
PART 4:

Complexity Theory:

Complexity

Time Complexity Classes

Space Complexity Classes

CS612 1



Time Complexity 

Classes:

P, NP, 

NP-completeness, 

Polynomial-Time Reduction,

EXPTIME

CS612 2



The Complexity Class P

CS612 3

P = 

{ Problems Solvable in Polynomial Time by DTMs }

Young
Pencil



timereq(M): 

If M is a deterministic Turing Machine that halts on 

all inputs, then:

timereq(M) = f(n) = the maximum number of steps 

that M executes on any input of length n.  

Measuring Time Requirements

CS612 4



The Language Class P

All and only languages that are decidable by 

a DTM in polynomial time!

L  P iff

• there exists some deterministic Turing 

machine M that decides L, and 
• timereq(M)  O(nk) for some k.

“Deterministic Polynomial-Time Deciding”

We’ll say that L is tractable iff it is in P!
CS612 5

Young
Pencil

Young
Pencil

Young
Pencil



Most Tractable Problems

Most tractable problems, i.e. problems in P can 

be solved 

• no more than O(n3) on conventional computers.

• no more than O(n16) on a one-tape DTM.

CS612 6



Closure of P under Complement

If a language L is in P, so is its complement L!

Theorem 28.1: The class P is closed under 

complement.

Proof:

If M accepts L in polynomial time, swap accepting and 

non accepting states to accept L in polynomial time.

CS612 7

Young
Pencil



Languages That Are in P

• Every regular language in O(n) time. 

• Every context-free language since there 

exist context-free parsing algorithms that 
run in O(n3) time.

• Some languages that are not context free.  
AnBnCn in O(n2) time.

CS612 8



Equivalence of Multi-tape and One-

tape TMs

Theorem 17.1: Let M be a k-tape Turing machine for 

some k  1.  Then there is a standard TM M' where  

', and:

• On input x, M halts with output z on the first tape iff

M' halts in the same state with z on its tape. 

• On input x, if M halts in n steps, M' halts in O(n2)

steps.

Proof: Proof by Construction

CS612 9

Young
Pencil



Simulating a Real Computer by a 

Multi-tape TM

Theorem 17.4 A random-access, stored 

program computer can be simulated by a 7-tape 

Turing Machine.  If the computer requires n

steps to perform some operation, the 7-tape 
Turing Machine simulation will require O(n3) 

steps.

Proof Idea: 
Proof by Construction.

simcomputer will use 7 tapes:

CS612 10

Young
Pencil



Simulating a Real Computer by a 

One-tape TM

Theorem 17.4 A random-access, stored 

program computer can be simulated by a Turing 

Machine.  If the computer requires n steps to 

perform some operation, the Turing Machine 
simulation will require O(n6) steps.

Proof Idea: 

Proof by Construction.

CS612 11

Young
Pencil



To Show That a Language Is In P

 State an algorithm that runs on a 

conventional computer.

 Describe a multi-tape, deterministic Turing 

Machine.

 Describe a one-tape, deterministic Turing 

Machine.

CS612 12

Young
Pencil



Theorem 28.2 Every regular language can be 

decided in linear time.  So every regular 

language is in P. 

Proof Idea: 

If L is regular, there exists some DFSM M that decides it.  

Construct a deterministic TM M that simulates M, moving its read/write 

head one square to the right at each step.  When M reads a q, it halts.  If 

it is in an accepting state, it accepts; otherwise it rejects.

On any input of length n, M will execute n + 2 steps.  
So timereq(M)  O(n).

Regular Language is in P

CS612 13



Context-Free Language is in P

Theorem 28.3 Every context-free language 
can be decided in O(n18) time.  So every 

context-free language is in P. 

Proof Idea: 

The Cocke-Kasami-Younger (CKY) algorithm can parse any 
context-free language in time that is O(n3) if we count operations 

on a conventional computer.  

That algorithm can be simulated on a standard, one-tape Turing 
machine in O(n18) steps.

CS612 14



CONNECTED is in P

CONNECTED = 

{<G> : G is an undirected graph and G is connected}.

Theorem 28.4

CS612 15



Eulerian Paths and Circuits

CS612 16

• An Eulerian path through a graph G is a path that

traverses each edge in G exactly once.

