
PART 4:

Complexity Theory:

Complexity

Time Complexity Classes

Space Complexity Classes

1CS612

Space Complexity

Classes

PSPACE & NPSPACE

2CS612

Space Complexity

3CS612

spacereq(M) measures the worst-case

space requirement of TM M as a function of

the length of the input n.

Measuring Space Requirements

4CS612

Young
Pencil

• If M is a deterministic TM that halts on all inputs,

then:

spacereq(M) = f(n) = the maximum number of tape

squares that M reads on any input of length n.

• If M is a nondeterministic TM all of whose

computational paths halt on all inputs, then:

spacereq(M) = f(n) = the maximum number of tape

squares that M reads on any path that it executes

on any input of length n.

Measuring Space Requirements

5CS612

Example 29.1

CONNECTED = {<G> : G is an undirected

graph and G is connected}

spacereq(CONNECTED) is O(|<G>|).

 O(n) Linear space.

6CS612

Example 29.2

SAT = {w : w is a Boolean wff and w is

satisfiable}

spacereq(SAT) is O(|w|).

 O(n) Linear space.

7CS612

TSP-DECIDE = {<G, cost> : <G> encodes an

undirected graph with a positive distance

attached to each of its edges and G contains

a Hamiltonian circuit whose total cost is less

than <cost>}

spacereq(TSP-DECIDE) is O(|<G>|).

 O(n) Linear space.

Example 29.3

CS612 8

Relating Time and Space Complexity

9CS612

Relating Time and Space Complexity

• There is some relationship between the

number of steps a TM executes and the

number of space it uses!

• A TM can examine at most one tape square

at each step of its operations! So,

spacereq(M) timereq(M)

 Space can be reused, but time cannot!

10CS612

Young
Pencil

Young
Pencil

Young
Pencil

Relating Time and Space Complexity

Max # of distinct configurations of TM M with K

states & tape symbols and spacereq(M):

MaxConfigs(M) = |K|||spacereq(M)spacereq(M).

Let c be a constant such that c > ||.

Then:

MaxConfigs(M) O(cspacereq(M)).

11CS612

Relating Time and Space Complexity

MaxConfigs(M) O(cspacereq(M)) and
timereq(M) MaxConfigs(M).

So,

timereq(M) O(cspacereq(M)).

12CS612

Young
Pencil

Relating Time and Space Complexity

Theorem 29.1 Given a Turing machine M = (K,

, , , s, H) and assuming that spacereq(M)

n, the following relationships hold between M’s

time and space requirements:

spacereq(M) timereq(M) O(cspacereq(M)).

Proof Idea:
Spacereq(M) is bounded by timereq(M) since M must use at least one time

step for every tape square it visits.

Since M halts, the number of steps that it can execute is bounded by

MaxConfigs(M), the number of distinct configurations that it can enter.

13CS612

Young
Pencil

Young
Pencil

Space Complexity Classes:

PSPACE & NPSPACE

14CS612

PSPACE =

{ Problems Solvable in Polynomial Space by DTMs }

NPSPACE =

{ Problems Solvable in Polynomial Space by NDTMs }

Young
Pencil

P (PTIME) and NP (NPTIME)

• The Class P: L P iff there exists some
deterministic Turing machine M that decides
L and timereq(M) O(nk) for some constant
k.

• The Class NP: L NP iff there exists some
nondeterministic Turing machine M that
decides L and timereq(M) O(nk) for some
constant k.

Is P = NP ? No one knows!

15CS612

Young
Pencil

Young
Pencil

Young
Pencil

PSPACE

The Class PSPACE:

L PSPACE iff

• there exists some deterministic Turing
machine M that decides L and

• spacereq(M) O(nk) for some constant k.

16CS612

Young
Pencil

NPSPACE

The Class NPSPACE:

L NPSPACE iff

• there exists some nondeterministic Turing
machine M that decides L and

• spacereq(M) O(nk) for some constant k.

17CS612

Young
Pencil

Savitch’s Theorem

• DTM can simulate NTM by using a

surprisingly small amount of space!

 PSPACE = NPSPACE

• For time complexity, such a simulation

requires an exponential increase in time!

18CS612

Young
Pencil

Young
Pencil

Savitch’s Theorem

Theorem 29.2 If L can be decided by some

nondeterministic Turing machine M and

spacereq(M) n, then there exists a

deterministic Turing machine M that also

decides L and
spacereq(M) O(spacereq(M)2).

