
PART 4:

Complexity Theory:

Complexity

Time Complexity Classes

Space Complexity Classes
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Space Complexity 

Classes

PSPACE & NPSPACE
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Space Complexity
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spacereq(M) measures the worst-case 

space requirement of TM M as a function of 

the length of the input n.

Measuring Space Requirements
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• If M is a deterministic TM that halts on all inputs, 

then: 

spacereq(M) = f(n) = the maximum number of tape

squares that M reads on any input of length n.

• If M is a nondeterministic TM all of whose 

computational paths halt on all inputs, then:

spacereq(M) = f(n) = the maximum number of tape 

squares that M reads on any path that it executes 

on any input of length n.

Measuring Space Requirements
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Example 29.1

CONNECTED = {<G> : G is an undirected 

graph and G is connected} 

spacereq(CONNECTED) is O(|<G>|). 

 O(n) Linear space.
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Example 29.2

SAT = {w : w is a Boolean wff and w is 

satisfiable} 

spacereq(SAT) is O(|w|).

 O(n) Linear space.
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TSP-DECIDE = {<G, cost> : <G> encodes an 

undirected graph with a positive distance 

attached to each of its edges and G contains 

a Hamiltonian circuit whose total cost is less 

than <cost>}

spacereq(TSP-DECIDE) is O(|<G>|). 

 O(n) Linear space.

Example 29.3
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Relating Time and Space Complexity
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Relating Time and Space Complexity

• There is some relationship between the 

number of steps a TM executes and the 

number of space it uses!

• A TM can examine at most one tape square 

at each step of its operations! So,

spacereq(M)  timereq(M)

 Space can be reused, but time cannot!
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Relating Time and Space Complexity

Max # of distinct configurations of TM M with K 

states &  tape symbols and spacereq(M):

MaxConfigs(M) = |K|||spacereq(M)spacereq(M).

Let c be a constant such that c > ||.  

Then:

MaxConfigs(M)  O(cspacereq(M)).  
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Relating Time and Space Complexity

MaxConfigs(M)  O(cspacereq(M)) and 
timereq(M)  MaxConfigs(M).

So,

timereq(M)  O(cspacereq(M)).
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Relating Time and Space Complexity

Theorem 29.1 Given a Turing machine M = (K, 

, , , s, H) and assuming that spacereq(M) 

n, the following relationships hold between M’s 

time and space requirements:

spacereq(M)  timereq(M)  O(cspacereq(M)).

Proof Idea: 
Spacereq(M) is bounded by timereq(M) since M must use at least one time 

step for every tape square it visits. 

Since M halts, the number of steps that it can execute is bounded by  

MaxConfigs(M), the number of distinct configurations that it can enter. 

13CS612

Young
Pencil

Young
Pencil



Space Complexity Classes:

PSPACE & NPSPACE
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PSPACE = 

{ Problems Solvable in Polynomial Space by DTMs }

NPSPACE = 

{ Problems Solvable in Polynomial Space by NDTMs }
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P (PTIME) and NP (NPTIME)

• The Class P: L  P iff there exists some 
deterministic Turing machine M that decides
L and timereq(M)  O(nk) for some constant 
k.

• The Class NP: L  NP iff there exists some 
nondeterministic Turing machine M that 
decides L and timereq(M)  O(nk) for some 
constant k.

Is P = NP ? No one knows! 
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PSPACE

The Class PSPACE: 

L  PSPACE iff

• there exists some deterministic Turing 
machine M that decides L and 

• spacereq(M)  O(nk) for some constant k.
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NPSPACE

The Class NPSPACE: 

L  NPSPACE iff

• there exists some nondeterministic Turing 
machine M that decides L and 

• spacereq(M)  O(nk) for some constant k.
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Savitch’s Theorem

• DTM can simulate NTM by using a 

surprisingly small amount of space!

 PSPACE = NPSPACE

• For time complexity, such a simulation 

requires an exponential increase in time!
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Savitch’s Theorem

Theorem 29.2 If L can be decided by some 

nondeterministic Turing machine M and 

spacereq(M)  n, then there exists a 

deterministic Turing machine M that also 

decides L and  
spacereq(M)  O(spacereq(M)2).

