
PART 4:

Complexity Theory:

Complexity

Time Complexity Classes

Space Complexity Classes

1CS612

Space Complexity

Classes

PSPACE & NPSPACE

2CS612

Space Complexity

3CS612

spacereq(M) measures the worst-case

space requirement of TM M as a function of

the length of the input n.

Measuring Space Requirements

4CS612

Young
Pencil

• If M is a deterministic TM that halts on all inputs,

then:

spacereq(M) = f(n) = the maximum number of tape

squares that M reads on any input of length n.

• If M is a nondeterministic TM all of whose

computational paths halt on all inputs, then:

spacereq(M) = f(n) = the maximum number of tape

squares that M reads on any path that it executes

on any input of length n.

Measuring Space Requirements

5CS612

Example 29.1

CONNECTED = {<G> : G is an undirected

graph and G is connected}

spacereq(CONNECTED) is O(|<G>|).

 O(n) Linear space.

6CS612

Example 29.2

SAT = {w : w is a Boolean wff and w is

satisfiable}

spacereq(SAT) is O(|w|).

 O(n) Linear space.

7CS612

TSP-DECIDE = {<G, cost> : <G> encodes an

undirected graph with a positive distance

attached to each of its edges and G contains

a Hamiltonian circuit whose total cost is less

than <cost>}

spacereq(TSP-DECIDE) is O(|<G>|).

 O(n) Linear space.

Example 29.3

CS612 8

Relating Time and Space Complexity

9CS612

Relating Time and Space Complexity

• There is some relationship between the

number of steps a TM executes and the

number of space it uses!

• A TM can examine at most one tape square

at each step of its operations! So,

spacereq(M)  timereq(M)

 Space can be reused, but time cannot!

10CS612

Young
Pencil

Young
Pencil

Young
Pencil

Relating Time and Space Complexity

Max # of distinct configurations of TM M with K

states &  tape symbols and spacereq(M):

MaxConfigs(M) = |K|||spacereq(M)spacereq(M).

Let c be a constant such that c > ||.

Then:

MaxConfigs(M)  O(cspacereq(M)).

11CS612

Relating Time and Space Complexity

MaxConfigs(M)  O(cspacereq(M)) and
timereq(M)  MaxConfigs(M).

So,

timereq(M)  O(cspacereq(M)).

12CS612

Young
Pencil

Relating Time and Space Complexity

Theorem 29.1 Given a Turing machine M = (K,

, , , s, H) and assuming that spacereq(M) 

n, the following relationships hold between M’s

time and space requirements:

spacereq(M)  timereq(M)  O(cspacereq(M)).

Proof Idea:
Spacereq(M) is bounded by timereq(M) since M must use at least one time

step for every tape square it visits.

Since M halts, the number of steps that it can execute is bounded by

MaxConfigs(M), the number of distinct configurations that it can enter.

13CS612

Young
Pencil

Young
Pencil

Space Complexity Classes:

PSPACE & NPSPACE

14CS612

PSPACE =

{ Problems Solvable in Polynomial Space by DTMs }

NPSPACE =

{ Problems Solvable in Polynomial Space by NDTMs }

Young
Pencil

P (PTIME) and NP (NPTIME)

• The Class P: L  P iff there exists some
deterministic Turing machine M that decides
L and timereq(M)  O(nk) for some constant
k.

• The Class NP: L  NP iff there exists some
nondeterministic Turing machine M that
decides L and timereq(M)  O(nk) for some
constant k.

Is P = NP ? No one knows!

15CS612

Young
Pencil

Young
Pencil

Young
Pencil

PSPACE

The Class PSPACE:

L  PSPACE iff

• there exists some deterministic Turing
machine M that decides L and

• spacereq(M)  O(nk) for some constant k.

16CS612

Young
Pencil

NPSPACE

The Class NPSPACE:

L  NPSPACE iff

• there exists some nondeterministic Turing
machine M that decides L and

• spacereq(M)  O(nk) for some constant k.

17CS612

Young
Pencil

Savitch’s Theorem

• DTM can simulate NTM by using a

surprisingly small amount of space!

 PSPACE = NPSPACE

• For time complexity, such a simulation

requires an exponential increase in time!

18CS612

Young
Pencil

Young
Pencil

Savitch’s Theorem

Theorem 29.2 If L can be decided by some

nondeterministic Turing machine M and

spacereq(M)  n, then there exists a

deterministic Turing machine M that also

decides L and
spacereq(M)  O(spacereq(M)2).