• An Eulerian circuit through a graph G is a path

that starts at some vertex s, ends back in s, and

traverses each edge in G exactly once.



Eulerian Paths and Circuits

CS612 17

• A connected graph possesses an Eulerian path 

that is not a circuit iff it contains exactly two 

vertices of odd degree.  

Those two vertices will serve as the first and last vertices of the path.

• A connected graph possess an Eulerian circuit iff

all its vertices have even degree.  



EULERIAN-CIRCUIT is in P

EULERIAN-CIRCUIT = {<G> : G is an undirected 

graph, and G contains an Eulerian circuit} is in P.

Theorem 28.5

CS612 18



A spanning tree T of a graph G is a subset of the edges 

of G such that: 

• T contains no cycles and

• Every vertex in G is connected to every other vertex 

using just the edges in T.

An unconnected graph has no spanning trees. 

A connected graph G will have at least one spanning 

tree; it may have many.  

Spanning Trees

CS612 19



A weighted graph is a graph that has a weight 

associated with each edge.  

If G is a weighted graph, the cost of a tree is the sum 

of the costs (weights) of its edges.  

A tree T is a minimum spanning tree of G iff:

• it is a spanning tree and 

• there is no other spanning tree whose cost is lower 

than that of T. 

Minimum Spanning Trees

CS612 20



MST = {<G, cost> : G is an undirected graph with a 

positive cost attached to each of its edges and there

exists a minimum spanning tree of G with total cost 

less than cost} is in P.

Theorem 28.6

MST is in P

CS612 21



RELATIVELY-PRIME = {<n, m> : n and m are integers 

that are relatively prime} is in P.

PRIMES = {w : w is the binary encoding of a prime 

number} is in P.

COMPOSITES = {w : w is the binary encoding of a 

nonprime number} is in P.

Primality Testing is in P

CS612 22



HAMILTONIAN-PATH = {<G> : G is an undirected 

graph and G contains a Hamiltonian path}.   

HAMILTONIAN-CIRCUIT = {<G, s> : G is an 

undirected graph and G contains a Hamiltonian 

circuit}. 

• A Hamiltonian path is a path that visits each vertex exactly 

once. 

• A Hamiltonian circuit is a Hamiltonian path that starts some 

vertex and ends in the same vertex.

Hamiltonian Path and Circuit

CS612 23



TSP-DECIDE = {<G, cost> : <G> encodes an undirected 

graph with a positive distance attached to each of its 

edges and G contains a Hamiltonian circuit whose total 

cost is less than <cost>} is in P???

TSP is in P???

15

20

25

8

9

23

40

10

4

7
3

28
30

CS612 24



TSP-DECIDE, and other problems like it, 

share three properties:

1. The problem can be solved by searching through a 

space of partial solutions (such as routes).  The size of 

this space grows exponentially with the size of the 

problem.

2. No better (i.e., not based on search) technique for 

finding an exact solution is known.

3. But, if a proposed solution were suddenly to appear, it 

could be checked for correctness very efficiently.

TSP and Other Problems Like It

CS612 25



The Complexity Class NP

CS612 26

NP = 

{ Problems Solvable in Polynomial Time by NDTMs }

Young
Pencil



timereq(M): 

If M is a nondeterministic Turing Machine all of whose 

computational paths halt on all inputs, then:

timereq(M) = f(n) = the number of steps on the 

longest path that M executes on any input of length n.

Measuring Time Requirements

CS612 27



All and only languages that are decidable by a 

NDTM in polynomial time!

L  NP iff:

• there is some NDTM M that decides L, and 
• timereq(M)  O(nk) for some k.

“Nondeterministic Polynomial-Time Deciding”

The Language Class NP

CS612 28

Young
Pencil



A Turing Machine V is a verifier for a language 

L iff:

w  L iff c (<w, c>  L(V)).

We’ll call c a certificate.   

Deterministic Verifying

CS612 29

Young
Pencil



An alternative definition for the class NP:

L  NP iff

• there exists a deterministic TM V such 

that: V is a verifier for L, and
• timereq(V)  O(nk) for some k.

“Deterministic Polynomial-Time Verifying”

The Language Class NP

CS612 30

Young
Pencil



Theorem 28.9 These two definitions are 

equivalent:

(1) L  NP iff there exists a nondeterministic,

polynomial-time TM that decides it.

