax  b> : there exists a rational vector 
X that satisfies all of the inequalities} is in P.   

• INTEGER-PROGRAMMING = {<a set of linear 
inequalities Ax  b> : there exists an integer vector 
X that satisfies all of the inequalities} is NP-
complete.  
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The Complexity Class EXPTIME

CS612 111

EXPTIME 
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EXPTIME

For any language L, 

L  EXPTIME iff

• there exists some deterministic Turing 

machine M that decides L and 

• timereq(M)  O(        ) for some positive 

integer k.  

)(2
kn
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CHESS is in EXPTIME

CHESS = {<b>: b is a configuration of an n  n chess 

board and there is a guaranteed win for the current 

player} is in EXPTIME. 

GO
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EXPTIME-Completeness

1. L is in EXPTIME.

2. Every language in EXPTIME is deterministic, 

polynomial-time reducible to L.

Suppose that:

L is EXPTIME-hard iff it possesses property 2.  

If it also possesses property 1, it is EXPTIME-complete.
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CHESS is in EXPTIME-Complete

CHESS = {<b>: b is a configuration of an n  n chess 

board and there is a guaranteed win for the current 

player}

CHESS is EXPTIME-complete if we add pieces as well 

as rows and columns. 
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Time Complexity Hierarchy

P  NP  EXPTIME

It is not known which of these inclusions is proper.  

However, from the Deterministic Time Hierarchy 

Theorem:

P  EXPTIME  

• It is thought that all of them are proper inclusions. 

• A consequence of the fact that P  EXPTIME is that we know 

that there are decidable problems for which no efficient (i.e., 

polynomial time) decision procedure exists.  
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Tractability Hierarchy of Decidable 

Languages

• P

• NP

• EXPTIME

P  NP  EXPTIME

P  EXPTIME

P  EXPTIME

117CS612

Young
Pencil

Young
Pencil



Reading Assignment

Chapter 28:

Sections

28.1

28.2

28.3

28.4

28.5

28.6

28.9
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In-Class Exercises

Chapter 28:

1

2

3 - b

8- a

15 
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