Proof Idea:

The proof is by construction of a DTM M that searches

the tree of computations performed by M.

19CS612

Young
Pencil

Young
Pencil

PSPACE = NPSPACE

Theorem 29.3 PSPACE = NPSPACE.

Proof Idea: We will prove:

• If L is in PSPACE then it is NPSPACE. (Trivial)

• If L is in NPSPACE then it is in PSPACE:

20CS612

Young
Pencil

PSPACE = NPSPACE

• If L is in NPSPACE then there is some NDTM M
such that M decides L and spacereq(M)  O(nk) for

some k.

• If k  1, then, by Savitch’s Theorem, there exists a

DTM M such that M decides L and spacereq(M)
 O(n2k).

• If k < 1 then, using the same construction that we

used in the proof of Savitch’s Theorem, we can

show that there exists a DTM M such that M
decides L and spacereq(M)  O(n2).

21CS612

P  NP  PSPACE

Theorem 29.4 P  NP  PSPACE.

Proof Idea:
We have already shown that P  NP.

Proof that NP  PSPACE:

If L is in NP, then it is decided by some NDTM M in polynomial

time.

In polynomial time, M cannot use more than polynomial space

since it takes a least one time step to visit a tape square.

Since M is an NDTM that decides L in polynomial space, L is in

NPSPACE.

But, by Savitch’s Theorem, PSPACE = NPSPACE.

So L is also in PSPACE.

22CS612

Young
Pencil

PSPACE-Completeness

23CS612

PSPACE-Hard & PSPACE-Complete

1. L is in PSPACE.

2. Every language in PSPACE is deterministic,

polynomial-time reducible to L.

• L is PSPACE-hard iff it possesses property 2.

• L is PSPACE-complete iff it possesses both

property 1 and property 2.

A language L might have these properties:

24CS612

Young
Pencil

PSPACE-Completeness, P, and NP

All PSPACE-complete languages can be

viewed as being equivalently hard in the sense

that all of them can be decided in polynomial

space and:

• If any PSPACE-complete language is also in NP,

then all of them are and NP = PSPACE.

• If any PSPACE-complete language is also in P, then

all of them are and P = NP = PSPACE.

25CS612

Quantified Boolean Expression

A Quantified Boolean Expression is :

• The base case: all wffs are QBEs.

• Adding quantifiers: if w is a QBE that contains the

unbound variable A, then the expressions A (w)

and A (w) are QBEs.

26CS612

Quantified Boolean Formula

A Quantified Boolean Formula is a QBE that

is also a sentence (i.e., all of its variables are

bound):

• P (R (P R))  QBF.

• P (R (P R))  QBF

27CS612

The QBF Problem

Given a QBF with no free variables, does it

have the value 1?

QBF = {<w> : w is a true quantified Boolean formula}

28CS612

QBF is PSPACE-Complete

 QBF is in PSPACE

 QBF is PSPACE-Complete

29CS612

Young
Pencil

More PSPACE-Hard Problems

• Two-Person Games

• Some Questions on Languages and

Automata

30CS612

Tractability Hierarchy of Decidable

Languages

• P

• NP

• PSPACE

• NPSPACE

• EXPTIME

P  NP  PSPACE = NPSPACE  EXPTIME

P  EXPTIME

P  EXPTIME

31CS612

Young
Pencil

Young
Pencil

Reading Assignment

Chapter 29:

Sections

29.1

29.2

29.3

29.6

32CS612

In-Class Exercises

Chapter 29:

2 – a

33CS612

Practical Solutions for

Hard Problems

34CS612

Hard Problems

• NP

• PSPACE

• NPSPACE

• EXPTIME

35CS612

Young
Pencil

Young
Pencil

Approaches

Strategies for developing efficient algorithms

to solve a hard problem:

Compromise on generality

Compromise on optimality

Compromise on both

Compromise on total automation

36CS612

Young
Pencil

Young
Pencil

Compromise on Generality

• On most (not all) problem instances!

37CS612

Compromise on Optimality

• A good (not optimal) solution!

38CS612

Compromise on Total Automation

• An algorithm that works interactively with a

human user!

39CS612

Reading Assignment

Chapter 30:

Section

30.1

40CS612