(2) L  NP iff there exists a deterministic, 

polynomial-time verifier for it.

Nondeterministic Deciding and 

Deterministic Verifying

CS612 31

Young
Pencil

Young
Pencil



 Exhibit an nondeterministic polynomial-time 

decider TM to decide it.

 Exhibit a deterministic polynomial-time 

verifier TM to verify it.

Proving That a Language is in NP

CS612 32

Young
Pencil



Languages that are in NP

CS612 33



TSP-DECIDE = {<G, cost> : <G> encodes an 

undirected graph with a positive distance attached to 

each of its edges and G contains a Hamiltonian circuit 

whose total cost is less than <cost>} is in NP.

Theorem 28.10

TSP-DECIDE is in NP

CS612 34



HAMILTONIAN-CIRCUIT = {<G, s> : G is an 

undirected graph and G contains a Hamiltonian circuit} 

is in NP.

Theorem 28.22

HAMILTONIAN-CIRCUIT is in NP

CS612 35



CLIQUE = {<G, k> : G is an undirected graph with 

vertices V and edges E, k is an integer, 1  k  |V|, 

and G contains a k-clique} is in NP.

• A clique in G is a subset of V where every pair of vertices in 

the clique is connected by some edge in E.  

• A k-clique is a clique that contains exactly k vertices.

Theorem 28.11

CLIQUE is is NP

CS612 36



SAT = {w : w is a Boolean wff and w is satisfiable} is 

in NP.

The Satisfiability Problem

CS612 37



SAT = {w : w is a Boolean wff and w is satisfiable} is 

in NP.

Theorem 28.12

SAT is in NP

CS612 38



C-SAT: A Restricted Satisfiability Problem

• A literal is either a variable or a variable preceded 
by a single negation symbol.

• A clause is either a single literal or the disjunction of 
two or more literals.

• A wff is in conjunctive normal form (or CNF) iff it 
is either a single clause or the conjunction of two or 
more clauses.

– Normal form for Boolean expressions

CS612 39



A Restricted Satisfiability Problem:

C-SAT = {  w : w is a wff in Boolean logic, 

w is in conjunctive normal form, &

w is satisfiable} is in NP.

C-SAT is in NP

CS612 40



k-SAT: A Restricted Satisfiability Problem

• A wff is in k-conjunctive normal form (or k-CNF) iff 
it is in conjunctive normal form and each clause 
contains exactly k literals.

CS612 41



A Restricted Satisfiability Problem:

k-SAT = {  w : w is a wff in Boolean logic, 

w is in k-conjunctive normal form, &

w is satisfiable} is in NP.

k-SAT is in NP

CS612 42



3-SAT: A Restricted Satisfiability Problem

• A wff is in 3-conjunctive normal form (or 3-CNF) iff 
it is in conjunctive normal form and each clause 
contains exactly three literals.

CS612 43



A Restricted Satisfiability Problem:

3-SAT = {  w : w is a wff in Boolean logic, 

w is in 3-conjunctive normal form, &

w is satisfiable} is in NP.

Theorem 28.13

3-SAT is in NP

CS612 44



INDEPENDENT-SET is in NP

INDEPENDENT-SET = {<G, k> : G is an undirected 

graph and G contains an independent set of at least k

vertices} is in NP.  

An independent set is a set of vertices no two of which 

are adjacent.

CS612 45



VERTEX-COVER is in NP

VERTEX-COVER = {<G, k>: G is an undirected 

graph and there exists a vertex cover of G that 

contains at most k vertices} is in NP. 

A vertex cover C of a graph G = (V, E) is a subset of 

V such that every edge in E touches at least one of 

the vertices in C. 

CS612 46



SUBSET-SUM = {<S, k> : S is a multiset of integers, 

k is an integer, and there exists some subset of S

whose elements sum to k} is in NP.

SUBSET-SUM is in NP

CS612 47



SET-PARTITION = {<S> : S is a multiset (i.e., 

duplicates are allowed) of objects each of which has 

an associated cost and there exists a way to divide S

into two subsets, A and S – A, such that the sum of 

the costs of the elements in A equals the sum of the 

costs of the elements in S - A} is in NP.