Proof Idea: 

The proof is by construction of a DTM M that searches 

the tree of computations performed by M. 
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PSPACE = NPSPACE

Theorem 29.3 PSPACE = NPSPACE.

Proof Idea: We will prove:

• If L is in PSPACE then it is NPSPACE. (Trivial)

• If L is in NPSPACE then it is in PSPACE:
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PSPACE = NPSPACE

• If L is in NPSPACE then there is some NDTM M
such that M decides L and spacereq(M)  O(nk) for 

some k.  

• If k  1, then, by Savitch’s Theorem, there exists a 

DTM M such that M decides L and spacereq(M) 
 O(n2k).  

• If k < 1 then, using the same construction that we 

used in the proof of Savitch’s Theorem, we can 

show that there exists a DTM M such that M
decides L and spacereq(M)  O(n2).  
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P  NP  PSPACE 

Theorem 29.4 P  NP  PSPACE.

Proof Idea: 
We have already shown that P  NP.  

Proof that NP  PSPACE:  

If L is in NP, then it is decided by some NDTM M in polynomial 

time.  

In polynomial time, M cannot use more than polynomial space 

since it takes a least one time step to visit a tape square.  

Since M is an NDTM that decides L in polynomial space, L is in 

NPSPACE.

But, by Savitch’s Theorem, PSPACE = NPSPACE.  

So L is also in PSPACE. 
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PSPACE-Completeness
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PSPACE-Hard & PSPACE-Complete

1. L is in PSPACE.

2. Every language in PSPACE is deterministic, 

polynomial-time reducible to L. 

• L is PSPACE-hard iff it possesses property 2.

• L is PSPACE-complete iff it possesses both

property 1 and property 2. 

A language L might have these properties:
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PSPACE-Completeness, P, and NP

All PSPACE-complete languages can be 

viewed as being equivalently hard in the sense 

that all of them can be decided in polynomial 

space and: 

• If any PSPACE-complete language is also in NP, 

then all of them are and NP = PSPACE.

• If any PSPACE-complete language is also in P, then 

all of them are and P = NP = PSPACE.   
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Quantified Boolean Expression

A Quantified Boolean Expression is :

• The base case: all wffs are QBEs.

• Adding quantifiers: if w is a QBE that contains the 

unbound variable A, then the expressions A (w) 

and A (w) are QBEs.  
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Quantified Boolean Formula

A Quantified Boolean Formula is a QBE that 

is also a sentence (i.e., all of its variables are 

bound):

• P (R (P R))  QBF.

• P (R (P R))  QBF
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The QBF Problem

Given a QBF with no free variables, does it

have the value 1?

QBF = {<w> : w is a true quantified Boolean formula}
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QBF is PSPACE-Complete

 QBF is in PSPACE

 QBF is PSPACE-Complete
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More PSPACE-Hard Problems

• Two-Person Games

• Some Questions on Languages and 

Automata
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Tractability Hierarchy of Decidable 

Languages

• P

• NP

• PSPACE

• NPSPACE

• EXPTIME

P  NP  PSPACE = NPSPACE  EXPTIME

P  EXPTIME

P  EXPTIME
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Reading Assignment

Chapter 29:

Sections

29.1

29.2

29.3

29.6
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In-Class Exercises

Chapter 29:

2 – a
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Practical Solutions for 

Hard Problems
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Hard Problems

• NP

• PSPACE

• NPSPACE

• EXPTIME
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Approaches

Strategies for developing efficient algorithms 

to solve a hard problem:

Compromise on generality

Compromise on optimality

Compromise on both

Compromise on total automation
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Compromise on Generality

• On most (not all) problem instances!
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Compromise on Optimality

• A good (not optimal) solution!
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Compromise on Total Automation

• An algorithm that works interactively with a 

human user!
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Reading Assignment

Chapter 30:

Section

30.1
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