Proof Idea:

The proof is by construction of a DTM M that searches

the tree of computations performed by M.

19CS612

Young
Pencil

Young
Pencil

PSPACE = NPSPACE

Theorem 29.3 PSPACE = NPSPACE.

Proof Idea: We will prove:

• If L is in PSPACE then it is NPSPACE. (Trivial)

• If L is in NPSPACE then it is in PSPACE:

20CS612

Young
Pencil

PSPACE = NPSPACE

• If L is in NPSPACE then there is some NDTM M
such that M decides L and spacereq(M) O(nk) for

some k.

• If k 1, then, by Savitch’s Theorem, there exists a

DTM M such that M decides L and spacereq(M)
 O(n2k).

• If k < 1 then, using the same construction that we

used in the proof of Savitch’s Theorem, we can

show that there exists a DTM M such that M
decides L and spacereq(M) O(n2).

21CS612

P NP PSPACE

Theorem 29.4 P NP PSPACE.

Proof Idea:
We have already shown that P NP.

Proof that NP PSPACE:

If L is in NP, then it is decided by some NDTM M in polynomial

time.

In polynomial time, M cannot use more than polynomial space

since it takes a least one time step to visit a tape square.

Since M is an NDTM that decides L in polynomial space, L is in

NPSPACE.

But, by Savitch’s Theorem, PSPACE = NPSPACE.

So L is also in PSPACE.

22CS612

Young
Pencil

PSPACE-Completeness

23CS612

PSPACE-Hard & PSPACE-Complete

1. L is in PSPACE.

2. Every language in PSPACE is deterministic,

polynomial-time reducible to L.

• L is PSPACE-hard iff it possesses property 2.

• L is PSPACE-complete iff it possesses both

property 1 and property 2.

A language L might have these properties:

24CS612

Young
Pencil

PSPACE-Completeness, P, and NP

All PSPACE-complete languages can be

viewed as being equivalently hard in the sense

that all of them can be decided in polynomial

space and:

• If any PSPACE-complete language is also in NP,

then all of them are and NP = PSPACE.

• If any PSPACE-complete language is also in P, then

all of them are and P = NP = PSPACE.

25CS612

Quantified Boolean Expression

A Quantified Boolean Expression is :

• The base case: all wffs are QBEs.

• Adding quantifiers: if w is a QBE that contains the

unbound variable A, then the expressions A (w)

and A (w) are QBEs.

26CS612

Quantified Boolean Formula

A Quantified Boolean Formula is a QBE that

is also a sentence (i.e., all of its variables are

bound):

• P (R (P R)) QBF.

• P (R (P R)) QBF

27CS612

The QBF Problem

Given a QBF with no free variables, does it

have the value 1?

QBF = {<w> : w is a true quantified Boolean formula}

28CS612

QBF is PSPACE-Complete

 QBF is in PSPACE

 QBF is PSPACE-Complete

29CS612

Young
Pencil

More PSPACE-Hard Problems

• Two-Person Games

• Some Questions on Languages and

Automata

30CS612

Tractability Hierarchy of Decidable

Languages

• P

• NP

• PSPACE

• NPSPACE

• EXPTIME

P NP PSPACE = NPSPACE EXPTIME

P EXPTIME

P EXPTIME

31CS612

Young
Pencil

Young
Pencil

Reading Assignment

Chapter 29:

Sections

29.1

29.2

29.3

29.6

32CS612

In-Class Exercises

Chapter 29:

2 – a

33CS612

Practical Solutions for

Hard Problems

34CS612

Hard Problems

• NP

• PSPACE

• NPSPACE

• EXPTIME

35CS612

Young
Pencil

Young
Pencil

Approaches

Strategies for developing efficient algorithms

to solve a hard problem:

Compromise on generality

Compromise on optimality

Compromise on both

Compromise on total automation

36CS612

Young
Pencil

Young
Pencil

Compromise on Generality

• On most (not all) problem instances!

37CS612

Compromise on Optimality

• A good (not optimal) solution!

38CS612

Compromise on Total Automation

• An algorithm that works interactively with a

human user!

39CS612

Reading Assignment

Chapter 30:

Section

30.1

40CS612