SET-PARTITION is in NP

CS612 48



KNAPSACK = {<S, v, c> : S is a set of objects each of 

which has an associated cost and an associated 

value, v and c are integers, and there exists some 

way of choosing elements of S (duplicates allowed) 

such that the total cost of the chosen objects is at 

most c and their total value is at least v} is in NP.

Notice that, if the cost of each item equals its value, then the

KNAPSACK problem becomes the SUBSET-SUM problem.

KNAPSACK is in NP

CS612 49



The Relationship Between P and NP

CS612 50

The P  NP Question?



Every language in P is also in NP!

Theorem 28.14   P  NP

Proof Idea: 

P is Contained in NP

CS612 51

Young
Pencil

Young
Pencil



• Is P = NP? NP  P?

No one knows!

The Relationship Between P and NP

CS612 52

Young
Pencil



• Here are some things we know:

P  NP 

NP  EXPTIME

PSPACE  EXPTIME

P  NP  PSPACE  EXPTIME

P  EXPTIME (Deterministic Time Hirearchy Theorem)

The Relationship Between P and NP

CS612 53

Young
Pencil



Polynomial Time Reduction

CS612 54



A mapping reduction R from L1 to L2 is a Turing 

machine that implements some computable 

function f with the property that: 

x (x  L1  f(x)  L2).

If L1  L2 and TM M decides L2, then   

C(x) = M(R(x)) will decide L1.  

Mapping Reduction

CS612 55



If R from L1 to L2 is deterministic polynomial 

time reduction then

L1 P L2

• L1 must be in P if L2 is: if L2 is in P then there exists some 

deterministic, polynomial-time Turing machine M that decides it.  So 

M(R(x)) is also a deterministic, polynomial-time Turing machine and 

it decides L1.

• L1 must be in NP if L2 is: if L2 is in NP then there exists some 

nondeterministic, polynomial-time Turing machine M that decides it.  

So M(R(x)) is also a nondeterministic, polynomial-time Turing 

machine  and it decides L1.

Deterministic Polynomial Time 

Mapping Reduction

CS612 56

Young
Pencil

Young
Pencil



Given L1 and L2 and L1 P L2, we can use reduction 

to:

• Prove that L1 is in P or in NP because we already 

know that L2 is.

• Prove that L1 would be in P or in NP if we could 

somehow show that L2 is.  

− When we do this, we cluster languages of similar 

complexity (even if we’re not yet sure what that 

complexity is).

− In other words, L1 is no harder than L2 is.

Using Polynomial Time Mapping 

Reduction in Complexity Proofs

CS612 57

Young
Pencil



3-SAT = { w : w is a wff in Boolean logic, w is in 3-

conjunctive normal form, & w is satisfiable } 

INDEPENDENT-SET = {<G, k> : G is an undirected 

graph and G contains an independent set of at least

k vertices}  

3-SAT is Reducible to INDEPENDENT-SET 

CS612 58

Young
Pencil



Theorem 28.15  3-SAT P INDEPENDENT-SET

Proof Idea:

A deterministic, polynomial-time reduction R from 3-SAT 

to INDEPENDENT-SET!

3-SAT P INDEPENDENT-SET

CS612 59

Young
Pencil



R: A mapping from a Boolean formula in 3-

conjunctive normal form to a graph

• Strings in 3-SAT describe formulas that 

contain literals and clauses.  

(P  Q  R)  (R  S  Q)

• Strings in INDEPENDENT-SET describe 

graphs that contain vertices and edges.  

101/1/11/11/10/10/100/100/101/11/101

3-SAT P INDEPENDENT-SET

CS612 60



R(<f: Boolean formula with k clauses>) = 

1. Build a graph G by doing the following:

1.1. Create one vertex for each instance of each literal

in f.

1.2. Create an edge between each pair of vertices 

for symbols in the same clause.

1.3. Create an edge between each pair of vertices for 

complementary literals.

2. Return <G, k>.

3-SAT P INDEPENDENT-SET

CS612 61



(P  Q  W)  (P  S  T) 

3-SAT P INDEPENDENT-SET

CS612 62



• R is a deterministic, polynomial-time reduction.

• Show <f>  3-SAT iff R(<f>)  INDEPENDENT-

SET by showing:

• <f>  3-SAT  R(<f>)  INDEPENDENT-SET 

• R(<f>)  INDEPENDENT-SET  <f>  3-SAT

3-SAT P INDEPENDENT-SET

CS612 63



<f>  3-SAT  R(<f>)  INDEPENDENT-SET:  

<f>  3-SAT.  There is a satisfying assignment A to the symbols 

in f. So, G contains an independent set S of size k, built by: 

1. From each clause gadget choose one literal that is made 

positive by A.  

2. Add the vertex corresponding to that literal to S.  

S will contain exactly k vertices and S is an independent set:

• No two vertices come from the same clause so step 1.2 

could not have created an edge between them.

• No two vertices correspond to complimentary literals so step 

1.3 could not have created an edge between them.

3-SAT P INDEPENDENT-SET

CS612 64



R(<f>)  INDEPENDENT-SET  <f>  3-SAT:

R(<f>)  INDEPENDENT-SET. So, the graph G that R builds 

contains an independent set S of size k.  

No two vertices in S come from the same clause gadget.  Since S

contains at least k vertices, no two are from the same clause, and f 

contains k clauses, S must contain one vertex from each clause.  

Build A as follows: 
1. Assign True to each literal that corresponds to a vertex in S.    

2. Assign arbitrary values to all other literals.  

Since each clause will contain at least one literal whose value is 

True, the value of f will be True.

3-SAT P INDEPENDENT-SET

CS612 65



NP-Complete Problems

CS612 66



NP-Hard and NP-Complete 

Languages

1. L is in NP.

2. Every language in NP is deterministic polynomial-

time reducible to L. 

• L is NP-complete iff it possesses both property 1 

and property 2. 

• L is NP-hard iff it possesses property 2.

A language L might have these properties:

All NP-complete languages can be viewed as being 

equivalently hard.

An NP-hard language is at least as hard as any other 

language in NP.

CS612 67

Young
Pencil



NP-Hard vs. NP-Complete

SUDOKU = {<b>: b is a configuration of an nn grid 

and b has a solution under the rules of Sudoku}.

• NP-complete.

CHESS = {<b>: b is a configuration of an nn chess 

board and there is a guaranteed win for the current 

player}.

• NP-hard, not thought to be in NP.

• If fixed number of pieces: PSPACE-complete.

• If varialbe number of pieces: EXPTIME-complete.

CS612 68



SAT: The Satisfiability Problem

The Satisfiability Problem:

Given a Boolean expression, is it satisfiable?

SAT = {w : w is a wff in Boolean logic and w is satisfiable}

CS612 69



SAT is NP-Complete

 The first NP-complete language! 

 The Cook-Levin Theorem

CS612 70

Young
Pencil

Young
Pencil



The Cook-Levin Theorem

Theorem 28.16 SAT is NP-complete.

Proof Idea: 

 SAT is in NP and

 SAT is NP-hard.

CS612 71

Young
Pencil

Young
Pencil

Young
Pencil



Theorem 28.12 SAT = {w : w is a wff in 

Boolean logic and w is satisfiable} is in NP.

SAT is in NP

CS612 72



SAT is NP-Hard

Let L be any language in NP.   

Let M be one of the NDTMs that decides L.

Define an algorithm that, given M, constructs a 

reduction R with the property that:

w  L iff R(w)  SAT.

R takes a string w and returns a Boolean wff that is 

satisfiable iff w  L.

CS612 73



SAT is NP-Hard

On input w, R uses <M> and constructs a description 

of the Boolean formula:

DescribeMonw = Conj1  Conj2  Conj3  Conj4.

DescribeMonw will have a satisfying assignment to its 

variables iff there exists some computational path 

along which M accepts w.  

So, for any NP language L, L  SAT. 

Then, show that R(w) operates in polynomial time. 

CS612 74



Other NP-Complete Languages

CS612 75



Some NP-Complete Languages

 CSAT

 3-SAT

 INDEPENDENT-SET

 VETREX-COVER

 CLIQUE

 TSP-DECIDE

 DIRECTED-HAMILTONIAN-CIRCUIT 

 HAMILTONIAN-CIRCUIT

 SUBSET-SUM

 SET-PARTITION

 KNAPSACK

 SUDOKU

CS612 76

Young
Pencil



Proving that L is NP-Complete

CS612 77



Proving that L is NP-Complete

Theorem 28.17 If L1 is NP-complete, L1 P L2, 
and L2 is in NP, then L2 is also NP-complete.

Proof Idea: 
If L1 is NP-complete then every other NP language is deterministic, 
polynomial-time reducible to it.  

So let L be any NP language and let RL be the Turing machine that 
reduces L to L1.  

If L1 P L2, let R2 be the Turing machine that implements that reduction.  

Then L can be deterministic, polynomial-time reduced to L2 by first 
applying RL and then applying R2.  

Since L2 is in NP and every other language in NP is deterministic, 
polynomial-time reducible to it, L2 is NP-complete.

CS612 78

Young
Pencil

Young
Pencil



Proving that a New L is NP-Complete

NPL1 NPL2 NPL3 NPL4 NPL...

L1

L

1. Show that L is in NP, 

2. Choose L1 any known NP-complete and 

Show that L1 P L.

CS612 79

Young
Pencil



3-SAT: A Restricted Satisfiability 

Problem

3-SAT = {<w> : w is a wff in Boolean logic, w

is in 3-conjunctive normal form and w is 

satisfiable}. 

(P  R  T)  (S  R  W)

CS612 80



3-SAT is NP-Complete

Theorem 28.18 3-SAT is NP-complete.

Proof Idea: 

 3-SAT is in NP. 

 3-SAT is NP-hard by SAT P 3-SAT

CS612 81



Theorem 28.13 3-SAT = {w : w is a wff in 

Boolean logic and w is in 3-conjunctive normal 

form, and w is satisfiable} is in NP.

3-SAT is in NP

CS612 82



SAT P 3-SAT

A polynomial-time reduction R from SAT to 3-SAT:

R(w: wff of Boolean logic) =

1. Use conjunctiveBoolean to construct w, 

where w is in conjunctive normal form and w

is equivalent to w. (Theorem B.1)

2. Use 3-conjunctiveBoolean to construct w, 

where w is in 3-conjunctive normal form and 

w is satisfiable iff w is. (Theorem B.2)

3. Return w.

CS612 83

Young
Pencil



SAT P 3-SAT

Does R run in polynomial time?

1. For R to be a reduction from SAT to 3-SAT, it is 

sufficient to assure that w is satisifiable iff w is. 

2. There exists a polynomial-time algorithm that 

constructs, from any wff w, a w that meets that 

requirement. 

3. If we replace step one of R with that algorithm, 

R can be a polynomial-time reduction from SAT 

to 3-SAT.

CS612 84



INDEPENDENT-SET

INDEPENDENT-SET = {<G, k> : G is an 

undirected graph and G contains an 

independent set of at least k vertices}.

CS612 85



INDEPENDENT-SET is NP-Complete

Theorem 28.19 INDEPENDENT-SET is NP-

complete.

Proof Idea: 

 INDEPENDENT-SET is in NP and

 INDEPENDENT-SET is NP-hard by

3-SAT P INDEPENDENT-SET

CS612 86



INDEPENDENT-SET is in NP

Proof: 

Ver(<G, k, c>) =

1. Check that the number of vertices in c is at least k and no 

more than |V|.  If it is not, reject.  

2. For each vertex v in c: 

For each edge e in E that has v as one endpoint:

Check that the other endpoint of e is not in c.  

Timereq(Ver)  O(|c||E||c|).  

|c| and |E| are polynomial in |<G, k>|.  

So Ver runs in polynomial time.  

CS612 87



3-SAT P INDEPENDENT-SET

Theorem 28.15  3-SAT P INDEPENDENT-SET

3-SAT P INDEPENDENT-SET

CS612 88

Young
Pencil



NP-Complete Problems So Far

SAT

P

3-SAT

P

INDEPENDENT-SET

CS612 89

Young
Pencil



VERTEX-COVER

VERTEX-COVER = {<G, k>: G is an 

undirected graph and there exists a vertex 

cover of G that contains at most k vertices}. 

A vertex cover C of a graph G = (V, E) is a subset of 

V such that every edge in E touches at least one of 

the vertices in C. 

CS612 90



VERTEX-COVER is NP-Complete

Theorem 28.20 VERTEX-COVER is NP-

complete.

Proof Idea:

 VERTEX-COVER is in NP, and 

 VERTEX-COVER is NP-hard  by

3-SAT P VERTEX-COVER

CS612 91



VERTEX-COVER is in NP

Proof:

Ver(<G, k, c>) =

1. Check that the number of vertices in c is at most 

min(k, |V|).  If not, reject.  

2. For each vertex v in c do:

Find all edges in E that have v as one endpoint 

and mark each such edge.  

3. Make one final pass through E and check whether

every edge is marked.  If all of them are, accept; 

otherwise reject.  

Timereq(Ver)  O(|c||E|). Both |c| and |E| are polynomial in 
|<G, k>|.  So Ver runs in polynomial time. 

CS612 92



VERTEX-COVER is NP-Hard

3-SAT P VERTEX-COVER

CS612 93



3-SAT P VERTEX-COVER

A reduction R maps a Boolean formula in 3-

conjunctive normal form to a graph:

Given a wff f, R will exploit two kinds of gadgets:

• A variable gadget:  For each variable x in f,  R will build a simple 
graph with two vertices and one edge between them.  Label one of 
the vertices x and the other one x.

• A clause gadget:  For each clause c in f, R will build a graph with 
three vertices, one for each literal in c.  There will be an edge 
between each pair of vertices in this graph.

• Then R will build an edge from every vertex in a clause gadget to 
the vertex of the variable gadget with the same label. 

CS612 94

Young
Pencil



3-SAT P VERTEX-COVER

(P  Q  T)  (P  Q  S)

CS612 95



3-SAT P VERTEX-COVER

R(<f>) =

1. Build a graph G as described above.

2. Let k = v + 2c.

3. Return <G, k>.

• R runs in polynomial time.  

• To show that it is correct, we must show that:

<f>  3-SAT iff R(<f>)  VERTEX-COVER 

CS612 96



3-SAT P VERTEX-COVER

<f>  3-SAT  R(<f>)  VERTEX-COVER: 

There exists a satisfying assignment A for f.  

G contains a vertex cover C of size k:

1. From each variable gadget, add to C the vertex that 

corresponds to the literal that is true in A.  

2. Since A is a satisfying assignment, there must exist at 

least one true literal in each clause.  Pick one and put the 

vertices corresponding to the other two into C.

C contains exactly k vertices and C is a cover of G.

CS612 97



3-SAT P VERTEX-COVER

R(<f>)  VERTEX-COVER  <f>  3-SAT: 

The graph G that R builds contains a vertex cover C

of size k. 
C must:

• Contain at least one vertex from each variable gadget in order to 

cover the internal edge in the variable gadget.

• Contain at least two vertices from each clause gadget in order to 

cover all three internal edges in the clause gadget.

Satisfying those two requirements uses up all k = v + 2c

vertices. 

CS612 98



3-SAT P VERTEX-COVER

We can use C to show that there exists some 

satisfying assignment A for f.  

To build A,

• assign the value True to each literal that is the label for one 

of the vertices of C that comes from a variable gadget. 

Then,

A is a satisfying assignment for f iff it assigns the value True to 

at least one literal in each of f’s clauses. 

CS612 99



TSP-DECIDE is NP-Complete

3-SAT 

P

DIRECTED-HAMILTONIAN-CIRCUIT (DHC) 

P

HAMILTONIAN-CIRCUIT (HC)

P

TSP-DECIDE

All of these languages are NP-complete:

CS612 100

Young
Pencil

Young
Pencil



DIRECTED-HAMILTONIAN-CIRCUIT 

(DHC) is NP-Complete

Theorem 28.21: DIRECTED-HAMILTONIAN-
CIRCUIT is in NP-complete.

Proof Idea: By polynomial-time reduction from 

3-SAT.

CS612 101



HAMILTONIAN-CIRCUIT (HC) is NP-

Complete

Theorem 28.22 HAMILTONIAN-CIRCUIT is in 
NP-complete.

Proof Idea: By polynomial-time reduction from

DIRECTED-HAMILTONIAN-CIRCUIT. 

CS612 102



TSP-DECIDE  is NP-Complete

Theorem 28.23 TSP-DECIDE is in NP-
complete.

Proof Idea: By polynomial-time reduction from

HAMILTONIAN-CIRCUIT. 

CS612 103



P vs. NP-Complete Problems

1. Circuit problems

2. SAT problems

3. Path problems

4. Covering problems

5. Map coloring problems

6. Linear programming problems

CS612 104

Young
Pencil



1. Two Similar Circuit Problems

• EULERIAN-CIRCUIT, in which we check that there 

is a circuit that visits every edge exactly once, is in 

P.  

• HAMILTONIAN-CIRCUIT, in which we check that 

there is a circuit that visits every vertex exactly 

once, is NP-complete. 

CS612 105



2. Two Similar SAT Problems

• 2-SAT = {<w> : w is a wff in Boolean logic, w is in 
2-conjunctive normal form and w is satisfiable} is 
in P.

(P  R)  (S  T) 

• 3-SAT = {<w> : w is a wff in Boolean logic, w is in 
3-conjunctive normal form and w is satisfiable} is 
NP-complete.  

(P  R  T)  (S  T  W) 

CS612 106



3. Two Similar Path Problems

• SHORTEST-PATH = {<G, u, v, k>: G is an 
undirected graph, u and v are vertices in G, k  0, 
and there exists a path from u to v whose length is 
at most k} is in P.  

• LONGEST-PATH = {<G, u, v, k>: G is an 
undirected graph, u and v are vertices in G, k  0, 
and there exists a path with no repeated edges 
from u to v whose length is at least k} is NP-
complete. 

CS612 107



4. Two Similar Covering Problems

• EDGE-COVER = {<G, k>: G is an undirected graph 
and there exists an edge cover of G that contains at 
most k edges} is in P. 

• VERTEX-COVER = {<G, k>: G is an undirected 
graph and there exists a vertex cover of G that 
contains at most k vertices} is NP-complete. 

CS612 108



5. Two Similar Coloring Problems

• 2-COLORABLE = {<m> : m can be colored with 2 

colors} is in P. 

• 3-COLORABLE = {<m> : m can be colored with 3 

colors} is NP-complete. 

CS612 109



6. Two Similar Linear Programming 

Problems

• LINEAR-PROGRAMMING = {<a set of linear 
inequalities Ax  b> : there exists a rational vector 
X that satisfies all of the inequalities} is in P.   

• INTEGER-PROGRAMMING = {<a set of linear 
inequalities Ax  b> : there exists an integer vector 
X that satisfies all of the inequalities} is NP-
complete.  

CS612 110



The Complexity Class EXPTIME

CS612 111

EXPTIME 

= { Problems Solvable in Exponential Time by DTMs }

Young
Pencil



EXPTIME

For any language L, 

L  EXPTIME iff

• there exists some deterministic Turing 

machine M that decides L and 

• timereq(M)  O(        ) for some positive 

integer k.  

)(2
kn

CS612 112

Young
Pencil

Young
Pencil



CHESS is in EXPTIME

CHESS = {<b>: b is a configuration of an n  n chess 

board and there is a guaranteed win for the current 

player} is in EXPTIME. 

GO

CS612 113



EXPTIME-Completeness

1. L is in EXPTIME.

2. Every language in EXPTIME is deterministic, 

polynomial-time reducible to L.

Suppose that:

L is EXPTIME-hard iff it possesses property 2.  

If it also possesses property 1, it is EXPTIME-complete.

CS612 114

Young
Pencil

Young
Pencil



CHESS is in EXPTIME-Complete

CHESS = {<b>: b is a configuration of an n  n chess 

board and there is a guaranteed win for the current 

player}

CHESS is EXPTIME-complete if we add pieces as well 

as rows and columns. 

CS612 115



Time Complexity Hierarchy

P  NP  EXPTIME

It is not known which of these inclusions is proper.  

However, from the Deterministic Time Hierarchy 

Theorem:

P  EXPTIME  

• It is thought that all of them are proper inclusions. 

• A consequence of the fact that P  EXPTIME is that we know 

that there are decidable problems for which no efficient (i.e., 

polynomial time) decision procedure exists.  

CS612 116

Young
Pencil

Young
Pencil



Tractability Hierarchy of Decidable 

Languages

• P

• NP

• EXPTIME

P  NP  EXPTIME

P  EXPTIME

P  EXPTIME

117CS612

Young
Pencil

Young
Pencil



Reading Assignment

Chapter 28:

Sections

28.1

28.2

28.3

28.4

28.5

28.6

28.9

118CS612



In-Class Exercises

Chapter 28:

1

2

3 - b

8- a

15 

CS612 119


